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Resumo

Este trabalho apresenta didaticamente os tramites matematicos exigidos para a constru¢do dos
operadores de criagdo e aniquilagdo para uma particula quantica livre considerando as coordenadas
do cone de luz. Para tanto, sdo elencadas as relacdes entre as coordenadas supracitadas e as
coordenadas (ct, x, y, z), além do uso da equagdo de Klein-Gordon-Fock no formalismo das
coordenadas do cone de luz. Por fim, obtém-se o operador evolugdo temporal e os operadores
quanticos de criacdo e de aniquilag@o do tipo integral de movimento.

Palavras-chave: Coordenadas do cone de luz. Operadores quanticos. Operador de criagdo.
Operador de aniquilacdo. Equacdo de Klein-Gordon-Fock.

Abstract

This work didactically presents the mathematical procedures required for the construction of the
creation and annihilation operators for a free quantum particle considering the coordinates of the
light cone. For that, the relationships between the aforementioned coordinates and the coordinates
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(ct, x, y, z) are listed, in addition to the use of the Klein-Gordon-Fock equation in the formalism of
the light cone coordinates. Finally, the temporal evolution operator and the quantum operators of
creation and annihilation of the integral type of motion are obtained.

Keywords: Coordinates of the cone of light. Quantum Operators. Creation operator. Annihilation
operator. Klein-Gordon-Fock equation.

1. Introduction

Originally introduced by the English physicist Paul Dirac, the light cone coordinates (also
called the light front coordinates) were presented with the aim of constructing ways to describe the
relativistic dynamics of a physical system (Dirac, 1949). In short, the original idea consists of
combining the principles of special relativity with the Hamiltonian formulation so that the only
requirement is that the theory satisfy the properties of the Poincaré group.

Due to its properties, in recent decades, the light cone coordinates have been used, for
example, in studies of quantum field theory and quantum chromodynamics under low energy
regime. Specifically in the context of the present work, these coordinates enable the algebraic
structure of the Klein-Gordon-Fock relativistic equation (abbreviated, KGFE). Obtained in 1926,
independently by physicists Oskar Klein, Walter Gordon and Vladimir Fock, the KGFE (also called
the Klein-Fock-Gordon equation or just the Klein-Gordon equation) is historically recognized as
the first relativistic wave equation, having applications in condensed matter physics and dispersive
wave phenomena, in addition to allowing the description of the behavior of particles with zero spin
(Ohlsson, 2011; Meira Filho & Kamassury, 2018; Veeresha et al., 2020).

Also within the scope of KGFE, as identified by Bagrov et al. (1976), by enabling the

exchange of the second-order partial differential in time (a%) for a first-order partial differential in

the variable (a%)’ the light cone coordinate system facilitates the construction of the temporal

evolution operator from which it is possible to establish a new annihilation operator with motion
integral status. In the context of semiclassical quantum states, in a relativistic regime, this new
operator is suitable for obtaining coherent quantum states of a charged quantum particle under the
influence of different classical electromagnetic field configurations.

In practice, this algebraic facilitation has its appeal in supporting theoretical studies of
coherent states so useful in modern quantum theory, with immediate applications in quantum field
theory, loop quantum gravity, and quantum computation (Pereira & Miranda, 2002; Gazeau, 2009;
Bagrov et al., 2015).

That said, under a primarily pedagogical scope, this work presents the stages of algebraic
development for the construction of the creation and annihilation operators for a free particle under
the formalism of light coordinates. Therefore, initially, the relationships between the light cone
coordinates and the Minkowski space-time coordinates are listed. Subsequently, the KGFE is
presented using the generalized curvilinear coordinates u*. Finally, in the last two sections, the
temporal evolution operator and the integral motion type operator are obtained.

2. Minkowski space coordinates and light cone coordinates

Briefly, to identify associations between Minkowski spacetime coordinates and the light cone
coordinates, consider the diagram in Figure 1 inspired by the approach presented by Kamassury et
al. (2020), in which, (ds)? = c?(dt)? — (dz)? is the line element of a two-dimensional subspace
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(z and ct). Relating the coordinates of the cone of light (u° and u3) to the coordinates (z and x° =
ct), we achieve:

x% +z
u® = +zcos(45) + x%sen(45) = (1)
x0 —
u3 = —zcos(45) + x%sen(45) = (2)
(45) (45) NG
. ct /f\
(e SdRE=0

5 ’
. o (ds)= >0 y
- A y

Observer % ,
(ds)? <'>O"’"\\ K $3450 Yad Present
k

z
SN (@s)? <0

Figure 1 — Diagram and coordinates of the cone of light.

In possession of Equations 1 and 2 and generalizing to four-dimensional space, we obtain both
Minkowski space-time coordinates.

x* = (x%x1,x%,x3) = (ct,x,y,2) (3)

as well as the coordinates of the cone of light:

(4)

0 0_ _
= (Ol i) = <x +z X z) _ (ct+z ct Z>

,x, ) rxr Y
N RN N ARG

3. Klein-Gordon-Fock equation for a free particle in light cone coordinates

Considering the generalized curvilinear space-time coordinates u* in terms of Cartesian and
time coordinates x*, the KGFE for a free and relativistic particle can be written as

3 3 3
> g (mm —i) TS ﬁa) W =mic2w ©)

. s du* ou” ap
9=227mﬂ (6)
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3
5 . . .
Fgﬁ = Ez guv(aagvﬁ + aﬁgva - vgaﬁ) (7)
v=0
.., 0
by = lhw (8)

Using the relationships expressed in Equation 4 and knowing that the non-null components of
the metric n* are n// = 1 for j = 0,1, 2, 3, we have:
00 — g01 — goz — g1o — g12 — g13 — gzog21 — g23 — g31 — g32 — g33 =0 (9)
g03 — _gll — _gZZ — g30 =1 (10)

«Q

Observing these last relationships, it is concluded that the components of the Christoffel
symbol are all null (F(i‘ﬁ = 0), which allows rewriting Equation 5 as:

3 3
D §B By =mbcw (11)
u=0v=0
For the next steps, let us consider the relationships between the coordinates (ct, x, y, z) and

(u® ut,u?,u®) of the differential operators shown in Table 1. That said, we can adequately
substitute the relations of the partial differential operators in Equation 11 as follows

(0 ., az+azlpzaztp1a 0 0%,
2\ ouo® ou®oud = gus3® 2 out* 2\ oud’ ou®dud  qu3®
]=1 (12)
moyc?
-

resulting in the expression:

-1 2 2 2
6_‘{’_(6) [1(6‘}’+6‘}’_m§c Lp)l 13)

u® ~ \gu3 2 out®>  ou?? h

Table 1 — Relationship between the differential operators of the cartesian and time coordinate
systems and the light cone coordinates.

X d B 0 02 _ 92
. dx  oul 0x2  gul?
8 0 _ ad aZ B aZ
g y 0y  ou? y? ~ ou?’
= o V2,9 9 92 1( a 92 92
s 0 _VZgo o S (R
O x"=ct ox% 2 \ou® ous dx 2\0u ououd  Ju
d N2/ 0 9 02 1[0 , 02 N 92
4 ax3 2 \oud _ 6u3) 9x3° 2\ ou’’ oudou® = gu3®

|4
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The Equation 13 is recognized as KGFE for a free particle written in terms of the coordinates
of the cone of light. Alternatively, it is possible to rewrite it algebraically similar to the famous
Schrédinger equation (Bagrov & Gitman, 1990), ie

=HY (14)

where the wave function W is described in terms of coordinates (u!, u2, u3,u®) and the Hamiltonian
type operator 7 is given by:

7 1( 0 )_1< 92 N 92 _m§c2> (15)

ous ou®  ou?? h

3. Time evolution operator

To obtain the time evolution operator, consider an electrically charged spin-zero free quantum
particle whose dynamics is described by KGFE in the light cone coordinate system expressed in
Equation 13 which can be rewritten as:

LY EL TN Y 2c?
B S AL L (16)
auoauB aulz auZZ hz

Furthermore, we can define the creation (a) and annihilation (a™) operators associated with
the coordinates u! and u? as:

d 0 d 0 (17)
~ — - -_ /\+ — - ._
M= (aul + l(’)uz)' M= <0u1 6u2)
~ _(-i_i) A+__<i+-i) (18)
%2 = ‘auz Jul 42 = Jul lauz

Then, the expression a,a; ¥ is conveniently calculated as follows:

MW_(aJr_a)(a _6>Lp_<a+,6)<61}’ ,6‘1’)
T =\ T ouz) \our T oz ~ 0wt T 0wz \out T touwz
2
_Zazw R o ENY (19)
Y - ou®  outow? " 'ourout
1=
And, analogously, the expression a@,a;¥:
2 2
G,a3W Z i i (20)
£ out’ u26u1 oulou?
Verifying that i we rewrite Equations 19 and 20, in this order, as

16 2 gu2oul’
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2
EANY
a,atw = z ——, where i = 1,2 1)

i=1

as well as the Hamiltonian operator ' present in Equation 14 in the following format:

7 1( d )‘1 (alaf N a,d; mgc2> 22)

2 2 h?

In the meantime, defining the operator K5 = % it is essential to obtain the switch between

this and the operator #, with the application of this switch on the wave function W =
WY(ul, u?,ud,u?)), this is:

[f]:\[, j@3]_tp = }Tj(«\g,lp - .7’5‘3:7:\[1{1 (23)

By algebraically developing the switch, we obtain

[F,R,] W = 2(Re) " (R — Ry 2 (%) 1w (24)

wherein:
3 - a;a;  mac?
r= 2.2 Y (25)
Then knowing that

Kza,47¥ = a,a1 KW (26)
and substituting this last relationship in Equation 24, we reach:

[, R,] W= %(fcg)‘l(r)mw = %(7?3)‘1mc3 =0 27)

Based on the Heisenberg formalism, quantum states that describe the temporal evolution of
pure quantum states that belong to Hilbert space, in addition to the observables associated with time-
independent operators A can be, in Schrodinger's formalism, replaced by operators A (t), which in
turn evolve through a unitary transformation, namely:

A ift\ ift
A(t) =exp|— | Aexp| ——— (28)
h h
Since the operator A (t) satisfies the following equation of motion
dA(t .
im0 — [, 7] (29)

we can verify that:
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% 1z <o
dt 3l
This last result allows us to state that the operator X5

(30)

= % Is an integral motion type operator for

Equation 13. In other terms:
(31)

)
—1 ﬁqj = .7(‘311"
Also, assuming that operator %5 is a constant, it is feasible to rewrite the wave function in the

form
Yul,u? ud,u®) = exp(—iK;zu3) (32)

such that
(33)

KW (ut,u?,ud,u®) = —ik;Wut, u? ud,u)
wich ensures that W is an eigenfunction of the operator K; with corresponding eigenvalue ;.
In this way, revisiting the KGFE modeling in the format of the Schrbdinger equation

highlighted in Equation 14, that is,

o¥(ul, u?, u3,u’ _
( - ) = APl u? ud u) (34)
ou
performing the proper replacement of the wave function W by Equation 32
d . Lo\ (s mic? .
mexp[—ﬂ@u&{‘] = E(W) <:. — 2 )exp(—lf}C3u3)‘P (35)
and developing it algebraically
0 ) . mic? S
ﬁexp(—lﬁgu )W =\&—32 exp(—iK;u>)¥ (36)
we get
¥ 1 (. mdc?
= - g — y 37
ou® AN, < h? ) S
where £ = iZ:lai% . Then redefining ¥ and 7 to
¥ =Uw)¥u!, u?) (38)
1 = 92y m3c?
o _ 39
" 205 (Z gui®  h2 ) (39)
i=

rewrite Equation (37) as follows:
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did@w® . 0 1 (. mic? v
= L) |~ 5o | B D (40)

Y(ul,u?)

Finally, integrating both members of the last expression

| o)

In[Uu®)] = f H du® (42)

AU = f T du (41)

we obtain Equation (43) which is called the temporal evolution operator.

Uw®) =exp (f f[duo) (43)

4. Operator of creation and annihilation of the integral type of movement

Once the temporal evolution operator is reached, it is convenient to construct the annihilation
operator that behaves as a motion integral. For that purpose, consider the following expressions:

A () = UWa, U™ (44)
A, (%) = U a, U™ (45)
A, WPt u?) = Uw®)a, Aw®) W, u?) (46)

With the proper substitution of the result of Equation (43) in Equation (46), and proceeding
algebraically, we reach Equation (47).

A (U)W (ul,u?) = exp (f f[du0> a,exp (f —f]-TduO) Y(ul,u?)

R ~ (47)
=UWa, U)Wt u?)
Using McLaurin series for exponential functions (Stewart, 2012)
o X" x? x3
X — R _ g — ..
e _Zn! L+ bt (48)
"=y
"“Z(_x)n—l 2 49
CTLTw T T (49)
n=

i

adopting conveniently w = fzx
3

2du® and performing some algebraic steps, we resulted in:

(50)

Rewriting the term in parentheses from Equation 51
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Wzal - Zwalw + Wzal == W(Wal - a1W) - (Wal - fiﬂ?\))W
— ol A ~ A1 S (51)
=w[w,a;]- — [w,a,]-w
easily, the following expression is obtained
o A 1
eYae™V =a, + [w,a.]-+ > [w,[w,a,]-]- (52)
By carefully analyzing each term, we have:
[W, cAll]_‘P (ul,uz) = (Wal - al‘//\\})qj (ul, uz) 53
=wa, ¥ (ut,u?) — a,w¥ (ut,u? (53)
Specifically for the term wa, ¥ (ul,u?), is the relationship given in the Equation 54.
A i 4 d d
wa,Y(ul,u?) = (f - 2:;(3 o duo) (ﬁ + l—) P(ul, uz)
f 0° ; 6‘P(u u? O‘P(u u?)
2763 ot auzz (54)
J ( 0 L ) 0°¥(ut,u?) 6 Yul uz)
2K; \oul du? ou?’ ou?’
= a;w¥t,u?)du®
With this result in hand, it is possible to reformulate Equation 53 as
[W,a,;]-¥ (ut,u?) =0 (55)
and consequently:
eVa e Y (ut,u?) = 4, ¥ (ut,u?) (56)
In this panorama, we observe that
A (W)WY W' u?) = Ua, A 'Y (', u?) 57
=a,¥ (W u?) (57)
of which, we conclude that:
c/il = &1 y C/QI- = df (58)

Using procedures similar to those described for obtaining the previous operative relationships,
we verified that

dqz =a, , cfz; =a; (59)
where A7 and A7 are the adjoint operators of the operators A; and A,, in this order. From

Equations 17 and 18, we identified:

4y =—da; , a;=-aj (60)
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Finally, we easily reach relations analogous to Equations 44 and 45 for the operators A7 and
AZ, namel
2 y

Af = ['aalﬂ‘lr = [a{a-lr”a* = [ﬂ-1]+a;f u+ (61)
and
Af = [Qa,a']" = [a*] ata+ (62)

Knowing that the temporal evolution operator 71, according to Equations 39 and 43, it is given
by

ST

e can also write the inverse operator as well as the adjunct operator of the operator T, in this order,

as
Q-1 = 62 _m(z)c2 10 64
- P ) 2z, au1 o w2 ) (64)
. i ( 02 0> mjc?\
U =exp f 27 \ou? T T Tz )M (65)
such that
at=a+r , [a ' =1 (66)

and motion integral type annihilation operators are expressed as:

A '=Uaiu? , AF =UdatUu? (67)

6. Algebraic relations between operators a; and a,

In this section, we briefly present the algebraic relationships between the operators defined in
Equations 44 and 45 which corroborate their status as motion integrals with respect to Hamiltonian
given by in Equation 39. To do so, let us consider Equation 68 for the wave function ¥

P, ul,u?,ud) = exp(—iF;u)p(u’, ul, u?) (68)
such that:

d 0,1 .2 .3 = 0,1 .2 .3
m‘l’(u,u,u,u)=7—[‘[’(u,u,u,u) (69)

Knowing that the operator of type Hamiltonian can be rewritten as below

~ a1t 92 92
i _ . . 2 . 2
H = —Zh[lh—au3] [(lh) P + (ih) L

+ m2c? (70)
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and applying this Hamiltonian on the function given by equation 68

2

= i 0°
Hlexp(—iF;u?)p(u®, ul,u?)] = > exp(—iFzu®) [mgc?p + (ih)zz 4)2
2K 5h = ou/
we get:
2
0p(u®,ut,u?) i _ 02
w0 Zage || Meet + an)” Z el KACHERLS
]=

Making use of the operator U, which is presented by Equation 63, we have:

041(110) = ﬂ(uo)aﬂz(uo)_l =a
ffiz ) = ﬂ(uo)azﬂ(uo)_l =da,

Also, it is possible to write the eigenvalue and eigenvector expressions as follows:

C'@‘l) =a,¢p = a,¢
A, = ayp = 4,9

Being the function ¢ (u°, u®, u?) expressed in terms of exponentials functions
¢ u®,ut,u?) = exp(aou®) exp(a,u') exp(azu?)
and applying the operators @, and d, on ¢(u®,ut, u?) as described below
g 0 . .
<ﬁ+lﬁ)¢ =g =>nptinp=a¢p=a tic; =m
.0 d , . .
(Lm—ﬁ>¢ =ap = ia,¢p —iap = a,p = —a; +ia, = a,

and calculating the partial derivatives as follows

0

0_1(11)0 =app

az¢ d (0¢ 0 3¢

oul? = oul <0u1) = ul (a10) = alﬁ = (a))%d
0’¢ 9 (9¢p\ _ 0 A

au22 = ou? ((’)uz) = ou2 (ay@) = a, a— = (a2)2¢>

¢
u2
we verify the result obtained by equation 83:

2

i
— 2.2 22 2
o =3 NE mgc” —h a;

j=1

Since it is possible to write the coefficients a,, a, and a, , respectively, as

s (25

(X1+(X2
%:( 20 )

(71)

(72)

(73)
(74)

(75)
(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)
(85)
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i a, imic?

__ 86
Y= "%, TaH (86)
we can write the function ¥ (u°, ut,u?, u3) in the form
Y, ut,u?,u®) = exp(aou®)exp(a,u')exp(au?)exp(azu’) (87)
being a; = —iXK5. In next, applying the operator H over the function Y, we obtain:
AY@O,ul,u?, ud) = ﬁ[exp(—i?@ﬁ)qﬁ(uo,ul,uz)]
. (88)

(ih)? 2 af + mgc® | WO, ut,u?)

j=1

l
2K 3h2

In the meantime, we ought to calculate the operation of commutation between operators a, e
a;f as well as between operators @, and a; with further application over the function ¢ (u°, ut, u?).
These calculations are shown in equations 89 and 90.

_ (9% ¢\ (9% 9% +ia% 0%¢ %
~"\owraur ~ autouz)  "\ouzaul  utou?) T . . ow? guw’? (89)
]=
=0
[@;,83]-¢ = G839 — a3 G,
2
(9% 0%¢ [ 9%*¢ 0%¢ 0°¢
=1 - -1 - + Z — = (90)
oulou? du?oul oulou? du?oul 4 gul ous®
]:
=0

In turn, we can calculate the commutator between operators A and a, with immediate
application over the function ¢ (u°, ut, u?), reaching the results presented by equations 91 and 92.

ﬁalqs:—i(mi)'l _m5c2+<ih>2 Z > (5 + 15)

2p\" 0Ou3 = ouJ oul = odu?
= —L(ihi)_l _(z h)? % + i ¢ % +i % + oD
2R\ 0u u13 oul?ou?  ou?’ourl  ou?’

mic* (g 73|

~ ; 52
aHp = (i+ li) [—L Lh— l [(lh)2 au;ﬁ; + maciep

oul ou? 2h
i a1\ " 3¢ 3¢ 2% 93¢ (92)
— . - . 2 -
- 2h (lhau3) H(lh) <a 13 lau126u2+6u2 6u1+lau23 ¥
ap 0
mie (Gr+ )|
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|7.a,| ¢ =Fap-afip=0 (93)

Furthermore, we calculate the operation of commutation between operators # and at with
immediate application on the function ¢ (u°, ut,u?) in accordance with Equations 94 and 95.

-1 2

. 92 op  0d¢
(in)? Za |+ mie| (- i53)

J
j=1 0%

: NG 9 93 93 93 9
- (ih—) (28 20 , 0¢ 00, &9
ou’ | oul oul“ou?  du2“oul  Ju?

mgc? (6(1) la—d))]

oul ou?

2

@fﬁ¢=—il<ihaa3)_ll<a¢ _6¢> (ih)? Z;}Z'Z + m2c2g

2h u oul  ou? L gyl
j=1
. 9\ 1 PE 93 93 03 95
) o (B2 2e 2y,
2h ou oul oul“ou? oJu?‘oul  ou?
it (2000
oul  odu?
|7.at| ¢ =Fatp—aifig =0 (96)

Proceeding, similarly to the previous steps, we must calculate the commutator between
operators # and @, with further application over function ¢ (u°, u*, u?):

Fa,p = —— (m%)_ll -(ih)z iaa:ﬁ +m2c2 (-%+i%)

2h u -

| J=
; o\ [ 9° 9° 93 93 97
2h ou3 i oul oul?ou?  ouzloul du?

e (5~ )

. - 2
T [ (N R R [ D s P
2 2 [\ ous dul ' ou? L gui? 0

j=1
] N a3 93 93 3 08
:_L (lh—) (ih)z _ ¢3_i 2¢ +i Zd) +i ¢3 _ ( )
2h ou? oul Jul ou? ou?“oul ou?
mict (22— 22))
0 Jul ou?
[ﬁ, az]_ b =Ha,p—a, Ao =0 (99)
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Ultimately, we proceed the calculate of commutator between operators % and a3 following
with the application on function ¢ (u®, ut, u?):

2

i) o3 ] (- 36139

2h - oul  du?
i j=
I (_h d )‘1 ' (i)’ 93 ¢ 93¢ N 33¢ 93¢ (100)
-2 |\Mad oul’ lc’)ulzauz duz’oul lau23

moc <6¢ + la—¢>]

ou'  du?
~ i a\ 1, 9 2\ 924
A+ 47 _ . 3 . 2 2.2
GHe = [(‘hau3) (6u1 lauz) (ih) Zaujz tmocte
]:

) N (L8 e Ha%)_ aos

3 2 2 3
ul Jul“ou? ou?“oul ou?

|7.a%| ¢ =Hatp—aifig =0 (102)

Based on the above expressions and taking advantage of Heisenberg formalism, we
corroborate that the derivative with respect to time applied to the operator @; (for i = 1,2) and its

A

adjunct operator @; is equal to zero in all cases, namely:

—ih——=[H,a]_=0, i=12 (103)
d'\+
—ih—L=[R,af]_ =0, i=12 (104)

Therefore, we may assert that the operators @; and their respective adjunct operators can be
classified as operators of type integrals of motions.

5. Conclusion

The light cone coordinate system formalism has its appeal for facilitating the algebraic
procedures and compression of the relativistic dynamics of physical systems, including notable
applications in TQC and quantum computing.

In this sense, based on the approaches presented by Bagrov et al. (1976) and Kamassury et al.
(2020), didactically develop the mathematical steps and physical considerations sufficient to
construct the creation and annihilation operators so useful in studies of coherent quantum states (or
quasi-classical states).

In addition to serving as a preparatory text for advanced studies in areas of contemporary
physics, the pedagogical and sequential character of the presented approach, despite being oriented
to the Klein-Gordon-Fock equation model for a free quantum particle, can be easily transported to
other contexts and field settings.
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