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Abstract 

Nowadays, the growing complexity of mathematical and computational modelling demands the 

simplicity of mathematical and computational equations for solving today’s scientific problems and 

challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, 

combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and 

innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, 

discrete mathematics, and theoretical computer science for finding solutions to the problems in 

computing and engineering science. The combinatorial geometric series with binomial expansions 

and its theorems refer to the methodological advances which are useful for researchers who are 

working in computational science. Computational science is a rapidly growing multi-and inter-

disciplinary area where science, engineering, computation, mathematics, and collaboration use 

advance computing capabilities to understand and solve the most complex real-life problems. 
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1. Introduction 

In the earlier days, geometric series served as a vital role in the development of differential and 

integral calculus and as an introduction to Taylor series and Fourier series. In this article, 

combinatorial geometric series with binomial expansion and its relationship and theorems are 

introduced in an innovative way.  Combinatorial geometric series is derived from the multiple 

summations of a geometric series with Annamalai’s binomial coefficients. Nowadays, the 

combinatorial geometric series and its binomial identities and binomial theorems (Annamalai et al., 

2022) have significant applications in science, engineering, economics, queuing theory, 

computation, combinatorics, management, and medicine (Annamalai et al., 2010).  

 

1.1 Geometric Series with Powers of Two 

Let us develop the sum of geometric series (Annamalai et al., 2022u, 2022v, 2022w) with exponents 

of 2 independently as follows:  

 

2𝑛 = 2𝑛−1 + 2𝑛−1 = 2𝑛−1 + 2𝑛−2 + 2𝑛−2 = ⋯ = 2𝑛−1 + 2𝑛−2 + 2𝑛−3 + ⋯ 2𝑘 + 2𝑘               (1) 
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⟹ 2𝑘 + 2𝑘+2 + 2𝑘+3 + ⋯ + 2𝑛−2 + 2𝑛−1 = 2𝑛 − 2𝑘 ⟹ ∑ 2𝑖

𝑛

𝑖=𝑘

= 2𝑛+1 − 2𝑘                              (2) 

 

In the geometric series 𝑖𝑓  𝑘 = 0, then ∑ 2𝑖

𝑛

𝑖=0

= 2𝑛+1 − 1, (𝑘, 𝑛 ∈ 𝑁),  

where 𝑁 = {0, 1, 2, 3, ⋯ } is set of natural numbers including zero element. 
 

1.2 Traditional Binomial Coefficient 

The factorial function or factorial (Annamalai et al., 2022k, 2022l, 2022w) of a nonnegative integer 

n, denoted by n!, is the product of all positive integers less than or equal to n. For examples, 3! = 

1×2× 3 = 6 and 0! = 1.  

A binomial coefficient is always an integer that denotes (
𝑛
𝑟

) =
𝑛!

𝑟! (𝑛 − 𝑟)!
, where 𝑛, 𝑟 ∈ 𝑁.  

Here, (
𝑛 + 𝑟

𝑟
) =

(𝑛 + 𝑟)

𝑟! 𝑛!
 ⟹ (𝑛 + 𝑟) = 𝑙 × 𝑟! 𝑛!, where 𝑙 is an integer.  

 

2. Binomial Expansions and Combinatorial Geometric Series    

When the author of this article was trying to develop the multiple summations of geometric series, 

a new idea was stimulated his mind for establishing a novel binomial series along with an innovative 

binomial coefficient (Annamalai et al., 2022r, 2022s, 2022t): 

 

∑ ∑ ∑ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

= ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

 &  𝑉𝑟
𝑛 =

(𝑟 + 1)(𝑟 + 2)(𝑟 + 3) ⋯ ⋯ (𝑟 + 𝑛 − 1)(𝑟 + 𝑛)

𝑛!
, 

 
where  𝑛 ≥ 1, 𝑟 ≥ 0  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁                                                                                                          (3)           
 

Here, ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

and  𝑉𝑟
𝑛 refer to the binomial sereis and binomial coefficient respectively. 

Let us compare the binomial coefficient 𝑉𝑥
𝑦

 with the traditional binomial coefficient as follows: 
 

Let 𝑧 = 𝑥 +  𝑦.  Then, (
𝑧
𝑥

) =  𝑧𝐶𝑥 =
𝑧!

𝑥! 𝑦!
.  Here,  𝑉𝑥

𝑦
= 𝑉𝑦

𝑥 ⟹  𝑧𝐶𝑥 =  𝑧𝐶𝑦, (𝑥, 𝑦, 𝑧 ∈ 𝑁). 

For example, 𝑉3
5 = 𝑉5

3 =  (5 + 3)𝐶3 =  (5 + 3)𝐶5 = 56.   

Also, 𝑉𝑛
0 = 𝑉0

𝑛 = 𝑛𝐶0 = 𝑛𝐶𝑛 =
𝑛!

𝑛! 0!
= 1  𝑎𝑛𝑑  𝑉0

0 = 0𝐶0 =
0!

0!
= 1(∵ 0! = 1). 

 
2.1 Computation of Combinatorial Geometric Series  

The combinatorial Geometric Series (Annamalai et al., 2022d, 2022e, 2022f) is constituted by 

double summations of a geometric series as follows: 

 

∑ ∑ 𝑥𝑖2

𝑛

𝑖2=𝑖1

=

𝑛

𝑖1=0

∑ 𝑥𝑖2

𝑛

𝑖2=0

+ ∑ 𝑥𝑖2

𝑛

𝑖2=1

+ ∑ 𝑥𝑖2

𝑛

𝑖2=2

+ ⋯ + ∑ 𝑥𝑖2

𝑛

𝑖2=𝑛

= 1 + 2𝑥 + 3𝑥2 + ⋯ + (𝑛 + 1)𝑥𝑛, 

that is, 1 + 2𝑥 + 3𝑥2 + ⋯ + (𝑛 + 1)𝑥𝑛 = ∑(𝑖 + 1)𝑥𝑖

𝑛

𝑖=0

= ∑ 𝑉𝑖
1𝑥𝑖

𝑛

𝑖=0

.                                      (4) 
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The triple summations of a geometric series compute the following combinatorial geometric 

series:  

∑ ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=𝑖1

=

𝑛

𝑖1=0

∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=0

+ ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=1

+ ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=2

+ ⋯ + ∑ ∑ 𝑥𝑖3

𝑛

𝑖3=𝑖2

𝑛

𝑖2=𝑛

= ∑ 𝑉𝑖
2𝑥𝑖

𝑛

𝑖=0

. 

 

Similarly, we can obtain the combinatorial geometric series which is computed by multiple 

summations of a series.   

 

 ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

= ∑ ∑ ∑ ⋯ ⋯ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟 .

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

                                                                                 (5) 

 

Note that the geometirc series ∑ 𝑥𝑖 =  ∑ 𝑉𝑖
0𝑥𝑖

𝑛

𝑖=0

  

𝑛

𝑖=0

is also a combinatorial geometric sereis.  

 

2.2 First Derivative of Geometric Series   

Differentiation is the derivative (Annamalai et al., 2022i, 2022j) of a function with respect to an 

independent variable. In this section, a geometric series is considered as the function of 

independent variable x. 

The function of geometric sereis is  𝑓(𝑥) = ∑ 𝑥𝑖

𝑟

𝑖=0

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑟 =
𝑥𝑟+1 − 1

𝑥 − 1
.    

The first derivative of geometric series is built as follows: 

𝑓1(𝑥) = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 ⋯ + 𝑟𝑥𝑟−1 = 𝑓1 (
𝑥𝑟+1 − 1

𝑥 − 1
) =

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
 

⟹ 𝑉0
1 + 𝑉1

1𝑥 + 𝑉2
1𝑥2 + 𝑉3

1𝑥3 ⋯ + 𝑉𝑟−1
1 𝑥𝑟−1 =

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
, (𝑥 ≠ 1). 

By substituting 𝑥 = 2 in  𝑓1(𝑥), we get the mathematical equation as follows:  

1 + 2(2) + 3(2)2 + 4(2)3 + ⋯ + 𝑟2𝑟−1 =
(𝑟 − 1)2𝑟 + 1

(2 − 1)2
= (𝑟 − 1)2𝑟 + 1. 

Similarly, we get the following equations by substituting the values of x: 

For  𝑥 = 3, 1 + 2(3) + 3(3)2 + 4(3)3 + ⋯ + 𝑟3𝑟−1 =
(2𝑟 − 1)3𝑟 + 1

(3 − 1)2
=

(2𝑟 − 1)3𝑟 + 1

22
. 

For  𝑥 = 4, 1 + 2(4) + 3(4)2 + 4(4)3 ⋯ + 𝑟4𝑟−1 =
(3𝑟 − 1)4𝑟 + 1

(4 − 1)2
=

(3𝑟 − 1)4𝑟 + 1

32
. 

For any number k that is equal to x, we get the equation  ∑ 𝑉𝑖
1𝑘𝑖

𝑟−1

𝑖=0

=  
(𝑘𝑟 − 𝑟 − 1)𝑘𝑟 + 1

(𝑘 − 1)2
.  

 

2.3 First Derivative of Geometric Series without Differentiation   

Sum of the geometric series with negative exponents is that ∑ 𝑥−𝑖

𝑛

𝑖=1

=
1 − 𝑥−𝑛

𝑥 − 1
. 

The first derivative of geometric series with negative exponents is computed without using 

differentiation as follows: 

∑ 𝑥−𝑖

𝑛

𝑖=1

=
1 − 𝑥−𝑛

𝑥 − 1
⟹ (−𝑥−1) ∑ 𝑥−𝑖

𝑛

𝑖=1

= −𝑥−2 − 𝑥−3 − 𝑥−4 − ⋯ − 𝑥−𝑛−1 = (−𝑥−1)
1 − 𝑥−𝑛

𝑥 − 1
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⟹ (−) ∑ 𝑥−𝑖−1

𝑛

𝑖=1

= −𝑥−2 − 𝑥−3 − 𝑥−4 − ⋯ − 𝑥−𝑛−1 =
−𝑥−1 + 𝑥−𝑛−1

𝑥 − 1
. 

 

Then, − ∑ 𝑥−𝑖−1

𝑛

𝑖=1

− ∑ 𝑥−𝑖−1

𝑛

𝑖=2

− ∑ 𝑥−𝑖−1

𝑛

𝑖=3

− ⋯ − ∑ 𝑥−𝑖−1

𝑛

𝑖=𝑛

=
−𝑥−1 + 𝑥−𝑛−1

𝑥 − 1
+

−𝑥−2 + 𝑥−𝑛−1

𝑥 − 1
+

−𝑥−3 + 𝑥−𝑛−1

𝑥 − 1
+ ⋯ +

−𝑥−𝑛 + 𝑥−𝑛−1

𝑥 − 1
.   (6) 

 

By simplifying this expression, we get  

∑(−𝑖)𝑥−𝑖−1

𝑛

𝑖=1

=
− ∑ 𝑥−𝑖𝑛

𝑖=1 + 𝑛𝑥−𝑛−1

𝑥 − 1
=

−(1 − 𝑥−𝑛)
𝑥 − 1 + 𝑛𝑥−𝑛−1

𝑥 − 1
=

𝑥−𝑛 − 1 + 𝑛𝑥−𝑛−1(𝑥 − 1)

(𝑥 − 1)2
. 

 

Thus, ∑(−𝑖)𝑥−𝑖−1

𝑛

𝑖=1

=
((𝑛 + 1)𝑥 − 𝑛)𝑥−𝑛−1 − 1

(𝑥 − 1)2
, (𝑥 ≠ 1).                                         (7) 

 

This result denotes the derivative (Annamalai et al., 2022p, 2022q, 2022r) of geometric series with 

negative exponents.  

 

Next, the sum of the geometric series with nonnegaive exponents is that ∑ 𝑥𝑖

𝑛

𝑖=0

=
𝑥𝑛+1 − 1

𝑥 − 1
. 

The first derivative of geometric series with nonnegative exponents is computed without using 

differentiation as follows: 

∑ 𝑥𝑖

𝑛−1

𝑖=0

+ ∑ 𝑥𝑖

𝑛−1

𝑖=1

+ ∑ 𝑥𝑖

𝑛−1

𝑖=2

+ ⋯ + ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−2

+ ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−1

=
𝑥𝑛 − 1

𝑥 − 1
+

𝑥𝑛 − 𝑥

𝑥 − 1
+

𝑥𝑛 − 𝑥2

𝑥 − 1
+ ⋯ +

𝑥𝑛 − 𝑥𝑛−2

𝑥 − 1
+

𝑥𝑛 − 𝑥𝑛−1

𝑥 − 1
. 

Here, ∑ 𝑥𝑖

𝑛−1

𝑖=0

+ ∑ 𝑥𝑖

𝑛−1

𝑖=1

+ ∑ 𝑥𝑖

𝑛−1

𝑖=2

+ ⋯ + ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−2

+ ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−1

= ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=0

  and  

𝑥𝑛 − 1

𝑥 − 1
+

𝑥𝑛 − 𝑥

𝑥 − 1
+

𝑥𝑛 − 𝑥2

𝑥 − 1
+ ⋯ +

𝑥𝑛 − 𝑥𝑛−2

𝑥 − 1
+

𝑥𝑛 − 𝑥𝑛−1

𝑥 − 1
=

𝑛𝑥𝑛 − ∑ 𝑥𝑖𝑛−1
𝑖=0

𝑥 − 1
 

=
𝑛𝑥𝑛 − (

𝑥𝑛 − 1
𝑥 − 1

)

𝑥 − 1
=

(𝑛𝑥 − 𝑛 − 1)𝑥𝑛 + 1

(𝑥 − 1)2
. 

Thus, ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=0

=
(𝑛𝑥 − 𝑛 − 1)𝑥𝑛 + 1

(𝑥 − 1)2
, (𝑥 ≠ 1). 

Note that ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=𝑘

=
((𝑛 − 𝑘)𝑥 − (𝑛 − 𝑘) − 1)𝑥𝑛 + 𝑥𝑘

(𝑥 − 1)2
, (𝑥 ≠ 1). 

These results denote the first derivative (Annamalai et al., 2022c, 2022d, 2022e) of geometric series. 

  



The Journal of Engineering and Exact Sciences – jCEC 

5 

 

2.4 The nth Derivative of Combinatorial Geometric Series   

𝑦 = 𝑓(𝑥) = ∑ 𝑥𝑖

𝑟

𝑖=0

=
𝑥𝑟+1 − 1

𝑥 − 1
.  The derivatives of  y are given below. 

 

1

1!

𝑑𝑦

𝑑𝑥
= ∑ 𝑉𝑖

1𝑥𝑖

𝑟−1

𝑖=0

⟹
1

2!

𝑑2𝑦

𝑑𝑥2
= ∑ 𝑉𝑖

2𝑥𝑖

𝑟−2

𝑖=0

⟹
1

3!

𝑑3𝑦

𝑑𝑥3
= ∑ 𝑉𝑖

3𝑥𝑖

𝑟−3

𝑖=0

⟹ ⋯
1

𝑛!

𝑑𝑛𝑦

𝑑𝑥𝑛
= ∑ 𝑉𝑖

𝑛𝑥𝑖

𝑟−𝑛

𝑖=0

.       (8) 

 

The nth derivative [25] of geometric series is  

 

1

𝑛!

𝑑𝑛𝑦

𝑑𝑥𝑛
= ∑ 𝑉𝑖

𝑛𝑥𝑖

𝑟−𝑛

𝑖=0

=
1

𝑛!
𝑓𝑛(𝑥) =

1

𝑛!
𝑓𝑛 (

𝑥𝑟+1 − 1

𝑥 − 1
) . Then, ∑ 𝑉𝑖

1𝑥𝑖

𝑟−1

𝑖=0

=
1

1!
𝑓1 (

𝑥𝑟+1 − 1

𝑥 − 1
) ; 

 ∑ 𝑉𝑖
2𝑥𝑖

𝑟−2

𝑖=0

=
1

2!
𝑓2 (

𝑥𝑟+1 − 1

𝑥 − 1
) ;  & ∑ 𝑉𝑖

3𝑥𝑖

𝑟−3

𝑖=0

=
1

3!
𝑓3 (

𝑥𝑟+1 − 1

𝑥 − 1
)                                                   (9) 

 

are first, second, and third derivatives respectively.  

 

2.5 Binomial Expansions equal to Multiple of 2 

Let us develop some series of binomial coefficients or binomial expansions (Annamalai et al., 

2022o, 2022p, 2022q) which are equal to the multiple of 2 or exponents of 2 or both. 

(𝑖) ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛.             (𝑖𝑖) ∑ 𝑖 × 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2𝑛−1.             (𝑖𝑖𝑖) ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1. 

(𝑖𝑣) ∑(i − 1)Vi
n−i

n

i=0

=  (n − 2)2n−1,    𝑉𝑟
𝑛 = ∏

(𝑟 + 𝑖)

𝑛!

𝑛

𝑖=1

, ( 𝑛 ≥ 1, 𝑟 ≥ 0 & 𝑛, 𝑟 ∈ 𝑁). 

 
2.6 Relations between Binomial Expansion and Combinatorial Geometric Series 

Relation 1: ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

+ ∑(i − 1)Vi
n−i

n

i=0

= ∑ 𝑖 × 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2𝑛−1. 

 

Proof: Let us simplify the general terms in the two parts of binomial expansions as follows:  

(𝑖 + 1)𝑉𝑖
𝑛−𝑖 + (i − 1)Vi

n−i =  2𝑖Vi
n−i.  This idea can be applied to Relation 1.  

∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

+ ∑(i − 1)Vi
n−i

n

i=0

= 2 ∑ 𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1 + (n − 2)2n−1 = 2𝑛2n−1. 

Then, 2 ∑ 𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛2n−1 ⟹ ∑ 𝑖𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 𝑛2n−1. 

Hence, Relation 1 is proved. 

 

Relation 2: ∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

− ∑(i − 1)Vi
n−i

n

i=0

= ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2𝑛. 

Proof: Let us simplify the general terms in the two parts of binomial expansions as follows:  

(𝑖 + 1)𝑉𝑖
𝑛−𝑖 − (i − 1)Vi

n−i =  2Vi
n−i.  This idea can be applied to Relation 2.  
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∑(𝑖 + 1)𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

− ∑(i − 1)Vi
n−i

n

i=0

= 2 ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= (𝑛 + 2)2𝑛−1 − (n − 2)2n−1 = 4 × 2n−1. 

Then, 2 ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 22n ⟹ ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=0

= 2n.                                                 (10) 

 

Hence, Relation 2 is proved. 

 

2.7 Annamalai’s Binomial Expansion 

Let 𝑛, 𝑟 ∈ 𝑁 = {0, 1, 2, 3, ⋯ }. The Annamalai′s binomial identity  is given below: 
 

𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + ⋯ + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1 ⟺   𝑉𝑛

0 + 𝑉𝑛
1 + 𝑉𝑛

2 + ⋯ + 𝑉𝑛
𝑟 = 𝑉𝑛+1

𝑟 , (∵ 𝑉𝑛
𝑟 = 𝑉𝑟

𝑛).  
 

From the binomial identity 𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + ⋯ + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1, we can derive the following 

binomial expansions:   

(𝑖). ∑ 𝑉𝑖
0

𝑛

𝑖=0

 = ∑ 1

𝑛

𝑖=0

= 1 + 1 + 1 + 1 + ⋯ + 1 + 1 =
(𝑛 + 1)

1!
. 

(𝑖𝑖). ∑ 𝑉𝑖
1

𝑛

𝑖=0

= ∑
(𝑖 + 1)

1!

𝑛

𝑖=0

= 1 + 2 + 3 + ⋯ + 𝑛 + (𝑛 + 1) =
(𝑛 + 1)(𝑛 + 2)

2!
. 

(𝑖𝑖𝑖). ∑ 𝑉𝑖
2

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)

2!

𝑛

𝑖=0

= 1 + 3 + ⋯ +
(𝑛 + 1)(𝑛 + 2)

2!
=

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

3!
. 

(𝑖𝑣). ∑ 𝑉𝑖
3

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)

3!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

4!
. 

(𝑖𝑣). ∑ 𝑉𝑖
4

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3)(𝑖 + 4)

4!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5)

5!
. 

Similarly, we can continue this process up to r times. The rth binomial expansion is as follows:   

(𝑟). ∑ 𝑉𝑖
𝑟

𝑛

𝑖=0

= ∑
(𝑖 + 1)(𝑖 + 2)(𝑖 + 3) ⋯ (𝑖 + 𝑟)

𝑟!

𝑛

𝑖=0

=  
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

(𝑟 + 1)!
, 

 

From the binomial identity  𝑉𝑛
0 + 𝑉𝑛

1 + 𝑉𝑛
2 + ⋯ + 𝑉𝑛

𝑟 = 𝑉𝑛+1
𝑟 , we can derive the following 

binomial expansions. 

(𝑖). ∑ 𝑉0
𝑖

𝑟

𝑖=0

= 𝑉1
𝑟 ⟹ 1 + 1 + 1 + 1 + 1 + ⋯ + 1 + 1 = 𝑟 + 1, (∵ 𝑉0

𝑟 = 1 for 𝑟 = 0, 1, 2, ⋯ ). 

(𝑖𝑖). ∑ 𝑉1
𝑖

𝑟

𝑖=0

= 𝑉2
𝑟 ⟹ 1 +

2

1!
+

2 × 3

2!
+ ⋯ +

2 × 3 × 4 × ⋯ × 𝑟

𝑟!
=

3 × 4 × 5 × ⋯ × 𝑟 × (𝑟 + 1)

𝑟!
. 

(𝑖𝑖𝑖). ∑ 𝑉2
𝑖

𝑟

𝑖=0

= 𝑉3
𝑟 ⟹ 1 +

3

1!
+

3 × 4

2!
+ ⋯ +

3 × 4 × 5 × ⋯ × 𝑟

𝑟!
=

4 × 5 × 6 × ⋯ × 𝑟 × (𝑟 + 1)

𝑟!
. 

Similarly, the binomial expansion for ∑ 𝑉𝑛
𝑖 = 𝑉𝑛+1

𝑟

𝑟

𝑖=0

 is given below:  
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1 +
(𝑛 + 1)

1!
+

(𝑛 + 1)(𝑛 + 2)

2!
+

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

3!
+ ⋯ +

(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!
  

=
(𝑛 + 2)(𝑛 + 3) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

𝑟!
. 

These expressions are called Annamalai’s binomial expansions. 

 

2.8 Annamalai’s Binomial Identity and Theorem 

A binomial theorem (Annamalai et al., 2022e, 2022f, 2022g) is constituted using the Annamalai’s 

binomial identities (Annamalai et al., 2022i, 2022j, 2022k) is given below: 

(𝑖)   𝑉𝑛
0 = 𝑉0

𝑛 = 1 for 𝑛 = 0, 1, 2, 3, 3, ⋯  
(𝑖𝑖)   𝑉𝑟

𝑚 = 𝑉𝑚
𝑟 , (𝑚, 𝑟 ≥ 1 & 𝑚, 𝑟 ∈ 𝑁). 

(𝑖𝑖𝑖) ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= 𝑉𝑟
𝑛+1     (𝑂𝑅)   ∑ 𝑉𝑛

𝑖

𝑟

𝑖=0

= 𝑉𝑛+1
𝑟 , (∵  𝑉𝑟

𝑚 = 𝑉𝑚
𝑟 &   𝑉𝑛

0 = 𝑉0
𝑛 = 1). 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟏: ∑ 𝑉𝑖
0

𝑟

𝑖=0

+ ∑ 𝑉𝑖
1

𝑟

𝑖=0

+ ∑ 𝑉𝑖
2

𝑟

𝑖=0

+ ∑ 𝑉𝑖
3

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= 𝑉𝑟+1
𝑛+1 − 1.  

 

𝑃𝑟𝑜𝑜𝑓. ∑ 𝑉𝑖
0

𝑟

𝑖=0

= 𝑉𝑟
1;    ∑ 𝑉𝑖

1

𝑟

𝑖=0

= 𝑉𝑟
2;  ∑ 𝑉𝑖

2

𝑟

𝑖=0

= 𝑉𝑟
3 ;  ⋯ ;   ∑ 𝑉𝑖

𝑛

𝑟

𝑖=0

= 𝑉𝑟
𝑛+1. 

By adding these expressions on the both sides, we get 

∑ 𝑉𝑖
0

𝑟

𝑖=0

+ ∑ 𝑉𝑖
1

𝑟

𝑖=0

+ ∑ 𝑉𝑖
2

𝑟

𝑖=0

+ ∑ 𝑉𝑖
3

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= ∑ 𝑉𝑟
𝑖

𝑛+1

𝑖=1

 

Here, ∑ 𝑉𝑟
𝑖

𝑛+1

𝑖=1

= 𝑉𝑟
0 + ∑ 𝑉𝑟

𝑖

𝑛+1

𝑖=1

− 𝑉𝑟
0 = ∑ 𝑉𝑟

𝑖

𝑛+1

𝑖=0

− 1 = 𝑉𝑟+1
𝑛+1 − 1, (∵ 𝑉𝑟

0 = 1). 

 

∴ ∑ 𝑉𝑖
0

𝑟

𝑖=0

+ ∑ 𝑉𝑖
1

𝑟

𝑖=0

+ ∑ 𝑉𝑖
2

𝑟

𝑖=0

+ ∑ 𝑉𝑖
3

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑖
𝑛

𝑟

𝑖=0

= 𝑉𝑟+1
𝑛+𝑟 − 1.                                         (11) 

 

Hence, theorem is proved. 

 

Note that ∑ 𝑉0
𝑖

𝑟

𝑖=0

+ ∑ 𝑉1
𝑖

𝑟

𝑖=0

+ ∑ 𝑉2
𝑖

𝑟

𝑖=0

+ ∑ 𝑉3
𝑖

𝑟

𝑖=0

+ ⋯ + ∑ 𝑉𝑛
𝑖

𝑟

𝑖=0

= 𝑉𝑛+1
𝑟+1 − 1. 

 

2.9 Combinatorial Geometric Series and Theorem 

This Annamalai’s binomial expansion is applied into the following binomial series:  

 

∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

= ∑ ∏
𝑖 + 𝑗

𝑟!

𝑟

𝑗=1

𝑥𝑖

𝑛

𝑖=0

.                                                                                                     (12) 

 

The following theorem is derived from the Annamalai’s binomial series. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟐: ∑ 𝑉𝑖
𝑟+1𝑥𝑖 =

𝑛

𝑖=0

∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

+ ∑ 𝑉𝑖−1
𝑟 𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑉𝑖−2
𝑟 𝑥𝑖

𝑛

𝑖=2

+ ⋯ + ∑ 𝑉𝑖−𝑛
𝑟 𝑥𝑖

𝑛

𝑖=𝑛

.                  (13)  
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Proof: Let’s show that the computation of summations of the binomial series (right-hand side of the 

theorem) is equal to the binomial series (left- hand side of the theorem).    
 

∑ 𝑉𝑖
𝑟
𝑥𝑖

𝑛

𝑖=0

+ ∑ 𝑉𝑖−1
𝑟

𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑉𝑖−2
𝑟

𝑥𝑖

𝑛

𝑖=2

+ ⋯ + ∑ 𝑉𝑖−(𝑛−1)
𝑟

𝑥𝑖

𝑛

𝑖=𝑛−1

+ ∑ 𝑉𝑖−𝑛
𝑟

𝑥𝑖

𝑛

𝑖=𝑛

 

 = (𝑉0
𝑟 + 𝑉1

𝑟𝑥 + 𝑉2
𝑟𝑥2 + 𝑉3

𝑟𝑥3 + ⋯ + 𝑉𝑛
𝑟𝑥𝑛) +  (𝑉0

𝑟𝑥 + 𝑉1
𝑟𝑥2 + 𝑉2

𝑟𝑥3 + 𝑉3
𝑟𝑥4 + ⋯ + 𝑉𝑛−1

𝑟 𝑥𝑛) 

          +(𝑉0
𝑟𝑥2 + 𝑉1

𝑟𝑥3 + 𝑉2
𝑟𝑥4 + 𝑉3

𝑟𝑥5 + ⋯ + 𝑉𝑛−2
𝑟 𝑥𝑛) + ⋯ + (𝑉0

𝑟𝑥𝑛−1 + 𝑉1
𝑟𝑥𝑛) + 𝑉0

𝑟𝑥𝑛 

      = 𝑉0
𝑟 + (𝑉0

𝑟 + 𝑉1
𝑟)𝑥 + (𝑉0

𝑟 + 𝑉1
𝑟 + 𝑉2

𝑟)𝑥2 + ⋯ + (𝑉0
𝑟 + 𝑉1

𝑟 + 𝑉2
𝑟 + 𝑉3

𝑟 + ⋯ + 𝑉𝑛
𝑟)𝑥𝑛                (14)  

 

    (Note that   𝑉0
𝑝 + 𝑉1

𝑝 + 𝑉2
𝑝 + ⋯ + 𝑉𝑟

𝑝 = 𝑉𝑟
𝑝+1for 𝑟 = 0, 1, 2, 3, ⋯ , and 𝑉0

𝑝 = 𝑉0
𝑝+1 = 1) 

     = 𝑉0
𝑟+1 + 𝑉1

𝑟+1𝑥 + 𝑉2
𝑟+1𝑥2 + 𝑉3

𝑟+1𝑥3 + 𝑉4
𝑟+1𝑥4 + ⋯ + 𝑉𝑛−1

𝑟+1𝑥𝑛1 + 𝑉𝑛
𝑟+1𝑥𝑛 = ∑ 𝑉𝑖

𝑟+1𝑥𝑖

𝑛

𝑖=0

. 

Hence, theorem is proved. 
 
3. Binomial Expansion equal to the Sum of Geometric Series   

Binomial expansion denotes a series of binomial coefficients. In this section, we focus on the 

summation of multiple binomial expansions or summation of multiple series of binomial 

coefficients.      

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟏: ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 1. 

This binomial theorem states that the sum of multiple summations of series of binomial coefficients 

(Annamalai et al., 2022m, 2022n, 2022p) is equal to the sum of a geometric series with exponents 

of 2. 

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step.  

𝑆𝑡𝑒𝑝 0:   (
0
0

) =
0!

0!
= 1 ⟹ ∑ (

0
𝑖

)

0

𝑖=0

= (
0
0

) = 20.    

𝑆𝑡𝑒𝑝 1:   ∑ (
1
𝑖

)

1

𝑖=0

= (
1
0

) + (
1
1

) = 1 + 1 =  21. 

𝑆𝑡𝑒𝑝 2:  ∑ (
2
𝑖

)

2

𝑖=0

= (
2
0

) + (
2
1

) + (
2
2

) = 1 + 2 + 1 =  4 = 22.        

𝑆𝑡𝑒𝑝 3:  ∑ (
3
𝑖

)

3

𝑖=0

 = (
3
0

) + (
3
1

) + (
3
2

) + (
3
3

) = 1 + 3 + 3 + 1 = 8. 

Similarly, we can continue the expressions up to "step n " such that ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛. 

Now, by adding these expressions on both sides, it appears as follows:  

∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= ∑ 2𝑖

𝑛

𝑖=0

,  
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where ∑ 2𝑖

𝑛

𝑖=0

=  
2𝑛+1 − 1

2 − 1
= 2𝑛+1 − 1 is the geometric sereis with exponents of two. 

∴  ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 1. 

Hence, theorem is proved.   

Some results of Theorem 3.1 are given below: 

(𝑎) ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

= 2𝑝 − 1, where 1 ≤ 𝑝 ∈ 𝑁. 

(𝑏) ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑝−1

𝑖=0

= 2𝑞 − 1, where 1 ≤ 𝑞 ∈ 𝑁. 

 

By subtracting (a) from (b), we get 

(∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

) − (∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) = 2𝑞 − 2𝑝, 

𝑖. 𝑒. , ∑ (
𝑝
𝑖

)

𝑝

𝑖=0

+ ∑ (
𝑝 + 1

𝑖
)

𝑝+1

𝑖=0

+ ∑ (
𝑝 + 2

𝑖
)

𝑝+2

𝑖=0

+ ⋯ + ∑ (
𝑞 − 2

𝑖
)

𝑞−2

𝑖=0

+ ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

= 2𝑞 − 2𝑝, 

where p < 𝑞 & 𝑝, 𝑞 ∈ 𝑁. 
 

By adding (a) and (b), we get 

(∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) + (∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

) = 2𝑝 + 2𝑞 − 2, 

𝐼𝑓 𝑝 = 𝑞, 𝑡ℎ𝑒𝑛  2 (∑ (
0

𝑖
)

0

𝑖=0

+ ∑ (
1

𝑖
)

1

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

) = 22𝑝 − 2 = 2(2𝑝 − 1),   

𝑖. 𝑒., ∑ (
0
𝑖

)

0

𝑖=0

+ ∑ (
1
𝑖

)

1

𝑖=0

+ ∑ (
2
𝑖

)

2

𝑖=0

+ ∑ (
3
𝑖

)

3

𝑖=0

+ ⋯ + ∑ (
𝑝 − 1

𝑖
)

𝑝−1

𝑖=0

= 2𝑝 − 1, where 1 ≤ 𝑞 ∈ 𝑁.    (15) 

 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟐: ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

+ ∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

+ ∑ (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

=  2𝑛+1 − 2𝑘, 

where 𝑘 ≤ 𝑛 & 𝑘, 𝑛 ∈ 𝑁. 
 

Proof.  The sum of a geometric series with exponents of 2 is given below:  

∑ 2𝑖

𝑛

𝑖=𝑘

= 2𝑛+1 − 2𝑘.   

Then, ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

+ ∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

+ ∑ (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= ∑ 2𝑖

𝑛

𝑖=𝑘

. 

∴   ∑ (
𝑘
𝑖

)

𝑘

𝑖=0

+ ∑ (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=0

+ ∑ (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=0

+ ⋯ + ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑘.                       (16) 

Hence, theorem is proved. 
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Some results of Theorem 3.2 are given below: 

(i) ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛 = 2𝑛.     (𝑖𝑖) ∑ (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

+ ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛−1(22 − 1) = 3(2𝑛−1). 

(𝑖𝑖𝑖) ∑ (
𝑛 − 2

𝑖
)

𝑛−2

𝑖=0

+ ∑ (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

+ ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛−2 =  2𝑛−2(23 − 1) = 7(2𝑛−2). 

(𝑖𝑣) ∑ (
𝑛 − 3

𝑖
)

𝑛−3

𝑖=0

+ ∑ (
𝑛 − 2

𝑖
)

𝑛−2

𝑖=0

+ ∑ (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=0

+ ∑ (
𝑛
𝑖

)

𝑛

𝑖=0

= 2𝑛+1 − 2𝑛−3 = 15(2𝑛−3). 

These results can be generalized as follows:  

∑ (
𝑝
𝑖

)

𝑝

𝑖=0

+ ∑ (
𝑝 + 1

𝑖
)

𝑝+1

𝑖=0

+ ∑ (
𝑝 + 2

𝑖
)

𝑝+2

𝑖=0

+ ⋯ + ∑ (
𝑞 − 1

𝑖
)

𝑞−1

𝑖=0

+ ∑ (
𝑞
𝑖

)

𝑞

𝑖=0

= 2𝑝(2𝑞−𝑝+1 − 1), 

where  0 ≤ 𝑝 ≤ 𝑞 𝑎𝑛𝑑 𝑝, 𝑞 ∈  𝑁. 
 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟑: ∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ⋯ + ∑ 𝑖 (
𝑛
𝑖

) =

𝑛

𝑖=1

3

𝑖=1

(𝑛 − 1)2𝑛 + 1. 

 

Proof. Let us find the value of each binomial expansion in the binomial theorem step by step. 

𝑆𝑡𝑒𝑝 1:   1 (
1
1

) = (
1
1

) =
1!

1! 0!
= 1 ⟹ ∑ 𝑖 (

1
𝑖

)

1

𝑖=1

= 1 = 1 × 20, (0! = 1). 

𝑆𝑡𝑒𝑝 2:   ∑ 𝑖 (
2
𝑖

)

2

𝑖=1

= 1 (
2
1

) + 2 (
2
2

) = 2 + 2 = 4 = 2 × 21. 

𝑆𝑡𝑒𝑝 3:   ∑ 𝑖 (
2
𝑖

)

3

𝑖=1

= 1 (
3
1

) + 2 (
3
2

) + 3 (
3
3

) = 3 + 6 + 3 = 12 = 2 × 21. 

𝑆𝑡𝑒𝑝 4:   ∑ 𝑖 (
2
𝑖

)

4

𝑖=1

= 1 (
4
1

) + 2 (
4
2

) + 3 (
4
3

) + 4 (
4
4

) = 4 + 12 + 12 + 4 = 4 × 23. 

Similarly, we can continue the expressions up to "step n " such that ∑ 𝑖 (
𝑛
𝑖

)

𝑛

𝑖=1

= 𝑛2𝑛−1. 

Now, by adding these expressions on both sides, it appears as follows:  

∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ∑ 𝑖 (
2
𝑖

)

4

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛
𝑖

) =

𝑛

𝑖=1

3

𝑖=1

∑ 𝑖 × 2𝑖−1

𝑛

𝑖=1

. 

where ∑ 𝑖 × 2𝑖

𝑛

𝑖=1

= (𝑛 − 1)2𝑛 + 1 . 

∴ ∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ∑ 𝑖 (
2
𝑖

)

4

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛
𝑖

) =

𝑛

𝑖=1

3

𝑖=1

(𝑛 − 1)2𝑛 + 1.                    (17) 

 

Hence, theorem is proved. 

Some results of Theorem 3.3 are given below: 
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{∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ⋯ + ∑ 𝑖 (
𝑘
𝑖

)

𝑘

𝑖=1

+ ∑ 𝑖 (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛 + 1

𝑖
)

𝑛+1

𝑖=1

3

𝑖=1

}

− {∑ 𝑖 (
1
𝑖

) +

1

𝑖=1

∑ 𝑖 (
2
𝑖

) +

2

𝑖=1

∑ 𝑖 (
3
𝑖

) + ⋯ + ∑ 𝑖 (
𝑘
𝑖

)

𝑘

𝑖=1

3

𝑖=1

} = 𝑛2𝑛+1 − 𝑘2𝑘+1 

 

⟹ ∑ 𝑖 (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=1

+ ∑ 𝑖 (
𝑘 + 2

𝑖
)

𝑘+2

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛
𝑖

)

𝑛

𝑖=1

+ ∑ 𝑖 (
𝑛 + 1

𝑖
)

𝑛+1

𝑖=1

= 2(𝑛2𝑛 − 𝑘2𝑘) and  

∑ 𝑖 (
𝑘
𝑖

)

𝑘

𝑖=1

+ ∑ 𝑖 (
𝑘 + 1

𝑖
)

𝑘+1

𝑖=1

+ ⋯ + ∑ 𝑖 (
𝑛 − 1

𝑖
)

𝑛−1

𝑖=1

+ ∑ 𝑖 (
𝑛
𝑖

)

𝑛

𝑖=1

= 2{(𝑛 − 1)2𝑛−1 − (𝑘 − 1)2𝑘−1}, 

where 𝑘 < 𝑛  & 𝑘, 𝑛 ∈ 𝑁.   
 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. 𝟒: (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖 

𝑛−1

𝑖=0

𝑑𝑥 + 𝐶 = (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑉𝑖
𝑝𝑥𝑖   ,

𝑛

𝑖=0

 

where C is the constant of Integration and C =1 because 1 is the first term of geometric series. 

 

Proof. Let us prove the theorem on integral calculus using the following binomial expansions.  

∑ 𝑉𝑖
𝑝𝑥𝑖

𝑛

𝑖=0

= 1 +
(𝑝 + 1)

1!
𝑥 +

(𝑝 + 1)(𝑝 + 2)

2!
𝑥2 + ⋯ +

(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑝)

𝑝!
𝑥𝑛 . 

∑ 𝑉𝑖
𝑝+1𝑥𝑖

𝑛−1

𝑖=0

= 1 +
(𝑝 + 2)

1!
𝑥 +

(𝑝 + 2)(𝑝 + 3)

2!
𝑥2 + ⋯ +

𝑛(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑝)

(𝑝 + 1)!
𝑥𝑛−1. 

 

Let’s prove that the integration (left-hand side of the theorem) is equal to the binomial series (right- 

hand side of the theorem).    

 

∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 = 𝑥 +
(𝑝 + 2)

1!

𝑥2

2
+

(𝑝 + 2)(𝑝 + 3)

2!

𝑥3

3
+ ⋯ +

𝑛(𝑛 + 1) … (𝑛 + 𝑝)

(𝑝 + 1)!

𝑥𝑛

𝑛
+ 𝐶. 

(𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 = 1 +
(𝑝 + 1)

1!
𝑥 +

(𝑝 + 1)(𝑝 + 2)

2!
𝑥2 +

(𝑝 + 1)(𝑝 + 2)(𝑝 + 3)

3!
𝑥3

+ ⋯ +
(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑝)

𝑝!
𝑥𝑛, where 𝐶 = 1.  

(𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 𝐶 = (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑉𝑖
𝑝𝑥𝑖   .

𝑛

𝑖=0

 

Hence, theorem is proved.  

 

Some results of Theorem 3.4 are given below: 

Let 𝑝 = 0. Then  (𝑝 + 1) ∫ ∑ 𝑉𝑖
𝑝+1𝑥𝑖 

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∫ ∑ 𝑉𝑖
1𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑥𝑖  

𝑛

𝑖=0

=
𝑥𝑛+1 − 1

𝑥 − 1
. 
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Let 𝑝 = 1. Then  2 ∫ ∑ 𝑉𝑖
2𝑥𝑖  

𝑛−1

𝑖=0

𝑑𝑥 + 1 = ∑ 𝑉𝑖
1𝑥𝑖  

𝑛

𝑖=0

⟹ ∑ 𝑉𝑖
1𝑥𝑖 =  

(𝑟𝑥 − 𝑟 − 1)𝑥𝑟 + 1

(𝑥 − 1)2
,

𝑛−1

𝑖=0

 

which is the first derivative of geometric series. More details about the first derivative of geometric 

series are given in Section 2.1. 

 

In general., the integration of summation of geometric series is constituted as follows:   

 

(𝑝 + 1) ∫ ∑ 𝑉𝑖−𝑘
𝑝+1𝑥𝑖  

𝑛−1

𝑖=𝑘

𝑑𝑥 + 𝐶 = ∑ 𝑉𝑖−(𝑘+1)
𝑝 𝑥𝑖 + 𝑉𝑖−𝑘

𝑝 𝑥𝑖 = ∑ 𝑉𝑖−𝑘
𝑝 𝑥𝑖  

𝑛

𝑖=𝑘

 ,

𝑛

𝑖=𝑘+1

              (18) 

 

where the integral constant 𝑖𝑠  𝐶 = 𝑉𝑖−𝑘
𝑝

𝑥𝑖  because it is the first term of the series.  

 

4. Conclusion  

In this article, the nth derivative (Annamalai et al., 2022x, 2022y, 2022z) of geometric series has 

been introduced and its applications used in combinatorics including binomial expansions. Also, 

computation of the summation of series of binomial expansions and geometric series were derived 

in an innovative way. Theorems and relations between the binomial expansions and geometric series 

have been developed for researchers, who are working in science, economics, engineering, and 

management,  
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