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This work is concerned with development of an alternative finite difference method approach 
to the solution of the transient diffusion equation. In this approach is assumed that the 
potential function has a linear variation in some time interval. Thus, an integral with respect 
to time is carried out in the initial diffusion equation. A constant time weighting function is 
adopted. The time integration reduces the order of the time derivative that appears in the 
initial equation. Two numerical examples are presented to verify the accuracy and 
applicability of the proposed approaches. The results are compared with the standard 
corresponding analytical solutions. 

p a l a v r a s - c h a v e 
Método das Diferenças Finitas  
Equação da Difusão 
Intervalo de Tempo  
 
k e y w o r d s 
Finite Difference Method 
Diffusion Equation 
Time Interval 

 

  R E S U M O  
 

 Esse trabalho foi desenvolvido com uma aproximação alternativa para o Método das 
Diferenças Finitas (MDF) para solução da equação da difusão transiente. Nessa 
aproximação, considera-se que a função potencial tem uma variação linear em um dado 
intervalo de tempo. Assim uma integral em relação ao tempo é aplicada na equação inicial 
da difusão. Uma função de ponderação constante no tempo é adotada. A integração no 
tempo reduz a ordem da derivada temporal da equação inicial. Dois exemplos numéricos 
serão apresentados para verificar a acurácia e a aplicabilidade da aproximação proposta. 
Os resultados são comparados com a formulação tradicional do MEF e com a solução 
analítica. 
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1. INTRODUCTION  

 

The interest in solving several problems in 
engineering has motivated the appearance of a large number 
of numerical methods, among which is the Finite Difference 
Method, referred to by FDM.  

Most problems in engineering and physical 
phenomena, are modeled by systems of equations or 
differential equations. Therefore, it is necessary to solve 
these equations, which in simplified cases can be obtained 
analytically. As explained by Cunha et al. (2016), analytical 
solutions are generally developed for simplified profiles and 
shapes, and the result of this simplification there is a loss of 
quality in the results of the models. However, in situations 
where the equations are more complex, it is only possible to 
determine the solution using a numerical method.  

Problems of heat transfer, or mass transport caused 
by external disturbances that spread over a domain, among 
others, as explained by Dehghan (2004), these are problems 
of great interest in science and engineering. These problems 
are mathematically modeled by the diffusion equation.  

The analysis of the propagation or distribution of 
heat plays an extremely important issue in engineering, 
because according to Greenberg (1998), the diffusion 
equation governs a wide variety of heat propagation 
phenomena, such as the electromagnetic waves movement, 
mass transportation, supersonic fluids. Recently Saksala 
(2019), published a work where the diffusion equation is 
used in the study of heat generation and propagation in 
situations of fractures caused in rocks due to dynamic loads 
applied. Problems of heat transfer with non-linear model 
and heat transfer in solar plates for electricity generation, 
are issues that have been addressed recently (KUHARAT et 
al., 2018, TORKAMAN et al., 2018).  

In order to contribute to the discussion about the 
numerical solution of the diffusion equation, an alternative 
integral approach to MDF is presented in this work. For this 
approach, an integral in time is used and, for convenience, 
this formulation will be called here MDF-T. From an 
academic perspective, the development of different 
formulations for the same method enriches the discussion 
about method's potential and increases the scope of 
applications (CUNHA et al., 2016). 

 The work published by Rahaman et al. (2018) deals 
with the numerical solution of the diffusion equation using 
MDF, regarding the stability of the method. A discussion 
involving a similar approach is initially presented by Carrer 
et al. (2012) for the diffusion equation and later by Cunha et 
al. (2016), but in this work the time integral approximation 
is used within the Boundary Elements Method - BEM for 
the Diffusive-Advective transport equation. More detailed 
studies in relation to BEM can be found in (BREBBIA et 
al., 1984, CARRER & MANSUR, 2010 and CARRER et 
al., 2012).  

2. FDM FORMULATION 

 

The diffusion equation to transient problems over a 
domain Ω  and limited by a boundary Γ  is described by 
Carrer et al. (2012) and is given by   
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where ( ),u X t  is the potential or temperature, K is 

the thermal conductivity of the material t is the time and X 
represents a point of coordinates (x, y). The initial condition 
on domain Ω is given by:  
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For the development of the proposed approach in 

this work, a time interval 1 0t t t∆ = −  was considered 

where 0t and 1t  are, respectively, the start and end time. An 

integration with respect to time is performed in this interval. 
The equation (0.1) is rewritten as: 
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Where ( )w t is a weighting function given by: 
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Assuming that on the time interval the weighting 
function has a linear variation, as shown by Figure 1. Then 
the integration in this interval can be approximated 
according to equation (0.5): 

.  

Figure 1 – Linear variation for weighting function over 
time interval 
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Applying (0.5) in (0.3) one has: 
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It’s important to note that with this approach it was 
possible to reduce the order of the time derivative of the 
original equation, so the initial condition can be imposed 
directly on the formulation.  

For the solution of equation (0.6), a domain 
discretization is necessary. Applying an explicit 
approximation using FDM, in this formulation the T 
represents the integral over the time interval, in (0.6) one 
has: 
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In this preliminary study for a didactic purpose, a 
one-dimensional domain is considered. Therefore, the 
equation (0.7) can be rewritten as: 
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Where (2 )γ β= − +  and 
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letters k and i indicates time and domain points 
respectively. From equation (0.8) a system of equations can 
be performed: 
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It is important to note that with the presented 
approach, even applying explicit FDM, the solution is 
obtained implicitly as shown in equation (0.9) reducing the 
error of nodal approximations. To verify the results, the 
proposed formulation will be compared with the analytical 
solution and the explicit FDM solution, and an example is 
presented. 

  

3. NUMERICAL RESULTS 

In this section, the results of the proposed approach 
in this work are presented in an example with two graphs. 
The results of FDM-T and FDM will be presented, along 
with the corresponding analytical solution. Three different 
values for the diffusion coefficient were adopted, for a 
better evaluation of the numerical results.  

The example consists of a one-dimensional bar with 
domain0 x L≤ ≤ , subject to following boundary and 
initial conditions. 
 (0, ) 0u t =   (0.10) 

( , )
1

du L t

dx
=   (0.11) 

 ( ,0) 0u x =   (0.12) 

 Analytical solution for this problem is given by 
Carrer et al. (2012). The results for u(L) are presented in 
Figure 2. 
 

 

Figure 2 – Potential for the point x=L. 

 
For the FDM-T where used ∆t=0.25 in the three 

cases, and for FDM the follow values were used: For k=1, 
∆t=0.0352, for k=0.5, ∆t=0.07 and k=0.25, ∆t=0.141. These 
values were chosen, as they are the highest time interval 
values in which stable solutions for explicit FDM were 
obtained. 

The results in the graph of Figure 2, show the value 
for potential at the end of the bar, that is, in x L= . A good 
agreement is observed between the numerical solutions and 
the exact solution of the problem. It is possible to notice that 
the presented approximation (FDM-T) shows a more stable 
solution for much higher t∆  values than those used in 
explicit FDM. Solutions using FDM-T are stable at values 
of 2.0t∆ <  . This shows the potential of the proposed 
approach. 

 It is important to notice that, with the presented 
formulation, for the same value of k, it was possible to 
obtain stable solutions for much higher t∆  values 
concerning the traditional FDM formulation. It can results 
in a computational gain in more complex analyzes that 
require more processing time. 

Figure 3 presents a graph of the traditional FDM 
with the values of potential u for the point x L= , but using 

0.25t∆ =  and 0.25k =  . It is possible to notice that the 
behavior of the solution is not stable, being necessary to use 
a lower value of ∆t, as shown in the figure 2. 



 

 

Figure 3 – Potential for the point x=L. 

Far from intent to bring out a profound discussion 
about numerical errors, however, can be seen in the graph of 
figure 3, that the traditional formulation of FDM did not 
produce stable results. From the images, it can be concluded 
that the increase in the time step adopted in the numerical 
analyzes using FDM must be carefully evaluated, and for 
the traditional formulation, a higher value for t∆  produces 
unstable results. In contrast, the proposed formulation was 
able to produce results with good precision for higher 
values.  

The graph shown in Figure 4 shows the absolute 
error in relation to the exact solution for the traditional 
FDM and the proposed FDM-T in this work. It is possible to 
notice that there is a significant reduction in error with this 
proposed approach. This implies that the time step used in 
the analyzes can be longer, without loss of accuracy in the 
results. The purpose of error analysis is not to deepen the 
discussion of numerical errors, but to verify the 
convergence and accuracy of the methods. It is important to 
mention that for both formulations, the error tends to zero 
over time, that is, when the problem tends to the static case. 
Situation verified in Figure 4. 

 

 

Figure 4 – Absolute error comparison. 

 

4. CONCLUSIONS 

This article investigated numerically the diffusion 
equation in two-dimensional domains. The integration over 
time was able to reduce the order of the derivative. More 
studies are needed, however, due to the results obtained, this 
fact helped to improve the stability of the solution and 
reduce the approximation errors.  

The two formulations of FDM presented, proved to 
be useful in solving diffusion problems. In general, these 
formulations are versatile, being possible to be applied in 
several types of problems involving second-order 
differential equations. The formulation called FDM-T can 
be considered as an improvement on the traditional 
formulation of FDM since it employs a better 
approximation for the time derivative that appears in the 
equation. This improvement can be seen in the graphs in the 
example showed.  

The results demonstrate the potential of the 
proposed approach and encourage new applications for the 
present work, such as application in the wave equation. The 
wave equation presents greater sensitivity when choosing 
the time interval, in this sense the approach proposed here 
appears to be a good alternative for problems involving 
wave propagation, a subject that will be addressed in future 
works. 
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