Combinatorial and Multinomial Coefficients and its Computing Techniques for Machine Learning and Cybersecurity

Article Info:
Article history: Received 2021-08-01 / Accepted 2022-08-15 / Available online 2022-09-29
doi: 10.18540/jcecvl8iss8pp14713-01i

Chinnaraji Annamalai
ORCID: https://orcid.org/0000-0002-0992-2584
Department of Management, Indian Institute of Technology, Kharagpur, West Medinipur, West Bengal, Kharagpur – 721302, India
Email: anna@iitkgp.ac.in

Abstract
Mathematical and combinatorial techniques with nonnegative integers are used as computing algorithms for the programs development to apply in artificial intelligence and cybersecurity. Methodological advances in combinatorics and mathematics play a vital role in artificial intelligence and machine learning for data analysis and artificial intelligence-based cybersecurity for protection of the computing systems, devices, networks, programs and data from cyber-attacks. In connection with these ideas, this article is prepared for applications in computing science and cybersecurity. This paper presents computing and combinatorial formulae such as theorems on factorials, binomial, and multinomial coefficients and probability and binomial distributions.

Keywords: algorithm, combinatorics, computation, multinomial coefficient.

1. Introduction
Binomial and probability distribution and combinatorial techniques are used as powerful tools in artificial intelligence and machine learning for data analysis and cybersecurity for protection of the computing systems, devices, networks, programs and data from cyber-attacks. Also, the nonnegative integers play a crucial role in factorial functions or factorials (Annamalai, 2022 a, b, c) for building the theorems that are used for algorithms and software development. The results of factorials and binomial coefficients are used as strong applications without any vulnerability in artificial intelligence and cybersecurity.

There are traditional binomial coefficient and optimized binomial coefficients. The techniques based on the binomial coefficients play a vital role in computing and computational science.

\[nC_r = \frac{n!}{r!(n-r)!} \quad \text{and} \quad V^n_r = \prod_{i=1}^{r} \left(\frac{n+i}{r!} \right) \]

are traditional and optimized coefficients respectively.

The comparison between traditional and optimized coefficients is given below:

\[V^y_x = V^x_y \]

is the optimized combination. Let \(z = x + y \). Then, \(zC_x = zC_y, (x, y, z \in N) \).

For example,

\[V^5_2 = V_3^3 = (5 + 3)C_3 = (5 + 3)C_5 = 56. \]

Also, \(V^n_0 = V^n_0 = nC_0 = nC_n = \frac{n!}{n!0!} = 1 \) and \(V^0_0 = 0C_0 = \frac{0!}{0!} = 1 \).

2. Factorials with Integers
Combinatorics, cryptography, graph theory, discrete mathematics, computational complexity, theory of computation and automata, and data structures and algorithms are used as powerful...
applications in computer science and engineering including artificial intelligence, machine learning, communication and cybersecurity. In article, theorems (Annalalai, 2022 d, e, f) in factorials with integers are introduced and the relationship between factorials and integers are analyzed for further developments in combinatorics.

Thorem 2.1: For any integers p and q such that $q \geq p \geq 0$,

the divisions of factorials, that is, \(\frac{q!}{p!} ; \frac{(p + q)!}{p!} ; \frac{(p + q)!}{q!} \) and \(\frac{(p + q)!}{p! q!} \), are integers.

Proof 1. We can prove this theorem by binomial coefficient.

The binomial coefficient is \(\binom{q}{p} = \frac{q!}{p!(q-p)!} \). If $q = p$, then \(\binom{p}{p} = \frac{p!}{p!(p-p)!} = 1 \).

If $q > p$, \(\binom{q}{p} = \frac{q!}{p!(q-p)!} > 1 \) is an integer. For example, \(\binom{3}{2} = \frac{3!}{2!1!} = 3 \).

The binomial coefficient \(\binom{p + q}{p} = \frac{(p + q)!}{p!q!} = l \) is an integer, \((l \geq 0) \).

Note that \(\frac{(p + q)!}{p!q!} = l \Rightarrow (p + q)! = l \times p! \times q! \).

Proof 2. We can also prove this theorem by factorials with nonnegative integers.

\(0! = 1; \ 1! = 1; \ 2! = 1 \times 2 = 2; \ 3! = 1 \times 2 \times 3 = 6; \cdots; \ p! \) for $p \geq 0$ are integers.

If $q \geq p$, then $q! = p! \geq 1$. If $q > p$, $q! = p! \times (p + 1)(p + 2)(p + 3) \cdots (q - 2)(q - 1)q$.

\(\frac{q!}{p!} = \frac{(p + 1)(p + 2)(p + 3) \cdots (q - 2)(q - 1)q}{p!} \) is an integer. Also \(\frac{q!}{p!} \) is an integer, \(\frac{(p + q)!}{p!q!} \) and \(\frac{(p + q)!}{q!} \) are integers. Let us prove that \(\frac{(p + q)!}{p!q!} \) is an integer.

\(\frac{(p + q)!}{p!q!} = \frac{(p + 1)(p + 2)(p + 3) \cdots (p + q)}{q!} \). Let $p = 0$. Then, \((p + 1)(p + 2)(p + 3) \cdots (p + q) = 1 \)

and let $p = 1$. \(\frac{q!}{2 \times 3 \times 4 \times \cdots \times q(q + 1)} = \frac{q!}{q} = q + 1 \) is an integer, that is, \(\frac{q!}{p!} \) are integers for $p = 1, 2, 3, \ldots$

If $p \geq 1$, then \(\frac{(p + 1)(p + 2)(p + 3) \cdots (p + q)}{q!} \geq (q + 1) \) are integers for $p = 1, 2, 3, \ldots$

\(\therefore \ \frac{q!}{p!} ; \frac{(p + q)!}{p!} ; \frac{(p + q)!}{q!} \) and \(\frac{(p + q)!}{p!q!} \) are integers.

Note that \(p! \leq q! \leq p!q! \Rightarrow (p + q)! \Rightarrow \frac{(p + q)!}{p!q!} \leq \frac{(p + q)!}{q!} \leq \frac{(p + q)!}{p!} \).

Proof 3. \((p + q)! = l \times p! \times q! \) can be proved by mathematical induction.

Basis. Let $m = 2$ and $n = 3$. \((2 + 3)! = 720 = 60 \times 2! \times 3! \) is obviously true.

Inductive hypothesis. Let us assume that it is true for \((p - a) \) and \((q - b) \), that is, \((p - a) + (q - b) ! = h \times (p - a)! \times (q - b)! \), where $p \geq a \geq 0$ and $q \geq b \geq 0$ & $a, b \in N$.

Inductive Step. We must show that the hypothesis is true for \((m - b + b) \) and \((n - c + c) \).

\((p - a + a) + (q - b + b) ! = h \times (p - a + a)! \times (q - b + b)! ; \ (h \geq 0 & h \in N) \),

Where \(N = \{0, 1, 2, 3, \ldots, \} \) is a set of natural numbers including zero.
By simplifying this result, we get \((p + q)! = l \times p! \times q!\); \((h = l \geq 0 \& \ l \in N)\).

Hence, theorem is proved.

Theorem 2.2 : For any \(k\) nonnegative integers \(n_1, n_2, n_3, \ldots, n_k\),
\[
(n_1 + n_2 + n_3 + \cdots + n_k)! = (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})! \times n_1! \times n_2! \times n_3! \times \cdots \times n_k!,
\]

that is,
\[
\left(\sum_{i=1}^{k} n_i\right)! = A \prod_{i=1}^{k} n_i!,
\]

where \(A = a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}\) and \(A, a_1, a_2, a_3, \ldots, a_{k-1}\) are nonnegative integers.

Proof.

Let us begin the proof with example:
\[(0+2+1+3)! = A \times 0! \times 2! \times 1! \times 3! \Rightarrow 720 = 120 \times 0! \times 2! \times 1! \times 3! \Rightarrow 1 = A \times 1, \text{ where } A = 1. \]

Let \(x = n_2 + n_3 + n_4 + \cdots + n_k\). Then, \((n_1 + x) = a_1 \times n_1 \times x!\) (theorem 2.1),
that is, \((n_1 + n_2 + n_3 + \cdots + n_k)! = a_1 \times n_1! \times (n_2 + n_3 + \cdots + n_k)!\).

Similarly, if we apply the same way to prove each of the sums, we get as follows:
\[
(n_2 + n_3 + n_4 + \cdots + n_k)! = a_2 \times n_2! \times (n_3 + n_4 + \cdots + n_k)!,
\]
\[
(n_3 + n_4 + n_5 + \cdots + n_k)! = a_3 \times n_3! \times (n_4 + n_5 + \cdots + n_k)!,
\]
\[
(n_4 + n_5 + n_6 + \cdots + n_k)! = a_4 \times n_4! \times (n_5 + n_6 + \cdots + n_k)!,
\]
\[
\cdots,
\]
\[
(n_{k-1} + n_k)! = a_{k-1} \times n_{k-1}! \times n_k!,
\]

If we substitute these results step by step in \(a_1 \times n_1! \times (n_2 + n_3 + \cdots + n_k)!, \) that is,
\[
(a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})! \times n_1! \times n_2! \times n_3! \times \cdots \times n_k!,
\]

that is,
\[
\left(\sum_{i=1}^{k} n_i\right)! = A \prod_{i=1}^{k} n_i!,
\]

where \(A = a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}\) and \(A, a_1, a_2, a_3, \ldots, a_{k-1}\) are nonnegative integers.

Hence, theorem is proved.

For instance, if \(n_1 = n_2 = n_3 = \cdots = n_k = n\), then, \((n_1 + n_2 + n_3 + \cdots + n_k)! = (k \times n)!,\)
where \(k, n \geq 0\) are any integer, that is, \(k \& n = 0, 1, 2, 3, 4, 5, \ldots\).

If \(n_1 = n_2 = n_3 = \cdots = n_k = 0\). Then, \((n_1 + n_2 + n_3 + \cdots + n_k)! = (k \times 0)! = 1.\) \hspace{1cm} (1)
If \(n_1 = n_2 = n_3 = \cdots = n_k = 1\). Then, \((n_1 + n_2 + n_3 + \cdots + n_k)! = (k \times 1)! = k!.\) \hspace{1cm} (2)
If \(n_1 = n_2 = n_3 = \cdots = n_k = k\). Then, \((n_1 + n_2 + n_3 + \cdots + n_k)! = (k \times k)! = k^2!.\) \hspace{1cm} (3)

Theorem 2.3 : Let \(n_1, n_2, n_3, \ldots, n_k\) be nonnegative integers and \(r\) the possessive integer.

\[
\{(n_1 + n_2 + n_3 + \cdots + n_k)!\}^r = (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})^r \times (n_1)!^r \times (n_2)!^r \times (n_3)!^r \times \cdots \times (n_k)!^r.
\]

Proof. Let us prove this theorem step by step.

Step 1: \(\{(n_1 + n_2 + n_3 + \cdots + n_k)!\}^1 = (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}) \times (n_1! \times n_2! \times n_3! \times \cdots \times n_k!).\)
Step 2: \((n_1 + n_2 + n_3 + \cdots + n_k)!^2\)
\[= (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}) \times (n_1! \times n_2! \times n_3! \times \cdots \times n_k!)
\times (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}) \times (n_1! \times n_2! \times n_3! \times \cdots \times n_k!)
= (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})^2 \times (n_1!)^2 \times (n_2!)^2 \times (n_3!)^2 \times \cdots \times (n_k!)^2. \quad (4)\]

Step 3: \((n_1 + n_2 + n_3 + \cdots + n_k)!^3\)
\[= (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})^3 \times (n_1! \times n_2! \times n_3! \times \cdots \times n_k!)^2
\times (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}) \times (n_1! \times n_2! \times n_3! \times \cdots \times n_k!)
= (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})^3 \times (n_1!)^3 \times (n_2!)^3 \times (n_3!)^3 \times \cdots \times (n_k!)^3. \quad (5)\]

Similarly, we can continue these expressions up to “step r”. Then, we get
\[\{(n_1 + n_2 + n_3 + \cdots + n_k)!^r\}
= (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1})^r \times (n_1!)^r \times (n_2!)^r \times (n_3!)^r \times \cdots \times (n_k!)^r, \quad (6)\]
a_1, a_2, a_3, \ldots, a_{k-1} are nonnegative integers.

Hence, theorem is proved.

This idea can help to the researchers working in computational science, management, science, and engineering.

3. Machine Learning and Cybersecurity

Artificial Intelligence built on machine learning algorithms that are handling data of various types is the simulation of human mind in machines. Data analysis in machine-learnings is the process of inspecting, cleansing, transforming, and modelling data with the goal of discovering useful information and decision making. The machine learning algorithms are built on mathematical and combinatorial techniques (Annamalai, 2022 g, h) such mean, median, mode, standard deviation and variance, linear and polynomial regressions, binomial and probability distribution, decision tree, etc. The computational and combinatorial techniques with traditional coefficient and optimized coefficient (Annamalai, 2022 i, j, k, l) are given below:

Binomial expansion and series: \[
\sum_{i=0}^{r} V_i^n x^i = \sum_{i=0}^{n} \prod_{j=1}^{i} \frac{i+j}{r!} x^i \text{ & } (x+y)^n = \sum_{i=0}^{n} V_i^{n-i} x^{n-i} y^i.
\]

Binomial and Probability distribution: \[
P(x) = V_x^n \times p^x \times q^{n-x} \text{ & } \sum_{i=0}^{n} P(x) = 1, 0 \leq P(x) \leq 1.
\]

Binomial Identities and expansions: \[
V_{i+1}^n = \sum_{i=0}^{r} V_{i}^0 + \sum_{i=1}^{r} V_{i}^1 + \sum_{i=2}^{r} V_{i}^2 + \cdots + \sum_{i=r}^{r} V_{i}^r
\text{ & } V_{i+1}^n = V_{i}^{n+1}, \quad \text{and} \quad \sum_{i=1}^{r} V_{i+1}^n x^i = \sum_{i=0}^{r} V_{i}^n x^i + \sum_{i=1}^{r} V_{i-1}^n x^i + \sum_{i=2}^{r} V_{i-2}^n x^i + \cdots + \sum_{i=r-1}^{r} V_{i-(r-1)}^n x^i + \sum_{i=r}^{r} V_{i-r}^n x^i.
\]

Polynomial Regression is a regression algorithm that models the relationship between a dependent(y) and independent variable(x) as nth degree polynomial. Decision tree is a supervised learning method that is used for both classification and regression.

Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration uses advance computing capabilities to understand and solve the most complex real-life problems (Annamalai et al., 2010, 2014, 2019)

Cybersecurity is the practice of protecting the computing systems, devices, networks, programs and data from cyber-attacks. Its objective is to reduce the risk of cyber-attacks and protect against the
Unauthorized exploitation of systems and networks. For this purpose, we need a strong security mathematical algorithm like RSA algorithm and Elliptic Curve Cryptography. The factorials and binomial coefficients (Annamalai, 2022 m, n) enable computing science to build a strong cryptographic algorithm for the effective information security. The following factorial result can be used as power tool in algorithm and software development.

For any \(k \) nonnegative integers \(n_1, n_2, n_3, \ldots \) and \(n_k \),
\[
(n_1 + n_2 + n_3 + \cdots + n_k)! = (a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1}) \times n_1! \times n_2! \times n_3! \times \cdots \times n_k!,
\]
that is,
\[
\left(\sum_{i=1}^{k} n_i \right)! = A \prod_{i=1}^{k} n_i!,
\]
where \(A = a_1 \times a_2 \times a_3 \times \cdots \times a_{k-1} \) and \(a_1, a_2, a_3, \ldots, a_{k-1} \) are nonnegative integers.

For example, \((0+0+1+1+0+1+0+0+1+0)! = A \times 0! \times 0! \times 1! \times 1! \times 0! = 120\), that is, 120 = 120! \times 0! \times 0! \times 1! \times 1! \times 0! = 120! . \]
This may be vulnerability for the construction of algorithms. For designing the strong algorithm for application in cybersecurity, the integers or prime numbers of \(n_1, n_2, n_3, \ldots, n_k \) must be greater than the integer 1.

4. Conclusion
In this article, combinatorial techniques such as factorial and binomial expansions have been introduced for the applications in computational science and cryptography. These methodological advances can enable the researchers working in computational science, management, science and engineering to solve the most real-life problems and meet today’s challenges (Annamalai, 2010, 2017).

References

