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Abstract 

Phenomena of diffusion are present in several industrial phenomena and therefore need to be properly 

studied and understood. The study of liquid-liquid diffusion allows to perfect and model several 

industrial systems. The development of instruments capable of doing this study allows to create 

methodologies for the development of students of the most diverse engineering. This work employed 

the study of the diffusion phenomena in a diffusion cell constructed by the authors themselves based 

on materials found in laboratories, trying to calculate the diffusion coefficient of a solution of sodium 

chloride in water through the variation of conductivity. The diffusion coefficients obtained presented 

values in the same order of magnitude in relation to the experimental values reported by other authors 

and with low experimental error.  
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Resumo 

Os fenômenos de difusão estão presentes em vários fenômenos industriais e por isso precisam ser 

devidamente estudados e compreendidos. O estudo da difusão líquido-líquido permite aperfeiçoar e 

modelar muitos sistemas industriais. O desenvolvimento de instrumentos capazes de fazer-se este 

estudo permite criar metodologias para desenvolvimento dos alunos das mais diversas engenharias. 

Este trabalho empregou o estudo do fenômeno de difusão, em uma célula de difusão construída pelos 

próprios autores com base em materiais encontrados em laboratórios, querendo-se calcular o 

coeficiente de difusão de uma solução de cloreto de sódio em água através da variação da 

condutividade. Os coeficientes de difusão obtidos apresentaram valores na mesma ordem de 

grandezas em relação aos valores experimentais reportados por outros autores e com erro 

experimental baixo.  

Palavras-Chave: Coeficiente de difusão, célula de difusão, cloreto de sódio.   

 

Resumen 

Los fenómenos de difusión están presentes en varios fenómenos industriales y, por lo tanto, deben 

estudiarse y comprenderse adecuadamente. El estudio de la difusión líquido-líquido permite 

perfeccionar y modelar varios sistemas industriales. El desenvolvimiento de instrumentos capaces de 

realizar este estudio posibilita crear metodologías para el desarrollo de estudiantes de diversas 

ingenierías. Este trabajo empleó el estudio de los fenómenos de difusión en una celda de difusión 

construida por los propios autores con base en materiales encontrados en laboratorios, tratando de 

calcular el coeficiente de difusión de una solución de cloruro de sodio en agua a través de la variación 

de la conductividad. Los coeficientes de difusión obtenidos presentaron valores en el mismo orden 

de magnitud en relación con los valores experimentales informados por otros autores y con un bajo 

error experimental. 

Palabras clave: Coeficiente de difusión, Celda de difusión, cloruro de sodio. 

 

Introduction 

Diffusion is defined as the spontaneous mixing of atoms or molecules by random thermal motion, 

causing the movement of chemical species relative to the movement of the mixture. In the absence 

of gradients such as temperature, electrical or gravitational potential, the molecules of a given species 

within a single phase diffuse from regions of high concentrations to regions of low concentrations, 

which generates a molar flux of determined in the direction of a concentration gradient (Fogler, 2009; 

Welty et al., 2017). 

 

One can observe the phenomenon in the diffusion in everyday situations like a drop of paint that falls 

in a glass with water and the liquid changes of color gradually until everything that is contained in 

the container becomes colored. Thus, the chemical species that promotes color dilutes and is 

distributed evenly by the liquid. In this work the process of diffusion of saline solutions in water will 

be studied, through the variation of the conductivity of the electrolytic solution. Since the electrolytes 

are formed by a solvent, in this case water, in which a certain substance decomposes into ions. For 

example, when sodium chloride (NaCl) is dissolved in water, dissolution occurs in Na+ and Cl- ions. 

 

A liquid-liquid diffusion cell consists of a system in which the liquid to be diffused comes in contact 

with the solvent gradually, either through pores, membranes or capillaries, as will occur in the 

experiments of this work. Thus, the objective was to determine the net diffusion coefficient of saline 

solutions in distilled water and to compare them with the reference values in the literature. 
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Bibliographical Review 

 

Mass transfer comprises many chemical processes and underlying separation processes in which one 

or more components migrate within one phase or from one phase to another through the interface 

towards a decreasing chemical potential. The transfer mechanism depends on the dynamics of the 

systems involved. Thus, the transfer can be done by two different transport modes, being they the 

one of molecular mass and the one by convection (Hamborg et al., 2010; Griskey, 2002). Where a 

mixture contains two or more molecular compounds in the different relative compositions from point 

to point, a natural process occurs in the sense of decreasing the inequalities of the compositions until 

the equilibrium, which is the molecular mass transfer, is achieved, wherein the macroscopic transport, 

does not depend on any convection within the system (Hamborg et al., 2010; Benítez, 2009). 

 

Convective transfer is divided into two types: if the motion is caused by a pump or any other device, 

the process is called forced convection transfer; if, on the other hand, the transfer is due to density 

differences, the process is called natural convection (Hamborg et al., 2010; Wankat, 2012). The 

movement of molecules in the liquid phase is more complicated to be analyzed and applied to laws 

than in the gas phase due to intermolecular forces, since they are more intense in liquids than gases. 

Only in cases of solutions diluted enough that a molecule can only be influenced by the solvent, the 

movement of molecules can be studied by laws developed for gases (Lino, 1997). 

 

By Fick's law, the diffusion coefficient is a function of the flow of flow and directed to a 

concentration gradient, and when the concentration gradient is different from zero the process is 

called interdiffusion. Fick's law can be written in the form of equation 1 (Welty et al., 2017): 

 

𝐽𝑗,𝑧 = −𝐷𝑗
𝜕𝐶𝑗

𝜕𝑧
𝑖                                                                            (1) 

 

In what, is the mass flux of component j, in the z-direction; Cj is the concentration; Dj is the diffusion 

coefficient and i is the unit vector. As the diffusion coefficient is proportional to the particle's motion, 

the larger the diffusion coefficient the faster the movement between two points (Lino, 1997; Welty 

et al., 2017). According to Cussler (2009), Zou et al. (2012), and Sun et al. (2015), the diffusion 

coefficient is a important and basic physical property data in chemical engineering. The knowledge 

about diffusion coefficient is needed for mass transfer studies and in many other fields such as crystal 

growth, biological systems, pollution control and separation of isotopes and so on (Cussler, 2009; 

Zou et al., 2012); Sun et al., 2015). 

 

The size of the molecules interferes in the movement of the particle so that, in a same gradient of 

concentration, the smaller the molecules the more they move, and the lower their affinity with other 

molecules present in the solution. In addition, from studies of the entropy of the systems under 

different conditions, Einsten demonstrated the influence of temperature on the movement of particles, 

and the increase in temperature implies an increase of total energy of the system and part of that 

energy converts to kinetic energy, which causes the particle to move faster points (Welty et al., 2017; 

Cussler, 2009; Lino, 1997). Thus, the higher the temperature, the higher the diffusion coefficient.  

 

In a work carried out Chan and Chan, the solute-solvent interaction was studied, in which pseudo-

planar solutes were used with groups forming hydrogen bonds. From the comparison of the diffusion 

coefficient measure of these species in water and other different solvents, they compared the effects 

of the solvents on the hydrogen iterations. Thus, they concluded that the diffusion coefficient is 

sensitive to hydrogen bonds and that, for these compounds, the -OH group forms stronger iterations 

than the -NH2, besides that the effects of the bonds are greater in polar solvents than in apolar. 
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Leaist and Hao (1994) conducted an experiment to measure the diffusion coefficient in a sample of 

water, solute and HDO injected in a flow of water and solute. The detector measured the difference 

between water and HDO, and the double adjustment obtained allowed the simultaneous 

determination of the water-solute diffusion coefficient and the deuterated water was used as a probe. 

Subsequently, aqueous solutions of sucrose, urea and polyethylene glycol were used to analyze the 

possibility of being in an infinite dilution, where, the concentration bands where a solute molecule 

does not suffer any effect of molecules equal to it. In most cases, the difference between the diffusion 

coefficients at different concentrations is in the order of magnitude of the experimental error.  

 

Gaffney and Chau (2001) and Ribeiro et al. (2002) has been measured the interdiffusion between two 

liquids by using laser beam deflection method and conductometric technique, respectively. They 

found the diffusion coefficient of NaCl-aqueous solution in good agreement with coefficient values 

specified in the literature.  

 

Methodology  

 

The experimental diffusion cell was constructed based on the model shown in Figure 1. Four 

capillaries were united with Durepoxi ® mass and glued to the bottom of the whole U - shaped, being 

allowed to dry for a day before use. A known concentration of NaCl solution is placed in a diffusion 

cell immersed in distilled water.  

 

 
Figure 1. Diffusion cell. 

 

A magnetic stirrer and a conductivity meter are provided to monitor the progress of diffusion over 

time. A plot of conductivity against time will allow for the determination of the liquid diffusivity. 

The experimental module adapted with the diffusion vessel is shown in Figure 2. 
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Figure 2. Adapted experimental module. 

 

Material  

 

For the accomplishment of this experiment the following materials were used: salt sodium chloride 

(Impex ®), beakers (1000 ± 10 mL and 2000 ± 2 mL), volumetric flasks (100 ± 1 mL), a conductivity 

meter (Lutren CD-4301, e = 10-4 μS), distilled water, U-tubes with internal diameter of 1 cm, 

analytical balance (± 0.001 g), stopwatch (e = ± 0.005 s), thermometer (e = ± 0.5 ° C), ruler, magnetic 

stirrer, Pasteur pipette, claws, capillaries with 1.1 mm internal diameter and 3.5 cm height and 

Durepoxi ® mass. 

 

Preparation of the NaCl solutions NaCl  

Solutions at five different concentrations (2 mol L-1, 1 mol L-1, 0.5 mol L-1, 0.25 mol L-1 and 0.125 

mol L-1) were prepared in serial dilutions. 11.688 g of salt was weighed and diluted in 100 ml of 

distilled water in a volumetric flask. 50 ml of this solution was withdrawn into another 100 ml flask 

and distilled water was added until the volume was complete. The described procedure was repeated 

until all five solutions were obtained.  

 

Assembling the Diffusion Cell  

Thereafter, the diffusion vessel was assembled: a beaker was filled with 1,200 ml of distilled water. 

This beaker was then placed under gentle stirring with a magnetic stirrer. To this beaker, with the aid 

of a claw, the conductivity meter was immersed in the beaker and the initial conductivity of the 

system was read. A thermometer was also immersed in the beaker in order to measure the temperature 

beaker Conductivity meter 

Termometer 

Magnetic stirrer 
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of the system. Using a Pasteur pipette, the diffusion cell was filled with the NaCl solution and this 

was carefully immersed into the diffusion system, being supported with a claw. The conductivity was 

read in the first minute and then every 5 min at concentrations of 2 and 1 mol L-1. For the more dilute 

concentrations of 0.5 mol L-1, 0.25 mol L-1, and 0.125 mol L-1, the time was read at larger intervals 

(10 min) due to the reading sensitivity of the conduit meter. The same procedure was used for the 

five concentrations of the salt, in triplicate for each concentration. Through the slope of the regression 

line of the conductivity data versus time it was possible to calculate the molar diffusion coefficient 

for each of the concentrations.  

 

Calculation of the diffusion coefficient  

The molar diffusion coefficient, D (m² s-1), can be calculated by Equation 01 obtained from the first 

Fick Law. 

 

𝐷 =  
4 𝑉𝑥

𝜋 𝑑2𝑁𝑀𝐶𝑀 

𝑑𝑘

𝑑𝑡
                                                                                   (2) 

   

where V is the volume of the diffusion vessel (L), x is the length of the capillaries (m), d is the internal 

diameter of the capillaries (m), N is the number of capillaries, M is the concentration of the solution 

(mol L-1), dk /dt is the slope of the conductivity versus time curve (μS s-1) and CM is a constant (μS 

(mol L-1) -1).  

 

For the calculation of the CM constant, the conductivity of each salt solution was measured and the 

concentration versus conductivity curve was plotted. The constant is given by the slope of the 

obtained line.  

 

Results And Discussions  

 

Figures 3 to 7 show the mean values of conductivity as a function of time in relation to the 

measurements made in triplicate for NaCl solutions of concentrations equal to 2 mol L- 1, 1 mol L -1, 

0.5 mol L -1, 0.25 mol L -1, 0.125 mol L -1. The coefficients of determination (R2), which show the 

correlation between the measured variables, were displayed in the captions.  

 

 

Figure 3. Experimental graph for concentration of 2.0 mol.L-1 (R2 = 0.9856). 
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Figure 4. Experimental chart for concentration of 1.0 mol.L-1 (R2 = 0.9761). 

 

 

 

 

 

Figure 5. Experimental plot for concentration of 0.5 mol.L-1 (R2 = 0.9742). 
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Figure 6. Experimental chart for concentration of 0.25 mol.L-1 (R2 = 0.9633). 

 

Figure 7. Experimental plot for concentration of 0.125 mol.L-1 (R2 = 0.8940). 

 

 

From the graphs, it is noted that R2 has a tendency to decrease with the drop in NaCl concentration. 

In fact, there is a greater dispersion in the experimental data in relation to the linear trend line as 

shown in Figures 3 and 4. This is explained by the fact that there is little precision of the device used 

- conductivity meter - in cases of low concentration, where reading by the equipment varies very 

little and becomes inaccurate. This is evident when analyzing the conductivity data of Figure 5, where 

a change occurred in the estimate of the fourth decimal place.  

 

It is also noted that experiments conducted at molar concentrations of 0.5 mol L-1, 0.25 mol L-1 and 

0.125 mol L-1 are in function of longer time intervals than those carried out at the concentrations of 

2 mol L -1 and 1 mol L-1. This was done in order to allow a better reading by the equipment and to 

minimize the experimental errors, since in larger time intervals a larger amount of NaCl would be 

diffused from the capillaries to the diffusion vessel. 
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For each NaCl concentration, the slopes - associated angular coefficients, dk/dt, expressed in Table 

1, were obtained from the curves of Figures 3 to 7. The uncertainties (Mills et al., 2004; Andrade et 

al., 2017; Silva et al., 2017) were calculated using the EES: Engineering Equation Solver® software 

and are presented in Figure 8. 

 

 

 

 
Figure 8. Uncertainties associated to the angular coefficients of each linear regression of data and 

evaluated by the EES program. 

 

 

Table 1. Experimental results of the angular coefficients for each molar concentration of NaCl. 

 

Temp., 

(K) 

Conc., 

(mol L-1) 

Angular 

coefficient, 

(µS.s-1) 

297.0 ± 0.5 2.000 ± 0.020 1.191x10-5 ± 6.400x10-8 

297.0 ± 0.5 1.000 ± 0.010 5.231x10-6 ± 6.435x10-8 

295.0 ± 0.5 0.500 ± 0.005 2.530x10-6 ± 3.184x10-8 

292.0 ± 0.5 0.2500 ± 0.0025 1.082x10-6 ± 3.184x10-8 

294.0 ± 0.5 0.1250 ± 0.0013 6.020x10-7 ± 3.184x10-8 

 

 

 

It can be seen from Table 1 that the uncertainties measured for the slopes referring to the 

concentrations of 2 mol L-1 and 1 mol L-1 were practically the same. The same holds for the 

uncertainties regarding the concentrations of 0.5 mol L-1, 0.25 mol L-1 and 0.125 mol L-1, whose 

values were identical. This indicates that most of the uncertainty in this case is associated with time 

measurements by the timer. 

 

For the calculation of the CM constant used in Equation 2, we used the conductivity data measured 

as a function of the NaCl concentration for each of the previously standardized solutions shown in 

the experimental chart of Figure 9.  
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Figure 9. Experimental graph for the calculation of the constant CM (R2 = 0.9971). 

 

The good correlation between the variables is noteworthy, indicating a correct reading by the 

conductivity meter. The value obtained for the constant CM (regression line angular of the graph of 

Figure 10) was (72.678.0 ± 787.1) μS (mol L-1) -1, according to data reported by the EES (Figure 

10). From the data of Table 1 and the CM constant, the molar diffusivity coefficients of each solution 

shown in Table 2 were then calculated by Equation 2.  

 

 
Figure 10. Uncertainty associated with the calculation of the linear regression coefficient by the 

program EES. 

 

Table 2. Results of the experimental diffusion coefficient at a given temperature for each molar 

concentration of NaCl. 

 

Temp., 

(K) 

Conc., 

(mol L-1) 

Diffusion 

coefficient 

(m2 s-1) x109 

297.0 ± 0.5 2.000 ± 0.020 1.659 ± 0.027 

297.0 ± 0.5 1.000 ± 0.010 1.458 ± 0.036 

295.0 ± 0.5 0.500 ± 0.005 1.410 ± 0.035 

292.0 ± 0.5 0.2500 ± 0.0025 1.206 ± 0.044 

294.0 ± 0.5 0.1250 ± 0.0013 1.342 ± 0.077 

 

C
o
n
d
u
ct

iv
it

y
 (

μ
S

) 



The Journal of Engineering and Exact Sciences – jCEC 

11 

The propagation of uncertainties associated with these diffusion coefficients and made by the EES is 

shown in Figure 11.  

 

 
Figure 11. Uncertainty propagation for the values of molar diffusivity coefficient, DAB (m2 / s). 

 

Figure 11 shows that the uncertainties are basically related to four parameters: the length of the 

capillary (xc) measured by the ruler, the volume of the diffusion vessel (VH2O) measured by the 1 

L beaker, and the dilution volumes of the solutions (V1M and V2M) measured by the pipette. In 

other words, the instruments associated with these measures should be used with greater attention. 

Furthermore, from Table 2, it was found that the uncertainties correlated to DAB were relatively low 

(less than 2%).  

 

For purposes of comparison with the experimental data, Table 3 was assembled with theoretical 

diffusion coefficient data (found in the literature) for solutions of different concentrations of NaCl in 

water. The diffusion coefficients for aqueous solutions of sodium chloride were obtained at (25 ± 

0.01)°C, using the Gouy interferometric technique by Vitagliano and Lyons (1956). They supplement 

existing data, in each case confirm the electrometric results for dilute solutions and assist in the 

selection of consistent self-diffusion measurements in concentrated sodium chloride solutions  

 

Table 3. Theoretical diffusion coefficients of NaCl solutions 

Conc., 

(mol L-1) 

Diffusion 

coefficient, 

(m2 s-1) x109 

2.000c 1.5125a, 1.519d 

1.000 1.2400b, 1.485d 

0.500c 1.4730a, 1.473d 

0.2500c 1.4745a 

0.1250c 1.4850a 
aValues obtained at 298 K and reported by Chang and Myerson (1985) 

bValue obtained at 291 K and reported by Treybal (1981) 
cconcentration and approximate DAB values. 

dValue obtained at 298 K and reported by Vitagliano and Lyons (1956). 
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The data in Table 3 are at a different temperature from the experimental data. For this it was necessary 

to convert them according to Equation 3.  

 

𝐷𝐴𝐵(𝑇2)
= 𝐷𝐴𝐵(𝑇1)

(
𝑇2

𝑇1
)

1,75

                                                                                                                          (3) 

 

Where T1  and T2 are the temperatures (in Kelvin). Theoretical and experimental values of DAB were 

tabulated in Table 4. 

 

Table 4. NaCl Experimental and Theoretical diffusion coefficients. 

 

Temp., 

(K) 

Conc., 

(mol L-1) 

DAB 

Experimental, 

(m2 s-1) x109 

DAB, 

(m2 s-1) x109 

297 ± 0.5 2.000 ± 0.020 1.659 ± 0.027 1.504 

297 ± 0.5 1.000 ± 0.010 1.458 ± 0.036 1.285 

295 ± 0.5 0.500 ± 0.005 1.410 ± 0.035 1.447 

292 ± 0.5 0.2500 ± 0.0025 1.206 ± 0.044 1.423 

294 ± 0.5 0.1250 ± 0.0013 1.342 ± 0.077 1.450 

 

Each relative error will eventually have an associated uncertainty value due to the experimental value. 

Therefore, the relative error values were obtained by the EES, according to Figure 12.  

 

 
Figure 12. Relative errors and associated uncertainty propagation. 

 

Table 5 summarizes the relative errors obtained and associated uncertainty propagation. 

 

Table 5. Relative errors and associated uncertainties related to the diffusion coefficient calculated 

for each concentration of NaCl. 

 

Concentration, 

(mol L-1) 

Relative error, 

(%) 

2.000 ± 0.020 10.260 ± 1.791 

1.000 ± 0.010 13.360 ± 2.818 

0.500 ± 0.005 2.617 ± 2.435 

0.2500 ± 0.0025 15.270 ± 3.092 

0.1250 ± 0.0013 7.532 ± 5.282 
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Note from Table 5 that the uncertainties associated with the errors are high, with some reaching about 

90% of the relative error value. In general, it has been that the error values were less than 20%, which 

represents, in this case, a low value, when dealing with the rusticity of the experiment. Still, it is 

possible to correlate it to some probable sources. Firstly, it may have been the formation of air within 

the diffusion cell blisters (U-tube), blocking the capillaries and hindering the diffusion of sodium 

chloride solution to the diffusion vessel, which reduces the rate of diffusivity.  These bubbles may 

have formed due to the incorrect filling of the diffusion cell with the NaCl solution. To minimize the 

formation of bubbles at the end or inside the capillaries it is necessary to fill the diffusion cell slowly. 

In addition, there was inaccuracy at the time of starting and stopping the time measurement in the 

stopwatch due to the human reaction time.  In addition, the solution might not be sufficiently agitated, 

which would result in a higher concentration of NaCl in the contact surface of the capillaries with 

the diffusion vessel, since the solution would be poorly homogenized. In the case of the experiment 

performed, the speed of rotation of the agitator was maintained to minimize the formation of vortices 

that could arise and cause some destabilization in the diffusion cell structure that was submerged in 

the vessel. In order to obtain more accurate conductivity readings in this situation, the reader of the 

conductivity meter could be positioned in a position of greater agitation, that is, next to the magnetic 

stirrer in the zone of greater depth of the diffusion vessel.  In addition, it is possible that the 

equipment, especially the diffusion vessel, was not sufficiently clean. Cleaning equipment and 

materials in experiments based on conductivity measurements is of crucial importance, since residues 

or impurities present may cause erroneous measurements by the apparatus. In the case of this 

experiment, distilled water was used.  

 

However, in order to obtain better results and to ensure greater removal of impurities, deionized water 

should be used to clean materials and equipment two or three times. Also, as seen earlier, some 

conductivity measurements suffered variations so small that they could not be measured with high 

accuracy. In this case, a high-performance digital conductivity meter is used to guarantee more 

accurate readings, or even computational systems coupled to the diffusion cell and the conductivity 

meter. Finally, it was assumed that the temperature of the solution remained constant throughout the 

experiment. However, this may not be true, since the experimental setup was exposed to the 

surroundings, making it difficult to guarantee a constant temperature inside the system. However, the 

temperature affects the diffusion coefficient and, therefore, for this experiment, it would be necessary 

to isolate the system thermally by minimizing the contact with the surroundings, in order to reduce 

the errors associated with temperature. Although the temperature was constantly being measured, 

and no significant variation was observed in the values, the duration of the experiment was extended 

for 30 or 60 minutes. In this range, it is possible that a slight change in temperature occurred. 

 

Conclusion  

 

It is possible to conclude from the above results that the experiment performed and the methodology 

used were satisfactory. It was possible to determine the diffusion coefficient of the NaCl solution 

with relatively small errors due to the approximations and considerations made.  Based on the 

discussions of the errors, it is possible to make the experiment even more precise, using modifications 

in both the equipment and the experimental apparatus and, consequently, minimizing the 

experimental errors. However, it is worth noting that this experiment is not only limited to NaCl 

solutions, it is possible to use it for any electrolytic solutions, that is, solutions of compounds that 

undergo ionic dissociation in aqueous medium, since its principle is based on the measurement of 

conductivity solution. The video of the experimental procedures adopted in this article is available 

online and can be accessed through the link 

https://www.youtube.com/watch?v=CClQT3sWpxM&feature=youtu.be. 

 

  

https://www.youtube.com/watch?v=CClQT3sWpxM&feature=youtu.be
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