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This work is concerned with development of an a#tve finite difference method approach
to the solution of the transient diffusion equatidm this approach is assumed that the
potential function has a linear variation in sonimé interval. Thus, an integral with respect
to time is carried out in the initial diffusion egfion. A constant time weighting function is
adopted. The time integration reduces the ordetheftime derivative that appears in the
initial equation. Two numerical examples are prdednto verify the accuracy and

applicability of the proposed approaches. The rssa@re compared with the standard
corresponding analytical solutions.

RESUMGO

Esse trabalho foi desenvolvido com uma aproximagHernativa para o Método das
Diferengas Finitas (MDF) para solugdo da equacdo d#usdo transiente. Nessa
aproximacado, considera-se que a funcdo potencial tena variacdo linear em um dado
intervalo de tempo. Assim uma integral em relagddesmpo € aplicada na equagao inicial
da difusdo. Uma funcdo de ponderacdo constanteengpd é adotada. A integracdo no
tempo reduz a ordem da derivada temporal da equagi@@l. Dois exemplos numéricos
serao apresentados para verificar a acuracia e #capilidade da aproximacao proposta.
Os resultados sdo comparados com a formulacao diaoial do MEF e com a solucéo
analitica.
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1. INTRODUCTION

The interest in solving several problems in
engineering has motivated the appearance of a tangdber
of numerical methods, among which is the Finitef@dnce
Method, referred to by FDM.

Most problems in engineering and physical
phenomena, are modeled by systems of equations or
differential equations. Therefore, it is necessarysolve
these equations, which in simplified cases can liaived
analytically. As explained by Cunha et al. (20E6)alytical
solutions are generally developed for simplifiedfipes and
shapes, and the result of this simplification thera loss of
quality in the results of the models. However, ilnations
where the equations are more complex, it is onksjibe to
determine the solution using a numerical method.

Problems of heat transfer, or mass transport caused
by external disturbances that spread over a doraaiiong
others, as explained by Dehghan (2004), theseral@gms
of great interest in science and engineering. Theselems
are mathematically modeled by the diffusion equmatio

The analysis of the propagation or distribution of
heat plays an extremely important issue in enginger
because according to Greenberg (1998), the diffusio
equation governs a wide variety of heat propagation
phenomena, such as the electromagnetic waves maveme
mass transportation, supersonic fluids. Recentliks&a
(2019), published a work where the diffusion equatis
used in the study of heat generation and propagatio
situations of fractures caused in rocks due to dhyodoads
applied. Problems of heat transfer with non-linezwdel
and heat transfer in solar plates for electricigneration,
are issues that have been addressed recently (KWHASR
al., 2018, TORKAMAN et al., 2018).

In order to contribute to the discussion about the
numerical solution of the diffusion equation, atealative
integral approach to MDF is presented in this wéid: this
approach, an integral in time is used and, for earence,
this formulation will be called here MDF-T. From an
academic perspective, the development of different
formulations for the same method enriches the dison
about method's potential and increases the scope of
applications (CUNHA et al., 2016).

The work published by Rahaman et al. (2018) deals
with the numerical solution of the diffusion equatiusing
MDF, regarding the stability of the method. A dission
involving a similar approach is initially presentey Carrer
et al. (2012) for the diffusion equation and ldigrCunha et
al. (2016), but in this work the time integral agpxgmation
is used within the Boundary Elements Method - BEM f
the Diffusive-Advective transport equation. Moretaiked
studies in relation to BEM can be found in (BREBB&A
al., 1984, CARRER & MANSUR, 2010 and CARRER et
al., 2012).

2. FDM FORMULATION

The diffusion equation to transient problems over a
domain Q and limited by a boundarly is described by
Carrer et al. (2012) and is given by

0°u _ 1 du

X2 Kot

(0.1)

whereu(X, t) is the potential or temperatuig,is

the thermal conductivity of the materiais the time anc
represents a point of coordinatesy). The initial condition
on domainQ is given by:

u(Xx,0)=U,(X) (0.2)

For the development of the proposed approach in
this work, a time intervalAt =t, —t, was considered

wheret, andt, are, respectively, the start and end time. An

integration with respect to time is performed irs tinterval.
The equation (0.1) is rewritten as:

t t,
£ 9°u 1 ou
w(t dt=— ) —dt 0.3
{ (025 K{w)at 03
Where W(t) is a weighting function given by:

lsef < t<t

w(t) = (0.4)
oset][ t,t]

Assuming that on the time interval the weighting
function has a linear variation, as shown by Figlrd@hen
the integration in this interval can be approxindate
according to equation (0.5):

u(x,ty+At)

u(x, 1)

1 At t,+At

Figure 1 — Linear variation for weighting function over
time interval

Jux ode=[u x5+ % B ©05)

Applying (0.5) in (0.3) one has:

AtfoRu(Xb)  OU(X,8))_ 1 _ 0.6
2[ x: T ox? j uxp-uxy]  ©8
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It's important to note that with this approach iasv
possible to reduce the order of the time derivatfehe
original equation, so the initial condition can ineposed
directly on the formulation.

For the solution of equation (0.6), a domain
discretization is necessary. Applying an explicit
approximation using FDM, in this formulation the T
represents the integral over the time interval(Gr6) one
has:

Atfuf -2y -+l w20 )
2 AX? AX?

0.7)

1 k+1 k
E{“ y]
In this preliminary study for a didactic purpose, a

one-dimensional domain is considered. Thereforee th
equation (0.7) can be rewritten as:

U+t = 2= B - - ©8)
AX?

K.At
letters k and i indicates time and domain points
respectively. From equation (0.8) a system of éqoatcan
be performed:

Where y=—(2+f) and f=2 The

y 1 0 - Offu]
1y 1 0f|us™
01y

- -u -
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It is important to note that with the presented
approach, even applying explicit FDM, the solutien
obtained implicitly as shown in equation (0.9) reidg the
error of nodal approximations. To verify the resulthe
proposed formulation will be compared with the stiehl
solution and the explicit FDM solution, and an exydanis
presented.

3. NUMERICAL RESULTS

In this section, the results of the proposed apgroa
in this work are presented in an example with twapbs.
The results of FDM-T and FDM will be presented,ngo
with the corresponding analytical solution. Threffedent
values for the diffusion coefficient were adoptddr a
better evaluation of the numerical results.

The example consists of a one-dimensional bar with
domain0< X< L, subject to following boundary and
initial conditions.

u(0,t)=0

du(L, t) —1
dx

(0.10)

(0.11)

u(x,0)=0

Analytical solution for this problem is given by
Carrer et al. (2012). The results fofL) are presented in
Figure 2.

(0.12)
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Figure 2 — Potential for the pointx=L.

For the FDM-T where usedt=0.25 in the three
cases, and for FDM the follow values were used: K=dr,
At=0.0352, fork=0.5, At=0.07 anck=0.25,At=0.141. These
values were chosen, as they are the highest titeeval
values in which stable solutions for explicit FDMere
obtained.

The results in the graph of Figure 2, show the evalu
for potential at the end of the bar, that isXm= L. A good
agreement is observed between the numerical sofutiad
the exact solution of the problem. It is possibl@ottice that
the presented approximation (FDM-T) shows a maablst
solution for much highedAt values than those used in
explicit FDM. Solutions using FDM-T are stable atlues
of At <2.0 . This shows the potential of the proposed
approach.

It is important to notice that, with the presented
formulation, for the same value ¢f it was possible to
obtain stable solutions for much higheAt values
concerning the traditional FDM formulation. It cassults
in a computational gain in more complex analyzest th
require more processing time.

Figure 3 presents a graph of the traditional FDM
with the values of potential for the pointX = L, but using
At =0.25andk =0.25. 1t is possible to notice that the
behavior of the solution is not stable, being neapsto use
a lower value oflt, as shown in the figure 2.
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Figure 3 — Potential for the pointx=L.

Far from intent to bring out a profound discussion
about numerical errors, however, can be seen igrifgeh of
figure 3, that the traditional formulation of FDMddnot
produce stable results. From the images, it carbheluded
that the increase in the time step adopted in thmemical
analyzes using FDM must be carefully evaluated, fand
the traditional formulation, a higher value fAt produces
unstable results. In contrast, the proposed fortimavas
able to produce results with good precision forhkeig
values.

The graph shown in Figure 4 shows the absolute
error in relation to the exact solution for thedit®nal
FDM and the proposed FDM-T in this work. It is pibs to
notice that there is a significant reduction inoemvith this
proposed approach. This implies that the time stgd in
the analyzes can be longer, without loss of acguiad¢he
results. The purpose of error analysis is not tepde the
discussion of numerical errors, but to verify the
convergence and accuracy of the methods. It is itapbto
mention that for both formulations, the error tetdsero
over time, that is, when the problem tends to thticscase.
Situation verified in Figure 4.
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Figure 4 — Absolute error comparison.

4. CONCLUSIONS

This article investigated numerically the diffusion
equation in two-dimensional domains. The integratioer
time was able to reduce the order of the derivativere
studies are needed, however, due to the resultinebl; this
fact helped to improve the stability of the solatiand
reduce the approximation errors.

The two formulations of FDM presented, proved to
be useful in solving diffusion problems. In geneithlese
formulations are versatile, being possible to bplied in
several types of problems involving second-order
differential equations. The formulation called FDMean
be considered as an improvement on the traditional
formulation of FDM since it employs a better
approximation for the time derivative that appesrshe
equation. This improvement can be seen in the grapthe
example showed.

The results demonstrate the potential of the
proposed approach and encourage new applicatiorithdo
present work, such as application in the wave éguatlhe
wave equation presents greater sensitivity wherosing
the time interval, in this sense the approach pegdere
appears to be a good alternative for problems uingl
wave propagation, a subject that will be addregsddture
works.
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