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Abstract 

This paper presents lemmas and its corollaries on the combinatorial geometric series and summation 

of series of binomial coefficients. Also, the coefficient for each term in combinatorial geometric 

series refers to a binomial coefficient. These ideas can enable the scientific researchers to solve the 

real life problems. 
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1. Introduction 

When the author of this article was trying to develop the multiple summations of geometric series 

(Annamalai, 2010, 2017a, 2017b, 2017c, 2018a, 2018b, 2018c, 2018d, 2019a, 2019b, 2020), a new 

idea stimulated his mind to create a combinatorial geometric series (Annamalai, 2022a, 2022b, 

2022c). The combinatorial geometric series is a geometric series whose coefficient of each term of 

the geometric series denotes the binomial coefficient 𝑉𝑛
𝑟 . In this article, lemmas and corollaries on 

the binomial coefficients of combinatorial geometric series (Annamalai, 2022d, 2022j) are provided 

with detailed proofs.  

 

2. Combinatorial Geometric Series  

The combinatorial geometric series (Annamalai, 2022d, 2022e, 2022h) is derived from the multiple 

summations of geometric series. The coefficient of each term in the combinatorial refers to the 

binomial coefficient 𝑉𝑛
𝑟  (Annamalai, 2022i). 

∑ ∑ ∑ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

= ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

 &  𝑉𝑛
𝑟 =

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) ⋯ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)

𝑟!
, 

where  𝑛 ≥ 0, 𝑟 ≥ 1  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁 = {0, 1, 2, 3, ⋯ }.  

Here, ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

refers to the combinatorial geometric series and   

𝑉𝑛
𝑟 𝑖𝑠 the binomial coefficient for combinatorial geometric series. 

 
𝐋𝐞𝐦𝐦𝐚 𝟐. 𝟏: 𝑉𝑛−1

𝑟+1 + 𝑉𝑛
𝑟 = 𝑉𝑛

𝑟+1. 
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Proof. Let us prove this lemma using the combinatorial geometric series. 

By substituting 𝑥 = 1 in the combinatorial geometric series ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

, we get  

∑ 𝑉𝑖
𝑟(1)𝑖

𝑛

𝑖=0

= ∑ 𝑉𝑖
𝑟 = 𝑉0

𝑟 + 𝑉1
𝑟 + 𝑉2

𝑛 + 𝑉3
𝑟 + ⋯ + 𝑉𝑛−1

𝑟 + 𝑉𝑛
𝑟 =

𝑛

𝑖=0

𝑉𝑛
𝑟+1.                                  (1) 

This is one of the binomial identities based on the combinatorial geometric series. 
From the above binomial identity, we get the following result: 

𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1, (∵ ∑ 𝑉𝑖

𝑟

𝑛−1

𝑖=0

= 𝑉𝑛−1
𝑟+1).                                                                                        (2) 

Let us prove the binomial equation 𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 = 𝑉𝑛
𝑟+1.                                                            (3) 

 

𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 =
𝑛(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

(𝑟 + 1)!
+

(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!

=
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!
(

𝑛

𝑟 + 1
+ 1) =

=
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)

𝑟!
(

𝑛 + 𝑟 + 1

𝑟 + 1
). 

𝑉𝑛−1
𝑟+1 + 𝑉𝑛

𝑟 =
(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟)(𝑛 + 𝑟 + 1)

(𝑟 + 1)!
= 𝑉𝑛

𝑟+1.                                                  (4) 

Hence, the lemma is proved. 
 

We know that the binomial series is ∑ 𝑉𝑖
𝑛−𝑖𝑥𝑖𝑦𝑛−𝑖

𝑛

𝑖=0

= (𝑥 + 𝑦)𝑛.  

For examples: by substituting 𝑥 = 1 and 𝑦 = 1 in the binomial series, we get ∑ 𝑉𝑖
𝑛−𝑖 = 2𝑛

𝑛

𝑖=0

  

and also, by substituting 𝑥 = 1 and 𝑦 = 2 in the binomial series, we get ∑ 𝑉𝑖
𝑛−𝑖2𝑛−𝑖 = 3𝑛

𝑛

𝑖=0

. 

From the binomial series given in the examples, we get the following series: 

                                       ∑ 𝑉𝑖
𝑛−𝑖(2𝑛−𝑖 − 1) = 3𝑛

𝑛

𝑖=0

− 2𝑛.                                                               (5) 

 

𝐋𝐞𝐦𝐦𝐚 𝟐. 𝟐: ∑ 𝑉𝑖
𝑛−𝑖

𝑛

𝑖=1

= ∑ 2𝑖

𝑛−1

𝑖=0

= 2𝑛 − 1. 

 

Proof. Let us prove this lemma using the summation of series of binomial coefficients and sum of 

geometric series of powers of two as follows: 

∑ 2𝑖 =

𝑛

𝑖=0

2𝑛+1 − 1 ⟹ ∑ 2𝑖 =

𝑛−1

𝑖=0

2𝑛 − 1 and ∑ 𝑉𝑖
𝑛−𝑖 =

𝑛

𝑖=0

2𝑛 ⟹ ∑ 𝑉𝑖
𝑛−𝑖 =

𝑛

𝑖=1

2𝑛 − 1. 

From these expressions, we conclude that  

                   ∴ ∑ 𝑉𝑖
𝑛−𝑖 =

𝑛

𝑖=1

∑ 2𝑖 =

𝑛−1

𝑖=0

2𝑛 − 1.                                                                                  (6) 

Hence, the lemma is proved.  
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𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟑. 𝟏: ∑ 2𝑖 = 2𝑛 − 2𝑘.

𝑛−1

𝑖=𝑘

  In this summation, if 𝑘 = 0, then ∑ 2𝑖 = 2𝑛 − 1.

𝑛−1

𝑖=0

 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟑. 𝟐: ∑ 𝑉𝑖
𝑛−𝑖 = 2𝑛 −

𝑛

𝑖=𝑘+1

1

(𝑛 − 𝑘)!
∑(𝑘 + 𝑖)

𝑛−𝑘

𝑖=𝑘

. 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟑. 𝟑: ∑ 𝑉𝑖
𝑛 =

𝑟

𝑖=0

𝑉𝑟
𝑛+1 ⟹ ∑ 𝑉𝑖

𝑛 =

𝑟

𝑖=𝑘+1

𝑉𝑟
𝑛+1 − 𝑉𝑘

𝑛+1 

3. Conclusion  

In this article, lemmas and its corollaries were introduced on the combinatorial geometric series and 

series of binomial coefficients. This idea can enable the scientific researchers to solve the real-life 

problems (Annamalai, 2010). 
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