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The techno-economic analysis of chemical processes is usually based on steady state 
simulations. When dynamic processes are present, simplified or surrogate models are used to 
avoid the dynamic simulation of the overall system. Nevertheless, this usually results in loss 
of information when the simplified model is used or a large number of parameters when the 
surrogate model is applied. To circumvent this problem, a hybrid surrogate model is proposed 
that combines the low-cost prediction of the average behavior by a simplified model with the 
fine tuning provided by a multilinear look-up table. This concept was applied to the 
homogeneous alkaline transesterification of the soybean oil with ethanol in a batch reactor. 
The hybrid approach enabled a 70% reduction in the number of points of the look-up table 
compared to the pure interpolator model, for an accuracy tolerance of 0.01 mol/l. 
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  R E S U M O  
 

 A análise técnico-econômica de processos químicos costuma se basear em simulações 
estacionárias. Quando processos dinâmicos estão presentes, modelos simplificados ou meta-
modelos são usados para evitar a simulação dinâmica de todo processo. Mas isso 
normalmente resulta em perda de informação, no caso do modelo simplificado, ou em um 
grande número de parâmetros no caso dos meta-modelos. Para contornar isto, um meta-
modelo hibrido é proposto, que combina a predição de baixo custo computacional do 
comportamento médio do sistema por um modelo simplificado, com o refinamento provido 
por um interpolador multilinear. Esta metodologia foi aplicada na transesterificação alcalina 
homogênea do óleo de soja com etanol em um reator batelada. O modelo híbrido reduziu em 
70% o número de pontos da tabela de inspeção para uma tolerância de 0.01 mol/l de precisão 
comparado ao modelo de interpolador puro. 



 

. 1. INTRODUCTION 

It is already a consensus that a shift towards a carbon 
neutral economy is mandatory. To allow this transition, multiple 
options and sources will probably coexist, with biomass as an 
important source for both energy and materials (Giordano et al., 
2020). In this context, a good alternative for petrochemical 
derived fuels is biodiesel. Biodiesel is a monoalkyl ester of a 
fatty acid produced from renewable sources, such as vegetable 
oils and animal fat (Mahlia et al., 2020). 

The biodiesel production is usually based on the 
transesterification reaction of a triacyl glyceride with an alcohol. 
It can be homogeneously catalyzed by acids, bases and enzymes 
or heterogeneously by oxides of alkaline earth metals, zeolites, 
immobilized enzymes, among other options (Guerrero, 2011). 
Methanol is mainly used as the alcoholic compound. 
Nevertheless, there is a trend in Brazil towards the use of 
ethanol, given the potential of the ethanol and sugar industry and 
the possibility to achieve a more renewable fuel through this 
route (Guerrero, 2011). 

Most of the catalysts options listed are still not 
consolidated in industry. Therefore, it is of paramount 
importance to perform techno-economic and environmental 
analyses to assist their development towards industrial 
application (Furlan et al., 2016). Since these analyses are usually 
based on steady-state simulations, essentially dynamic 
processes, such as batch and feed batch reactors, are mainly 
represented by simplified models (stoichiometric reactors, for 
example). These simplified models present low accuracy for 
describing the influence of process conditions on the system 
performance. 

An option to circumvent this problem is to use surrogate 
models. Surrogate models aim at representing complex and 
costly systems using cheaper functions. Several surrogate 
modeling functions are available (Alizadeh et al., 2020). One 
option is the multilinear look-up table (Nelles, 2001), which 
consists of a set of data points positioned in a multi-dimensional 
grid. These data are based on the simulation of the rigorous 
model. The surrogate output is obtained by the interpolation of 
the points of the smallest n-dimensional cube that contains the 
point of interest. The advantage of this type of surrogate model 
is the lack of a training step, since the data is fully used. A 
disadvantage is that it demands a large number of points to 
describe the output of nonlinear systems accurately. 

In this context, this study presents a hybrid model 
composed by an analytic solution of an approximation of the 
original ODE and a multilinear look-up table. The former is 
responsible for a rough approximation of the output while the 
latter improves the local behavior. The hybrid model is capable 
of accurately representing the dynamic model behavior with a 
smaller number of parameters, when compared to the pure 
multilinear look-up table. The approach was applied to the 
ethylic transesterification of soybean oil. The simulation was 
performed in EMSO (Soares & Secchi, 2013), an equation-
oriented process simulator. 

2. MATERIALS AND METHODS 

All the simulations were performed in EMSO, which is 
an equation-oriented process simulator with an internal object-
oriented modelling language (Soares & Secchi, 2003). EMSO is 

capable of performing process simulations, optimizations, 
parameter estimation and data reconciliation. It has an interface 
with MATLAB through Simulink and python. The look-up table 
model, used in this study, was included in EMSO via a plug in 
(Furlan et al., 2016), since it is not well suited for the equation-
oriented approach due to its algorithmic modelling. 

The rigorous model for the transesterification of soybean 
oil with ethanol, using sodium ethoxide as catalyst, is presented 
by Dias (2016). The global reaction rates are based on the 
pseudo-components that represent the triacyl glycerides (TG), 
diacyl glycerides (DG) and monoacyl glycerides (MG), the 
ethyl esters that compose the biodiesel (EE), along with the 
glycerol (GL) and the ethanol (ET). This reaction occurs in three 
steps, represented by reversible reactions described by 
Equations 1-3. 
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The kinetics models of these reactions are represented by 
Equations 4-9.  
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 Where 	� is the global reaction rate of each compound 
‘i’ (TG, DG, MG, EE, GL, ET)., �� is the kinetic constant of 
each specific reaction “n” and �� is the concentration of each 
compound “i”. 

 Two approaches are compared: a pure interpolator that 
directly approximates the rigorous model’s output using a look-
up table; and a hybrid model, composed by a simplified model 
of exponential equations which represents a rough 
approximation of the rigorous model combined to an 
interpolator that refines the output. The pure interpolator 
demands many points to make the look-up table. Therefore, the 
latter is proposed as a way to reduce the number of points 
necessary to produce an interpolator with the desired precision. 
For this purpose, equations (4) to (9) were modified so they 
formed a system of equations with known algebraic solution that 
still approximates the rigorous model output behavior, 
representing the dynamic nature of the system. Ergo the 
interpolator is just responsible for the correction of the deviation 
between the rigorous model and this simplified model, which 
presents a non-linear behavior yet, but with less variations. 

 The considerations made to provide the simplified 
model were:  

• The concentration of ethanol is considered 
constant during the reaction; 

• The kinetics of the reverse reactions are 
disregarded; so, the solutions for the kinetics 
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of the reactions of formation and consumption 
of the acyl glycerides are defined analytically; 

• The other compounds are defined by 
stoichiometry. 

These conditions create a system of ordinary 
differential equations represented by Equations 10-17. 
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Where ���  represents the product of the pseudo-kinetic 
constants ��� , analogue to the real kinetic constant, and the 
initial concentration of ethanol ��
�. The batch reactor molar 
balance is given by Equation 16. 
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 Where t represents the time of reaction. 

 Then, we can achieve an analytic solution to describe 
the concentration of the acyl glycerides with the Equations 18-
20.  
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These new constants were fit to the rigorous model 
data. Model fitting was performed using “Parameter 
Estimation” environment in software EMSO (Soares, 2007).  
Since the new system of equations presents just three 
independent reactions, it was only necessary to obtain the 
concentrations of the acyl glycerides by the rigorous model. The 

other concentrations were obtained using the reactions 
stoichiometries and mass balances. With these manipulations of 
Equations 18-20, the concentrations of ethanol, ethyl esters 
(biodiesel) and glycerin are represented by Equations 21-23. 
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The inputs of the multilinear look-up table based 
surrogate model were the reaction time and the molar ratio 
between ethanol and soybean oil at the beginning of the 
reaction. The concentration of soybean oil used was 700 
mol/m3, the same value used during the experiments from the 
reference (Dias, 2016). 

In the base case, the surrogate model was responsible 
for approximating the behavior of the rigorous model. On the 
other hand, in the hybrid surrogate model, the interpolator was 
responsible for correcting the deviation between the outputs of 
the rigorous model and the simplified model (Equation 24). 
Therefore, the output of the hybrid surrogate model is the sum 
of the simplified model one and the interpolator one (Equation 
11). A MATLAB® based program developed by Lino (2018) 
was used to construct the look-up table using its interface with 
EMSO. The program systematically refines the table until the 
max absolute error (MAE - Equation 26) achieves a specified 
tolerance. A Latin-hypercube sampling approach was used for 
model validation (Saltelli et al., 2008) with 1000 validation 
points. 
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 Where di is the deviation from the rigorous model 
concentration (��@A), ��BA is the simplified model concentration, ��CA is the hybrid surrogate model concentration and  �D� is 
the max absolute error.  

In the pure look-up table case, the MAE is calculated 
with the concentration from the look-up table instead of the 
concentration from the hybrid model.

3. RESULTS AND DISCUSSION 

Initially, the simplified model was fit to the rigorous 
model outputs. The used data were generated by the simulation 
of the rigorous model. The output variables were the 
concentrations of TG, DG and MG. The input variables were the 
time, evaluated at values between 0 and 25 minutes with 0.5 
minutes steps, and the ethanol/soybean oil molar ratio, evaluated 
at values between 6 and 12 with 0.5 steps. The parameters values 
obtained are shown in Table 1.

 

Table 1 – Results of simplified model’s pseudo constant 
fitting. 

Pseudo-constant Value / m3 . mol-1 . s-1 R² / # 

kk1 1.295 x 10-6 0.99 

kk2 8.717 x 10-7 0.83 

kk3 8.700 x 10-7 0.85 

 The deviation between the behavior of the simplified 
model and the rigorous model are shown in Figure 1. The 
concentrations calculated by the simplified model and the 
rigorous model are shown in Figure 2, both for an initial 
ethanol/soybean oil molar ratio of 9/1 and 700 mol/m³ of initial 
concentration of soybean oil, for the mono (MG), di (DG) and 



 

triacyl glycerides (TG). As it can be seen in both figures, the 
simplified model systematically under and over estimates the 

concentrations depending on the region.  

 

Figure 1 – Deviation, IJ, between the concentrations calculated by the rigorous model and the simplified model for each 
acyl glyceride. 

 

 

Figure 2 – Concentrations of TG, DG and MG calculated by the rigorous model (“r” index) and by the simplified model 
(“s” index). 

 

For the construction of the hybrid surrogate model, that 
unites the simplified model and the multilinear look-up table, 
the maximum absolute error of the final model was considered 
as stopping criteria. The grid of points used by the interpolator 
was chosen as the one which achieve the specified accuracy 
tolerance in the validation test consisting of 1000 points. In 
Figure 3 the correspondence between the results of the 
simplified model and the rigorous model are shown for the 
diacyl glyceride (DG), the compound with the highest values of 
error. The results are at an ethanol/soybean oil molar ratio equal 

to 9 and initial concentration of soybean oil equal 700 mol/m³. 
Figures 4 and 5 shows the comparison between the rigorous 
model and the hybrid model for the tolerances of 100 and 10 
mol/m³, respectively. As expected, as the maximum absolute 
error allowed decreases, the systematic error presented by the 
simplified model is reduced. The improvement is also noticed 
by the increase in the coefficient of determination value (R²). 
The pure simplified model presented a R² of 0.851. The hybrid 
model presented R² of 0.919 and 1.00, for tolerances of 100 and 
10 mol/m³, respectively. 
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Figure 3 – DG concentration obtained from rigorous 
dynamic model versus the concentration predicted by the 

simplified model. 

 

 

Figure 4 – DG concentration obtained from rigorous 
dynamic model versus the concentration predicted by the 

hybrid model with 100 mol/m³ error tolerance. 

 

 

Figure 5 – DG concentration obtained from rigorous 
dynamic model versus the hybrid model with 10 mol/m³ 

error tolerance. 

 

Finally, the hybrid surrogate model was compared to 
the pure interpolator surrogate model. For this, the number of 
points necessary for the look-up table to achieve certain 
precision of each model was observed.  Table 2 and Table 3 
present some results of the number of points and the average 
evaluation time of ten simulations varying the ethanol/soybean 
oil molar ratio by 6.6 to 12 with steps of 0.6. It can be seen that 
the number of points in the hybrid model was 70-88% less than 
the pure interpolator model for the same tolerance. Finally, this 
is translated in a decrease in evaluation time, with the hybrid 
model showing average evaluation times 40-52% smaller than 
the pure interpolator model. It can be seen that the rigorous 
model evaluation time is 1.65 times the hybrid model’s for the 
10 mol/m³ threshold. Although this difference is apparently 
small, it is expected to increase when the whole process 
(including upstream and downstream) is considered. The 
simulations were made in a computer with a Core i3-4005U 
1.7GHz and 3M cache. The time of simulation of the rigorous 
model for the same ten simulations was 1.44±0.05. 

Table 2 – Number of points and simulation time for the 
hybrid surrogate model and the pure interpolator 
surrogate model for an error tolerance of 100 mol/m³. 

Analysis 
parameters 

Pure look-up 
table model 

Hybrid 
model 

Reduction 
/ % 

Number of 
points / # 

34 4 88 

Simulation 
time / s  

0.30±0.02 0.18±0.06 40 



 

Table 3 – Number of points and simulation time for the 
hybrid surrogate model and the pure interpolator 
surrogate model for an error tolerance of 10 mol/m³. 

Analysis 
parameters 

Pure look-up 
table 

Hybrid 
model 

Reductio
n / % 

Number of 
points / # 

645 195 70 

Simulation 
time / s  

1.82±0.10 0.88±0.09 52 

 It can be noticed that, as the error tolerance is reduced, 
the difference in the number of points of the hybrid and the pure 
look-up table models decreases. This indicates that the impact 
of the approximation by the simplified model in the reduction of 
the number of points of the look-up table decreases. On the other 

hand, the difference in the simulation time of the two models 
increases, which indicates that the increase in the look-up table 
evaluation time is superlinear with the number of points. Also, 
the simulation time of the hybrid model was faster than the 
rigorous model for both tolerances tested, while the pure look-
up table presented a higher simulation time for the 10 mol/m³ 
tolerance. 

 Through this approach it is possible to 
integrate batch process models with continuous models without 
loss of information. For the present case study, this will allow 
the simulation, techno-economic analysis, and optimization of 
the global flowsheet of an ethyl biodiesel production, which 
includes a continuous purification step with distillation 
columns, evaporators and decanters (Marchetti, Miguel e 
Errazu, 2008; Santana et al., 2010; Campos, 2009).

4. CONCLUSION 

The use of multilinear look-up tables as surrogate models 
of dynamic systems in steady-state simulations leads to a high 
number of parameters. The hybrid surrogate model proposed 
reduces the complexity of the model using a linear 
approximation of the ordinary differential equations, with 
known analytic solution. Using this method, the number of 
necessary points for the surrogate model to achieve certain 
accuracy was reduced between 70 and 88%, depending of the 
chosen accuracy. Additionally, the simulation time had a 
reduction of 40-52%, and the simulation time of the hybrid 
model was minor than the rigorous model, on the contrary of 
pure multilinear look-up table model. Although the surrogate 
model was used in the case study of homogeneous basic 
transesterification of soybean oil, the approach is general and 
can be applied to any system of differential equation. This 
method ensures the possibility future analysis of the use of batch 
reactor in global flowsheets of production of biodiesel. 
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