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Abstract 
In this paper, we introduce the idea of αT-expansion by employing tri-simulation functions introduced by 

Gubran et al. [R. Gubran, W. M. Alfaqih and M. Imdad, Italian Journal of Pure and Applied Mathematics -

N, 45 (2021) 419-430] in a metric space. Further, we shall use these mappings to study various fixed point 

results in complete metric spaces. The results of this paper generalize and improve several results on the topic 

in literature. 
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1. Introduction  

 

The classical Banach contraction principle (Banach, 1922), which guarantees the existence 

and uniqueness of fixed points of contraction self-mappings defined on complete metric spaces 

while also providing a constructive procedure to compute the fixed point of the underlying mapping, 

remains an indispensable and effective tool in theory as well as applications within and beyond 

Mathematics. Many scholars have recently extended this theorem by using more broad contractive 

mappings on various sorts of spaces. Popa (1997) pioneered the concept of combining many 

contraction conditions into a single procedure in 1997. To do so, he proposed the implicit function, 

which is widely used in some works (Ali and Imdad, 2008; Berinde, 2012; Berinde and Vetro, 2012; 

Imdad et al., 2016; Imdad et al., 2002; and Popa et al., 2010). 

Wardowski (2012) is responsible for another notable attempt to expand the Banach 

contraction principle, in which the author introduced the concept of 𝐹-contractions, which has since 

been investigated in Imdad et al. (2017), Gubranet et al. (2017), and Piri and Kumam, (2016), among 
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other places. Last but not least, Khojasteh et al. (2015) proposed the simulation function, which is 

also intended to combine many contractions.  

It is worth noting that while the concept of simulation function is broad enough to unify 

numerous existing contractions, it is not relevant to contractions with variables other than 𝑑(𝑆𝑥, 𝑆𝑦) 

and 𝑑(𝑥, 𝑦). The only problem that remains is that it treats the equation 𝛼(𝑥, 𝑦)𝑑(𝑆𝑥, 𝑆𝑦) as a single 

element whenever it appears in the contraction inequality. 

Recently, Gubran et al. (2021) broaden the scope of simulation functions and addresses the 

previously described deficiency by allowing the involved terms to occur independently. In 

particular, they developed a new sort of three-variable simulation function that can be used to unify 

numerous known contractions from the literature while also being broad enough to create new 

contractions. 

In this paper, we use tri-simulation functions developed by Gubran et al. (2021) in a metric 

space to present the concept of 𝛼𝑇-expansion. Our new idea goes hand in hand with the concept of 

𝛼𝔗-contraction introduced by Gubran et al. (2021). These mappings will also be used to investigate 

various fixed point theorems in entire metric spaces. The findings of this research generalise and 

improve on various previous studies on the subject. 

2. Preliminaries 

 

ℝ+ stands for the set of non-negative real numbers in the following, while all other terms are 

used in their standard sense. 

 Khojasteh et al. (2015) provided the following definitions: 

Definition 2.1 Let ζ: [0, ∞) × [0, ∞) → ℝ be a mapping, then ζ is called a simulation 

function if it satisfies the following conditions: 

(ζ1)ζ(0,0) = 0;  

(ζ2)ζ(t, s) < s − t for all t, s > 0; 

(ζ3) if {tn}, {sn} are sequences in (0, ∞) such that limn→∞tn = limn→∞sn > 0 then  

limn→∞supζ(tn, sn) < 0.  

 We denote the set of all simulation functions by 𝒵.  

Definition 2.2 Let (X, d) be a metric space, T: X → X a mapping and ζ ∈ 𝒵. Then T is called 

a (Z)-contraction with respect to ζ if the following condition is satisfied:  

ζ(d(Tx, Ty), d(x, y)) ≥ 0,  

 for all x, y ∈ X.  

 Gubran et al. (2021) introduced the following new simulation function involving three 

variables called as tri-simulation function: 

Definition 2.3 Let T: ℝ+
3 → ℝ be a mapping. Then T is called a tri-simulation function if it 

satisfies the following conditions: 

(T1): T(z, y, x) < x − yz, for all x, y > 0, z ≥ 0;  
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(T2) : if {zn}, {yn} and {xn} are sequences in (0, ∞) such that yn < xn, for all n ∈ ℕ, 

limn→∞zn ≥ 1 and limn→∞yn = limn→∞xn > 0, then  

 limsup
n→∞

T(zn, yn, xn) < 0. 

 Gubran et al. (2021) introduced the following new type of contraction: 

Definition 2.4 A self-mapping f on a metric space (X, d) is said to be α𝔗-contraction with 

respect to T ∈ 𝔗 if for all x, y ∈ X,  

 T(α(x, y), d(fx, fy), d(x, y)) ≥ 0, 

 where α: M × M → ℝ+.  

 The following two new concepts namely 𝛼-permissible and 𝛼-orbital permissible mappings 

were also introduced in Gubran et al. (2021). 

Definition 2.5 The mapping f is said to be α-permissible if for all m ≥ n ≥ 1 and x, y ∈ X,  

 α(x, y) ≥ 1 ⇒ α(f nx, f my) ≥ 1. 

Definition 2.6 The mapping f is said to be α-orbital permissible if for all m ≥ n ≥ 1 and 

x ∈ X,  

 α(u, fu) ≥ 1 ⇒ α(f nx, f mv) ≥ 1. 

3. Main Results 

                    We introduce the following definition: 

Definition 3.1  A self-mapping f on a metric space (X, d) is said to be αT-expansive with 

respect to T ∈ 𝒯 if  

 T(α(x, y), d(x, y), ξ(d(fx, fy))) ≥ 0, ∀x, y ∈ X (1) 

 where α: X × X → ℝ+.  

Remark 3.1  If f is an αT-expansive for some T ∈ 𝔗, then by condition (T1), we have  

 ξ(d(fx, fy)) > α(x, y)d(x, y), (2) 

 for all distinct x, y ∈ X.  

 Our main result in this article runs as follows:  

Theorem 3.1  Let (X, d) be a complete metric space and f: X → X be a bijective, αT-

expansive under some tri-simulation function T. Suppose that  

(a) f −1 is triangular α-permissible;  

(b) there exists x0 ∈ X such that α(x0, f −1x0) ≥ 1;  

(c) f is continuous.  

Then f has a fixed point in X.  
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Proof. Let us define the sequence xn in X by xn = fxn+1, for all n ∈ ℕ, where x0 ∈ X is such 

that α(x0, f −1x0) ≥ 1. Since f −1 is α-permissible, we have for all m > n ≥ 1,  

 α(xn, xm) ≥ 1. (3) 

 If xm = xm+1 for some m ∈ ℕ, then xm is a fixed point of f so that we are done. Otherwise, let 

d(xn, xn+1) > 0, for all n ∈ ℕ. Then, we have  

 0 ≤ T(α(x, y), d(x, y), ξ(d(fx, fy))) 

 < ξ(d(fx, fy)) − α(x, y). d(x, y) 

 This implies that  

 α(x, y). d(x, y) < ξ(d(fx, fy)) < d(un, un+1), (4) 

 which shows that {d(xn, xn+1)} is a strictly decreasing sequence of positive real numbers which 

possesses some limit r ≥ 0. If r ≠ 0, then on letting n → ∞ on both sides of the above inequality, 

we obtain  

 lim
n→∞

α(xn, xn+1) = 1 

 In view of (T2), we have  

 0 ≤ lim
n→∞

supT(α(xn, xn+1), d(xn, xn+1), ξ(d(fxn, fxn+1))) < 0, 

 a contradiction. Hence, for all n ∈ ℕ, we have  

 lim
n→∞

d(xn, xn+1) = 0. (5) 

 Now, we show that {xn} is a bounded sequence. For this, assume that {xn} is unbounded. Then, 

these exists a subsequence {xnk
} such that n1 = 1 and for each k ∈ ℕ, nk+1 is the minimum integer 

such that  

 d(xnk
, xnk+1

) > 1 (6) 

 and for nk ≤ m ≤ nk+1 − 1,  

 d(xnk
, xm) ≤ 1. 

 Utilizing the triangular inequality, we have  

 1 < d(xnk
, xnk+1

) 

 ≤ d(xnk
, xnk+1−1) + d(xnk+1−1, xnk+1

) 

 ≤ 1 + d(xnk+1−1, xnk+1
), 

 In view of Remark(3.1), on letting k → ∞ we get  

 lim
k→∞

d(xnk
, xnk+1

) = 1. 
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 From the Remark (3.1), we have  

 α(xnk
, xnk+1

)d(xnk
, xnk+1

) < ξ(d(xnk−1, xnk+1−1)) 

 Using (3) and (6), we obtain  

 1 < α(xnk
, xnk+1

)d(xnk
, xnk+1

) 

    < ξ(d(xnk−1, xnk+1−1)) 

    < d(xnk−1, xnk+1−1) 

≤ 𝑑(𝑥𝑛𝑘−1, 𝑥𝑛𝑘
) + 𝑑(𝑥𝑛𝑘

, 𝑥𝑛𝑘+1−1) 

    ≤ 𝑑(𝑥𝑛𝑘−1, 𝑥𝑛𝑘
) + 1 

 which, on letting k → ∞ and in view of Gubran et al. (2021) gives: 

 lim
k→∞

α(xnk
, xnk+1

) = 10.2cmand    0.2cm lim
k→∞

α(xnk−1, xnk+1−1) = 1 

 Therefore, by (T2), we get  

 0 ≤ limsup
n→∞

T(α(xnk
, xnk+1

), d(xnk
, xnk+1

), ξ(d(fxnk
, fxnk+1

))), 

 which is a contradiction. Therefore, {xn} is a bounded sequence. 

Assume that un = sup{d(xi, xj): i, j ≥ n}. Observe that, {un} is decreasing sequence of non-

negative real numbers which is bounded due to the boundedness of {xn}. So, there exists some u ≥

0 such that limn→∞un = u. If u ≠ 0, then by the definition of {un}, for every k ∈ ℕ there exist 

mk, nk with mk > nk ≥ k such that  

 uk −
1

k
≤ d(xmk

, xnk
) ≤ uk, 

 which yields  

 lim
k→∞

d(xmk
, xnk

) = c. (7) 

 In view of remark (3.1) and (3), we have  

 d(xnk
, xmk

) ≤ α(xnk−1, xmk−1)d(xnk
, xmk

) 

 < ξ(d(xnk−1, xmk−1)) 

 < d(xnk−1, xmk−1) 

 ≤ d(xnk−1, xnk
) + d(xnk

, xmk
) + d(xmk

, xmk−1), 

 which yields limk→∞d(xnk−1, xmk−1) = u and limk→∞α(xnk
, xmk

) = 1 as k → ∞. As f is a αT-

expansive w.r.t T, we get  
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 0 ≤ lim
n→∞

supT(α(xnk
, xmk

), d(xnk
, xmk

), ξ(d(xnk−1, xmk−1))) < 0, 

 a contradiction which shows that u = 0. Therefore, {xn} is a Cauchy sequence. From the 

completeness of the space X, we conclude that there exists some v ∈ X such that  

 lim
n→∞

xn = v 

 The continuity of the mapping f implies that limn→∞xn = flimn→∞xn−1 = fv. Hence, fv = v.  

 In what follows, we prove that Theorem 3.1 still holds for T not necessarily continuous, 

assuming the following condition:  

(A): If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and {xn} → x ∈ X as n →

+∞, then  

 α(f −1xn, f −1x) ≥ 1 (8) 

 for all n. 

Theorem 3.2  If in Theorem 3.1 we replace the continuity of f by the condition (A), then 

the result holds true.  

Proof. Following the proof of Theorem 3.1, we know that {xn} is a sequence in X such that 

{xn} → v ∈ X as n → +∞. From the above condition (A) and Definition 3.1, we get  

 0 ≤ T(α(f −1xnk
, f −1v)d(f −1xnk

, f −1v)), 

so that  

 𝑑(𝑥𝑛(𝑘)+1, 𝑓−1𝑣) = 𝑑(𝑓−1𝑥𝑛(𝑘), 𝑓−1𝑣) 

 ≤ 𝛼(𝑓−1𝑥𝑛(𝑘), 𝑓−1𝑣)𝑑(𝑓−1𝑥𝑛(𝑘), 𝑓−1𝑣) 

 < 𝜉(𝑑(𝑥𝑛(𝑘), 𝑣)). 

 Letting 𝑘 → ∞, we obtain 𝑑(𝑣, 𝑓−1𝑣) = 0. This concludes the proof.  

Theorem 3.3 The fixed point of 𝑓 obtained by Theorem 3.1 (or Theorem 3.2) remains 

unique provided one of the following conditions hold: 

(i) 𝛼(𝑢, 𝑣) ≥ 1 for all 𝑢, 𝑣 ∈ 𝐹𝑖𝑥(𝑓) = {𝑥 ∈ 𝑋: 𝑓𝑥 = 𝑥}.  

(ii) 𝑓 is 𝛼-permissible and for all 𝑢, 𝑣 ∈ 𝑋 there exists 𝑧 ∈ 𝑋 such that 𝛼(𝑢, 𝑧) ≥ 1 and 

𝛼(𝑣, 𝑧) ≥ 1.  

Proof. Assume that 𝑢 and 𝑣 are two distinct fixed points of 𝑓. If the condition (i) is satisfied, 

then  

 0 ≤ 𝑇(𝛼(𝑢, 𝑣), 𝑑(𝑢, 𝑣), 𝜉(𝑑(𝑓𝑢, 𝑓𝑣))) 

 = 𝑇(𝛼(𝑢, 𝑣), 𝑑(𝑢, 𝑣), 𝜉(𝑑(𝑢, 𝑣))) 
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 < 𝜉(𝑑(𝑢, 𝑣)) − 𝛼(𝑢, 𝑣)𝑑(𝑢, 𝑣) 

 < 𝑑(𝑢, 𝑣) − 𝛼(𝑢, 𝑣)𝑑(𝑢, 𝑣), 

 which is a contradiction so that 𝑢 = 𝑣 and hence we are done. 

Alternately, if condition (ii) holds, we have 𝑤 ∈ 𝑋 such that 𝛼(𝑢, 𝑤) ≥ 1 and 𝛼(𝑣, 𝑤) ≥ 1. 

If one of the two fixed points (say 𝑢) is same as 𝑤, then we can prove that 𝑤 = 𝑣 which leads to 

contradiction. Thus, we suppose that 𝑢, 𝑣 and 𝑤 are distinct points. Due to the fact that the function 

𝑓 is 𝛼-permissible, we get 𝛼(𝑢, 𝑤𝑛) ≥ 1 and 𝛼(𝑣, 𝑤𝑛) ≥ 1, ∀𝑛 ≥ 1. Now, we need to prove that  

 lim
𝑛→∞

𝑤𝑛 = 𝑢. 

 If 𝑤𝑚 = 𝑢 for some 𝑚 ∈ ℕ, then the assertion comes right after that. Otherwise, make the 

assumption that 𝑑(𝑢, 𝑤𝑛) > 0 for all 𝑛 ∈ ℕ. Now,  

 0 ≤ 𝑇(𝛼(𝑢𝑛, 𝑤𝑛), 𝑑(𝑢𝑛, 𝑤𝑛), 𝜉(𝑑(𝑓𝑢𝑛, 𝑓𝑤𝑛))) 

 < 𝜉(𝑑(𝑓𝑢𝑛, 𝑓𝑤𝑛)) − 𝛼(𝑢𝑛, 𝑤𝑛). 𝑑(𝑢𝑛, 𝑤𝑛) 

 = 𝜉(𝑑(𝑢, 𝑤𝑛−1)) − 𝛼(𝑢, 𝑤𝑛). 𝑑(𝑢, 𝑤𝑛) 

 < 𝑑(𝑢, 𝑤𝑛−1) − 𝛼(𝑢, 𝑤𝑛). 𝑑(𝑢, 𝑤𝑛) 

 So, {𝑑(𝑢, 𝑤𝑛)} is a strictly decreasing sequence of non-negative real numbers which possesses 

some limit 𝑟 ≥ 0. If 𝑟 ≠ 0, then by (𝑇2), we have  

 0 ≤ lim
𝑛→∞

sup𝑇(𝛼(𝑢, 𝑤𝑛), 𝑑(𝑢, 𝑤𝑛), 𝜉(𝑑(𝑓𝑢, 𝑓𝑤𝑛))) < 0, 

 a contradiction which substantiates the claim. Similarly, we can show that  

 lim
𝑛→∞

𝑤𝑛 = 𝑣. 

 Now, the uniqueness of the limit implies 𝑢 = 𝑣 which brings the proof to a close.  

4. Conclusion 

In this paper, we established an approach for obtaining expansive fixed point theorems via 

tri-simulation functions. Many researchers in this field may be prompted to look at new expansive 

fixed point theorems in metric spaces as a result of this study. These findings can also be applied to 

more broad spaces like partial metric spaces, b-metric spaces, semi-metric spaces, and other abstract 

distance spaces. 
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