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Abstract 

This paper presents innovative series and summations derived from the optimized combinations 

relating to the combinatorics. These series and summations will be useful for the researchers who 

are involving to solve the scientific problems. 
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1. Introduction to Optimized Combination  

 

The optimized combination (Annamalai et al., 2020) applied on the computation of multiple 

geometric series (Annamalai, 2010) is expressed as follows: 

 

𝑉𝑟
𝑛 =

(𝑟 + 1)(𝑟 + 2) ⋯ ⋯ (𝑟 + 𝑛)

𝑛!
=

(𝑛 + 1)(𝑛 + 2)) ⋯ ⋯ (𝑛 + 𝑟)

𝑟!
= 𝑉𝑛

𝑟 , 

𝑖. 𝑒., 𝑉𝑟
𝑛 = ∏

𝑟 + 𝑖

𝑛!

𝑛

𝑖=1

= ∏
𝑛 + 𝑖

𝑟!

𝑟

𝑖=1

=  𝑉𝑛
𝑟   (𝑛, 𝑟 ≥ 1 &  𝑛, 𝑟 ∈ 𝑁), 

where 𝑁 = {0, 1, 2,3, ⋯ ⋯ }, 𝑉𝑟
𝑛 is a binomial coefficient, and 𝑛! is the  factorial of 𝑛. 

 

Some results (Annamalai et al., 2020) of the optimized combination are provided below: 

i).       𝑉𝑛
0 = 𝑉0

𝑛 = 1 (𝑛 ≥ 1   &    𝑛 ∈ 𝑁), 
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         where 𝑉𝑛
0 alaway implies 𝑉0

𝑛 , 𝑖. 𝑒. , 𝑉𝑛
0 ⟹ 𝑉0

𝑛. 

          Note that  𝑉𝑟
𝑛 = 𝑉𝑛

𝑟 = (𝑛 + 𝑟)𝐶𝑟 = (𝑛 + 𝑟)𝐶𝑛 =
(𝑛 + 𝑟)!

𝑛! 𝑟!
and  𝑉0

0 = 1. 

ii).     𝑉𝑟
𝑛 = 𝑉𝑛

𝑟  (𝑛, 𝑟 ≥ 1 &  𝑛, 𝑟 ∈ 𝑁) &   𝑉𝑛
0 = 𝑉0

𝑛. 

iii):    𝑉0
𝑛 + 𝑉1

𝑛 + 𝑉2
𝑛 + 𝑉3

𝑛 + ⋯ + 𝑉𝑟
𝑛 = 𝑉𝑟

𝑛+1  ⟹ ∑ 𝑉𝑖
𝑛

𝑛

𝑖=0

= 𝑉𝑟
𝑛+1   (𝑛, 𝑟 ∈ 𝑁). 

 

2. Novel Series of Optimized Combination   

 

From the result (iii) in this paper, that is (Annamalai, 2020),  

 

1 + 𝑉1
𝑛 + 𝑉2

𝑛 + 𝑉3
𝑛 + ⋯ + 𝑉𝑟

𝑛 = 𝑉𝑟
𝑛+1  ⟺   1 + 𝑉𝑛

1 + 𝑉𝑛
2 + 𝑉𝑛

3 + ⋯ +𝑉𝑛
𝑟 = 𝑉𝑛+1

𝑟 , 
 

 the following series and its summations (Annamalai, 2018 & Annamalai, 2019) are expressed:   

 

(1).       ∑
(𝑖 + 1)

1!

𝑛

𝑖=0

= 1 + 2 + 3 + ⋯ + 𝑛 + (𝑛 + 1) =
(𝑛 + 1)(𝑛 + 2)

2!
. 

 

(2).     ∑
(𝑖 + 1)(𝑖 + 2)

2!

𝑛

𝑖=0

= 1 + 3 + 6 + ⋯ +
(𝑛 + 1)(𝑛 + 2)

2!
=

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

3!
. 

 

(3).       ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

3!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

4!
. 

 

(4).       ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

4!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5)

5!
. 

 

Similarly, the series continues upto r times. The rth series and its summation are:   

 

(𝑟).       ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3) ⋯ (𝑖 + 𝑟)

𝑟!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

(𝑟 + 1)!
 

 

𝑖. 𝑒. , ∑  ∏
𝑖 + 𝑗

𝑟!

𝑟

𝑗=1

𝑛

𝑖=0

  =   ∏
𝑛 + 𝑖

(𝑟 + 1)!

𝑟+1

𝑖=1

. 

 

 

3. Conclusion  

 

In this paper, the innovative series and summations of binomial coefficients have been derived using 

the results (Annamalai, 2022) of the optimized combination in the field of combinatorics. These 

series and summations will be useful for the researchers who are involving to solve the scientific 

problems and meet today’s challenges (Annamalai, 2010). 
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