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 This paper presents an innovative computing method and models for optimizing the 
combination defined in combinatorics. The optimized combination has been derived from the 
iterative computation of multiple geometric series and summability by specialized approach. 
The optimized combinatorial technique has applications in science, engineering and 
management. In this paper, several properties and consequences on the innovative optimized 
combination has been introduced that are useful for scientific researchers who are solving 
scientific problems and meeting today’s challenges. 
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1. INTRODUCTION  

Combinatorics is a collection of various counting 
techniques or methods and models and has many applications 
in science, technology, and management. In the research paper, 
optimized combination of combinatorics is introduced that is 
useful for scientific researchers who are solving scientific 
problems and meeting today’s challenges.  

 

2. OPTIMIZED COMBINATION  

The growing complexity of mathematical modelling and its 
application demands the simplicity of numerical equations and 
combinatorial techniques for solving the scientific problems 
facing today. In view of this idea, the optimized combination 
of combinatorics is introduced that is  
 

௥ܸ
௡ =

ݎ) + ݎ)(1 + ݎ)(2 + 3) ⋯ ⋯ ݎ) + ݊ − ݎ)(1 + ݊)
݊!  ,

(݊, ݎ ∈ ܰ, ݊ ≥ 1, ݎ & ≥ 0) 
where N = {0, 1, 2, 3, 4, 5, . . . . . } is the set of natural 

numbers including the element 0. 

 

This optimized combination is derived from the iterative computations [Annamalai et al., 2018, 2019, 2020] of multi-geometric 

series and summability as follows  
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Where V୧
୮is a binomial coefficient and its mathematical expressions are given below: 
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Let us prove the equation (A) using the multiple geometric series. 
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If we continue like this, the binomial coefficient of the multisereis is ௜ܸ
௣(1 ≤ ݌ ≤ ݊ − 1).  
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Now  ௥ܸ
௡  (݊, ݎ ∈ ܰ, ݊ ≥ 1, ݎ & ≥ 0)is considered as optimized combination. 

 

Some results with proofs on the optimized combination [Annamalai, 2020] are provided below. 
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From (i) and (ii), the result 1 is true. 
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It is understood from (iii) that the result 2 is true. 
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From (iv) and (v), the result 3 is true. 
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Assume that ݎ = ݊ + ݉ (݉ ∈ ܰ & ݉ ≥ 1).    Let us show that  ௡ܸା௠
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Hence, the result 5 is true. 
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Proof. This result is proved by mathematical induction. 
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3. CONCLUSION 

In the research paper, optimized combination of 
combinatorics has been introduced that are useful for 
scientific researchers who are solving scientific problems 
and meeting today’s challenges. The optimized combination 
was derived from the recursive computation of mult-
geometric series and summability. The combinatorial 
computing technique, called optimized combination, has 
been applied in differential and integral equation developed 
by using multiple geometric series and summability.   
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