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Abstract 

A theory of electromagnetism with higher order derivatives, which attained by generalizing the laws 

of electrostatics, laws that follow from the generalized Coulomb's law and the superposition 

principle, so that they are consistent with special relativity. 

Keywords: higher-order electromagnetism, Coulomb’s generalized law, principle of superposition, 

special relativity. 

 

Resumo  

Obtém-se uma teoria de eletromagnetismo com derivadas de ordem mais alta generalizando-se as 

leis da eletrostática, leis estas que seguem da lei de Coulomb generalizada e do princípio de 

superposição, de modo que elas sejam consistentes com a relatividade especial. 

Palavras-chave: eletromagnetismo com derivadas de ordem mais alta, lei de Coulomb 

generalizada, princípio de superposição, relatividade especial. 

 

1. Introduction 

The interest in theories with higher order derivatives has occupied the attention of physicists 

since the adoption of differential equations as a mechanism for describing physical systems 

(SALES; GIROTTO, 2021). It is noteworthy that Lagrangeans with higher order derivatives, which 

have already been discussed in Courant-Hilbert’s, (COURANT, 1962). 

Despite the interest in using these theories and it never been forgotten over time, it was 

considered purely academic (SALES,1995). This is because the most important systems in field 

theories are describe or Lagrangians can transform that by adding a total derivative term to the 

corresponding action. 

With the advent of supersymmetry and string theory, the higher order theories have lost their 

academic stamp and the interest in them has increased. This is easy to understand, since both in 

supersymmetry, in its formulation in terms of super fields (BARCELOS, 1989, 1991a, 1991b), and 

in important examples in string theory (POLYAKOV, 1986), higher order derivatives occurred in 

abundance. 

Also, utilize higher order derivatives as a regularization method in field theory (SLAVNOV, 

1978). As far as we know, one of the first successful attempts at using terms containing higher order 

derivatives as a regularizing mechanism is due to Podolsky (PODOLSKY, 1942, 1944, 1945, 1948), 

who generalized Maxwell's electromagnetism in order to get rid of the infinities that occur in it. 

In this paper, we will focus on Podolsky electrodynamics. We obtain the Podolsky equations 

by generalizing the laws of electrostatics (BARTLETT, 1977, 1979) that follow from the 
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generalized Coulomb's law and the superposition principle, in such a way that they are consistent 

with special relativity. 

 

 

2. Podolsky’s Propagator  

The generalized electrodynamics proposed by Podolsky is based on the Langrangean 

 

ℒ0 = −
1

4
FμvF

μv +
a2

2
∂vF

μv ∂iFμi,                                             (1) 

 

where Fμv =  ∂vAμ − ∂μAv and a is a constant with length dimension. This Lagrangian generates a 

linear field theory, with gauge symmetry of the type 𝑈(1), which reduces to Maxwell's theory 

when  𝑎 = 0. This is evidently a higher-order theory since the equations of motion derived from (1) 

contain quartic derivatives of the vector potential. Like Maxwell's theory, Podolsky's theory also 

has definite positive energy in the electrostatic case, which, however, is finite for a point charge. 

This last result clearly shows that the force between two-point charges is no longer Coulombian, a 

point that deserves to be analysed more closely. Let us then determine the law that describes the 

interaction between two point charges in the context of this electrodynamics with higher order 

derivatives. 

As is well known, the exchange of a photon between elastically scattered particles naturally 

leads to the concept of force or, equivalently, to that of electrostatic potential. To determine the 

force law associated with Podolsky's theory we will analyse, in lower order, the process 𝑠 + 𝑠 →
𝑠 + 𝑠, where s represents a boson of zero spin and charge 𝑄. The corresponding Feynman diagram 

shown in Fig. 1. 

 

 
Figure 1. Contribution, in lowest order, to the process  𝒔 + 𝒔 → 𝒔 + 𝒔. 

Source: SALES, 1995. 

 

In the Lorentz gauge, the Lagrangean below describes Podolsky electrodynamics scalar:  

 

ℒ = −
1

4
𝐹𝜇𝑣𝐹

𝜇𝑣 +
𝑎2

2
𝜕𝑣𝐹

𝜇𝑣𝜕𝜆𝐹𝜇𝜆 −
1

2
(𝜕𝜇𝐴

𝜇)
2
+ (𝐷𝜇ϕ)

∗
𝐷𝜇ϕ − 𝑚2ϕ∗ϕ.                   (2) 

 

where  𝐷𝜇ϕ = 𝜕𝜇ϕ + 𝑖𝑄𝐴𝜇. 

At lower order, the interaction Lagrangian takes the form  
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ℒI = 𝑖𝑄𝐴𝜇(ϕ𝜕𝜇ϕ
∗ − ϕ∗𝜕𝜇ϕ)                                 (3) 

 

Can also, equivalent to Feynman rule be found in Fig. 2. Next, we will determine the 

propagator, in the Lorentz gauge, associated with Podolsky's generalized electrodynamics. 

 

 

Figure 2. Elementary vertex for Podolsky scalar electrodynamics. 

Source: SALES, 1995. 

The free Lagrangian quadratic part of Podolsky, also can be written in the Lorentz gauge as 

 

ℒ =
1

2
𝐴𝜇(𝑥)𝑃𝜇𝑣(𝑥)𝐴𝑣(𝑥)                                   (4) 

 

where  

 

 𝑃𝜇𝑣(𝑥) = 𝑛𝜇𝑣▯ + 𝑎2(𝑛𝜇𝑣▯▯ − 𝜕𝜇𝜕𝑣▯)                       (5)                  

 

The (5) It follows that 

 

𝑃𝜇𝑣(𝑘) = 𝑛𝜇𝑣(𝑎2𝑘4 − 𝑘2) − 𝑘2𝑎2𝑘𝜇𝑘𝑣                                                (6) 

 

Inverting (6), we obtain 

 

𝑃𝜇𝑣(𝑘) =
1

𝑎2𝑘4−𝑘2 [𝑛𝜇𝑣 − 𝑎2𝑘𝜇𝑘𝑣].                                                   (7) 

 

We define 𝑀2 =
1

𝑎2 the expression (7) even as can be written in the form of 

propagator 𝐷𝜇𝜈(𝑘) = 𝑖𝑃𝜇𝑣(𝑘) or 

 

𝐷𝜇𝜈(𝑘) =
𝑖𝑀2

𝑘2(𝑘2−𝑀2+𝑖𝜀)
⌈𝑛𝜇𝑣 −

𝑘𝜇𝑘𝑣

𝑀2
⌉                          (8) 

 

This propagator shows good ultraviolet behaviour (≈ 𝑘−1) thanks to the presence of a non-

tachyonic ghost. 

 

3. Podolsky’s Electrostatics 

The Feynman invariant amplitude for the process shown in Fig. 1 even as can be written as 
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𝒜 = 𝑖. 𝑉𝜇(1).𝑉𝜇(2).
𝑀2

𝑘2(𝑘2−𝑀2)
 ,                            (9) 

 

where 

𝑉𝜇(1) ≡ −𝑖𝑄(𝑝 + 𝑝′)𝜇 

𝑉𝜇(2) ≡ −𝑖𝑄(𝑞 + 𝑞′)𝜇 

 

Remembering that the conservation of the four-momentum 𝑘 = 𝑝 − 𝑝′ = 𝑞 − 𝑞′, (9) became 

 

𝒜 =
−𝑖.𝑀2𝑄2

𝑘2(𝑘2−𝑀2)
(2𝑝 − 𝑘)(2𝑞 + 𝑘)                     (10) 

 

In the non-relativistic limit (10) it takes the form 

 

𝒜𝑣≪𝑐 =
−4𝑖𝑀2𝑄2𝑚2

�⃗� −2(�⃗� −2+𝑀2)
                       (11) 

 

In possession of the expression for the non-relativistic limit of the Feynman amplitude 

invariant, we can calculate the electrostatic potential. 

Electrostatic potential energy, in the Gaussian system, is expressed as follows:  

 

𝑈(𝑟) =
1

4𝑚2 .
1

(2𝜋)3
. ∫ 𝑑3𝑘. 𝐹𝑣≪𝑐(𝑘). exp (𝑖𝑘. 𝑟) ,                                             (12) 

 

where 

𝐹𝑣≪𝑐(𝑘) = 𝑖 𝒜𝑣≪𝑐(k) 

 

Taking (11) into (12) we arrive at the following expression for potential energy  

 

𝑈(𝑟) =
𝑄2

4𝜋

1−𝑒−𝑟𝑀

𝑟
                                                                       (13) 

 

The electrostatic potential then takes the form 

 

𝑉(𝑟) =
𝑄

4𝜋

1−𝑒−𝑟𝑀

𝑟
 .                                                              (14) 

 

This potential is finite in all space and cancels itself out at infinity  

 

𝑙𝑖𝑚𝑟→∞𝑉(𝑟) = 0. 
 

Quantum electrodynamics (GOMES, 1990) shows that the long range of the Coulomb 

interaction is the result of the zero rest mass of the quanta exchanged in the interaction and that this 

range would not be long if the mass of the quanta were non-zero. Yukawa adapted the theory to the 

case of a system of nuclei, interacting through a short-range force, assuming that the “quanta” of 

the “field” that describes the interaction have non-zero mass. These “quanta” are called mesons and 

the “field” is called the mesonic field. The constant 𝑀 of Eq. 14 is identified as the mass of the 

mesons. We can estimate the mass as being around 𝑚𝜋 ~ 200𝑚, where 𝑚 is the rest mass of the 

electron (FEYNMAN, 1965). 
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Figure 3. Schematic representation meson exchange process. 

 

By the Langragian (2) it is observed that the constant 𝑎 is the distance. Thus, the value 𝑀 

(mass) can be estimated as 𝑀 = 𝑚𝜋 ~ ℎ/𝑎𝑐 (GOMES, 1990). Using the potential (14) for values 

𝑎 = 1,2,3 and 𝑄 = 1, result shown in figure 4: 

 

 

Figure 4. Potential varying with range r. 

 

In figure 4 we do not consider the units of physical quantities. It is observed that smaller values 

for the distance 𝑎 imply in the increase of the potential 𝑉(𝑟). Therefore, meson exchange involves 

higher values for the potential. For much larger values of 𝑎 there is a lower limit to the potential for 

the three values of 𝑎. 
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Figure 5. Potential varying with range r and mass M. 

 

In figure 5 we see that the variation of distance and mass results in a stronger potential. This 

suggests that the Podolsky potential is more general than the Maxwell electromagnetism potential. 

Therefore, for 𝑟 = 0 the potential is finite any 𝑀. 

From (14) it immediately follows that the force law corresponding to the interaction between 

two points charges 𝑄 and 𝑄’ it shows up: 

 

𝐹(𝑟) = −
𝑑𝑉(𝑟)

𝑑𝑟
 

Resulting in 

 

𝐹 (𝑟) =
𝑄𝑄′

4𝜋
(
1−𝑒−𝑟𝑀

𝑟2 −
𝑀𝑒−𝑟𝑀

𝑟
)

𝑟 

𝑟
                    (15) 

 

 

From generalized Coulomb's law, Eq. (15), we get the electric field 𝐸(𝑟) at point 𝑟 due to a 

point charge 𝑄 located by: 𝑟 =  0 

 

𝐸(𝑟) =
𝑄

4𝜋
[
1−𝑒−𝑟𝑀

𝑟2 −
𝑀𝑒−𝑟𝑀

𝑟
]

𝑟 

𝑟
                        (16) 

 

It is interesting to note that the flux of this field through a spherical surface of radius 𝑅 centred 

on the charge 𝑄 it shows up: 

 

∮�⃗� . 𝑑𝑆 = {
0 , 𝑅𝑀 ≪ 1
𝑄, 𝑅𝑀 ≫ 1

 

 

From generalized Coulomb's law and the superposition principle we get the electric field �⃗� (𝑟 ) 

due to electrostatic charge density 𝜌(𝑟 ) (vide Fig. 6): 

 

�⃗� (𝑟 ) = ∫𝑑3𝑟′
𝜌(𝑟′⃗⃗⃗⃗ )

4𝜋
[
1−𝑒−𝑅𝑀

𝑅2 −
𝑀𝑒−𝑅𝑀

𝑅
]

�⃗� 

𝑅
 ,                                            (17) 
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where  �⃗� ≡ 𝑟 − 𝑟′⃗⃗  ⃗. 

 
Figure 6. Geometry for determining the electrostatic field at P. 

Source: Sales, 1995. 

 

Using (17) and a little elementary algebra, we can write: 

 

∇. �⃗� (𝑟 ) = ∫𝑑3𝑟 ′  𝜌(𝑟 ′)
𝑀2

4𝜋

𝑒−𝑅𝑀

𝑅
                                                 (18) 

 

From (18) followed   

 

(1 − 𝑎2∇2)∇. �⃗� (𝑟 ) = 𝜌(𝑟 )                                                       (19) 

 

Which is the generalization of Maxwell's Gauss law of electrostatics. In obtaining (19) we use 

the result 

 

 ∇2
𝑟 

𝑒−𝑅𝑀

𝑅
=

𝑀2

𝑅
𝑒−𝑅𝑀 − 4𝜋 𝛿3(�⃗� ) 

 

Taking the rotation of (19), we obtain 

 

∇ × �⃗� (𝑟 ) = 0                                                                (20) 

 

What it shows? That just as in Maxwell's theory, the electrostatic field is also conservative. 

Equations (19) and (20) are the fundamental laws of Podolsky's electrostatics and will be generalized 

later using special relativity.  

 

4. Podolsky via Especial Relativity 

Since electric charge is supposed to be a globally conserved scalar (FEYNMAN, 1965), it 

follows that the charge density transforms as the zero component of a 4-vector. This 4-vector is the 

current density 𝑗𝜇(𝑗0, 𝑗 ) where 𝑗0 = 𝜌 . 

The global conservation of electric charge implies its local conservation (KOBE, 1986). We 

lead to the continuity equation for the electric charge 

 

𝜕𝜇𝑗
𝜇 = 0                                                                     (21) 

 

which are valid in all Lorentz referential. 
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We can now generalize to the left (19), requiring it to be shape-variant when subjected to a 

Lorentz transformation. The left side (19), can be rewritten in terms of 𝑗0 as 

 

(1 − 𝜇2∇2)𝜕𝑖𝐸
𝑖 = 𝑗0                                                               (22) 

  

where  𝑖 = 1,2,3. The right side of (22) is the zero component of a 4-vector, which implies 

that the right-hand side must also transform as the zero component of a 4-vector. If 𝐹𝜇𝑣 is a second 

order tensor, so 𝜕𝑣𝐹
𝜇𝑣 is transformed as the zero component of a 4-vector. It is not difficult to show 

that the  𝐸𝑖 of the electric field can be expressed with the following components of a second-order 

tensor: 

 

𝐹01 = 𝐸1, 𝐹02 =  𝐸2, 𝐹03 = 𝐸3                                            (23) 

 

By induction from equation (22) with help (23), it follows that: 

 

(1 + 𝑎2𝜂𝑖𝑗𝜕𝑖𝜕𝑗)𝜕𝑣𝐹
0𝑣 = 𝑗0                                                  (24) 

 

where 𝐹00 will be specified later and 𝜂𝜇𝑣  is the metric versus variant tensor of special relativity that 

in our convention has the following components (BJORKEN; DRELL, 1964): 

 

𝜂00 = −𝜂11 = −𝜂22 = −𝜂33 = 1 . 

 

Now both sides of (24) become the zero component of a 4-vector. In order for the laws of 

physics to be, form invariant with respect to Lorentz transformations (24), it will be led to 

generalization as  

 

[1 + 𝑎2▯]𝜕𝑣𝐹
𝜇𝑣 = 𝑗𝜇 ,                                                     (25) 

 

where ▯ = 𝜂𝜇𝑣𝜕𝜇𝜕𝑣 = 𝜕𝜇𝜕
𝜇 

Using (25), we get: 

 
[1 + 𝑎2▯]𝜕𝜇𝜕𝑣𝐹

𝜇𝑣 = 0                                                      (26) 

 

If  𝐹𝜇𝑣 𝑖𝑠 antisymmetric, so (26) is identically null. Evidently (26) does not imply that 𝐹𝜇𝑣 be 

antisymmetrical. This, however, is the simplest solution for the equation (25) which we will adopt. 

Let's then choose the three remaining components from 𝐹𝜇𝑣     such as 

 

𝐹𝑖2 = 𝐵3, 𝐹𝑖3 = −𝐵2, 𝐹23 = 𝐵𝑖.                                                (27) 

 

and �⃗� = (𝐵1, 𝐵2, 𝐵3) Commonly interpreted physically as the magnetic induction field. 

The left (25), relativistic version of the (19), it is one of the equations of the pair of equations 

proposed by Podolsky. Generalizing (20) obtain the missing equation. Using the Levi-Civita symbol 

𝜀𝑖𝑗𝑘  which is equal to +1(−1) if 𝑖, 𝑗, 𝑘 is an even permutation (odd) the 1,2,3, and cancels out if 

any two indices are equal, we can rewrite (20) such as 

 

𝜀𝑖𝑗𝑘𝜕𝑗𝐹𝑘0 = 0                                                                     (28) 

 

where 𝐹𝑘0 = −𝐹𝑘0 = 𝐹0𝑘 = 𝐸𝑘 . 

In terms of the fully antisymmetric tensor of order four ∈𝜇𝑣𝜌𝜆, com ∈0123= +1, the Equation 

(28) it becomes (∈0𝑖𝑗𝑘= 𝜀𝑖𝑗𝑘) 
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∈𝑖𝑗𝑘0 𝜕𝑗𝐹𝑘0 = 0                                                           (29) 

 

We can now explored Einstein's relativity principle by requiring invariance of (29) under 

Lorentz transformation. It then follows that  

 

∈𝜇𝑣𝜌𝜆 𝜕𝑣𝐹𝜌𝜆 = 0                                                           (30) 

 

where the covariant tensor 𝐹𝛼𝛽 it is defined as 𝐹𝛼𝛽 = 𝜂𝛼𝜇𝜂𝛽𝑣𝐹
𝜇𝑣 , being 𝜂𝛼𝜇  covariant metric tensor 

of special relativity.  

In terms of �̃�𝜇𝜈 ≡
1

2
𝜖𝜇𝑣𝜌𝑖𝐹𝜌𝑖, where  �̃�𝜇𝜈 this is dual of 𝐹𝜇𝑣, a Eq. (30) it becomes  

 

∂𝜈�̃�
𝜇𝜈 = 0                                                                    (31) 

 

 The Equations (25) and (31) constitute the pair of field equations proposed by Podolsky. We 

have seen that the field equations proposed by Podolsky, namely  

 

[1 + 𝑎2▯]𝜕𝑣𝐹
𝜇𝑣 = 𝑗𝜇  e  ∂𝜈�̃�

𝜇𝜈 = 0     
 

where 

 

𝐹𝜇𝑣 = (

0 𝐸1 𝐸2 𝐸3

−𝐸1 0 𝐵3 −𝐵2

−𝐸2 −𝐵3 0 𝐵1

−𝐸3 𝐵2 −𝐵1 0

) ,                                           (32) 

 

We may formally obtain from the generalized Coulomb's law, in equation (15), and the 

superposition principle, using restricted relativity. Of course, we take into account that the electric 

charge on a scalar remains conserved.  

In this formal deduction of the Podolsky field equations, we admit that 𝐹𝜇𝑣 is antisymmetric, 

appealing to the criterion of simplicity, a common habit in physics. One can show, however, that 

𝐹𝜇𝑣 is antisymmetric, without appealing to the simplicity criterion, by using the equation of motion 

of a particle of mass 𝑚 and charge 𝑄 in the electromagnetic field described by Podolsky's theory, 

that is,  

 
𝑑𝑃𝜇

𝑑𝜏
= 𝑄𝐹𝜇𝑣𝑢𝑣                                                              (33)  

 

where  𝑢𝜇 =
𝑑𝑥𝜇

𝑑𝜏
 is 4-velocity: an operational definition of the 𝐵𝑖 can also be obtained from (33). 

To conclude these remarks we would like to draw attention to the fact that many physicists in the 

last century, whom have been devoted to the question of obtaining Maxwell's equations from first 

principles. The most recent references are the works of Kobe (1986) and (NEUENSCHWAND; 

TURNER, 1992). 

 

5. Conclusion 

We show in the course of this work that Podolsky's electrodynamics, it can be obtained from 

first principles, using judiciously the generalized Coulomb's law, the superposition principle and 

special relativity. 
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Finally, we would like to point out that in recent work (GOMES, 1990; GALVÃO; 

PIMENTEL, 1988; BARCELOS; NATIVIDADE, 1991; BARCELOS; GALVÃO; NATIVIDADE, 

1991) on Podolsky's electrodynamics has erroneously considered been the presence of a tachyon 

ghost. This slippage is possible in this case, because the authors of these papers started from the 

Lagrangean  

 

ℒ′ = −
1

2
[
1

2
𝐹𝜇𝑣𝐹

𝜇𝑣 + 𝑎2(𝜕𝜆𝐹
𝜇𝜆)2] 

 

instead of the Lagrangean proposed by Podolsky, that is, 

 

ℒ =
1

2
[
−1

2
𝐹𝜇𝑣𝐹

𝜇𝑣 + 𝑎2(𝜕𝜆𝐹
𝜇𝜆)2]. 

 

The symmetric momentum-energy tensor associated with the Podolsky Lagrangian is given 

by 

 

𝑇𝜇𝑣 =
𝑎2

2
𝜂𝜇𝑣[(𝜕𝜆𝐹

𝛼𝜆)2 + 𝐹𝛼𝜆▯𝐹𝜆𝛼] − 𝑎2[𝜕𝜎𝐹𝜇
𝜎𝜕𝜆𝐹𝑣

𝜆 + 𝐹𝜇
𝛼▯𝐹𝛼𝑣 + 𝐹𝑣

𝛼▯𝐹𝛼𝜇] + 

 

+
1

4
(𝐹𝛼𝛽)2𝜂𝜇𝑣 − 𝐹𝜇

𝛼𝐹𝑣
𝛼 

 

A direct calculation shows that in the electrostatic case: �⃗� = 0 and �⃗� = 0, 𝑇00 > 0; hence 

implying that the energy is positive definite. If we admit that the limit 

 

 �⃗� ∙ ∇ ⋅ �⃗� → 0 

 

tends to zero faster than 
1

𝑟2 at infinity, we obtain the following expression for the total energy 

 

𝐸 = ∫𝑑3𝑥 𝑇00 =
1

2
∫𝑑3𝑥 [�⃗� 2 + 𝑎2(∇ ⋅ �⃗� )2] 

which in the case of a point load gives the result  
𝑄2

2𝑎
. Evidently such results are no longer true if we 

work with the Lagrangian ℒ’. 
In fact, knowing whether there is, a Lagrangian associated with a given equation of motion, 

and more pragmatically, knowing how to determine it if it does, is a matter of great interest to 

quantum field theory, where quantization methods, in their greatest part, presuppose the existence 

of a Lagrangian. Could it be, then, that there is some simple criterion, which allows us to decide 

whether a given equation of motion admits a Lagrangian? The answer is affirmative, in Accioly's 

article is an example (ACCIOLY et al, 1995). 
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