Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series

Article Info:
Article history: Received 2022-09-28 / Accepted 2022-10-27 / Available online 2022-10-27
doi: 10.18540/jcecvl8iss10pp14799-011

Chinnaraji Annamalai
ORCID: https://orcid.org/0000-0002-0992-2584
Department of Management, Indian Institute of Technology, Kharagpur, West Medinipur, West Bengal, Kharagpur – 721302, India
E-mail: anna@iitkgp.ac.in

Antonio Marcos de Oliveira Siqueira
ORCID: https://orcid.org/0000-0001-9334-0394
Federal University of Viçosa, Brazil
E-mail: antonio.siqueira@ufv.br

Abstract
This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.

Keywords: computation, combinatorics, binomial coefficient, abelian group

1. Introduction
When the author of this article was trying to compute the multiple summations of geometric series (Annamalai, 2010, 2017a, 2017b, 2017c, 2018a, 2018b, 2018c, 2018d, 2019a, 2019b, 2020), a new idea stimulated his mind to create a combinatorial geometric series (Annamalai, 2022a, 2022b, 2022c). The combinatorial geometric series is a geometric series whose coefficient of each term of the geometric series denotes the binomial coefficient \(V_n^r \). In this paper, a commutative group, also called an abelian group, under addition of the binomial coefficients of combinatorial geometric series (Annamalai, 2022d, 2022e) is introduced newly.

2. Combinatorial Geometric Series
The combinatorial geometric series (Annamalai, 2022d, 2022e, 2002h) is derived from the multiple summations of geometric series. The coefficient of each term in the combinatorial geometric series refers to the binomial coefficient \(V_n^r \) (Annamalai, 2022i, 2022k).

\[
\sum_{i_1=0}^{n} \sum_{i_2=1}^{n} \sum_{i_3=2}^{n} \ldots \sum_{i_r=nr-1}^{n} x^{i_1 i_2 i_3 \ldots i_r} = \sum_{i=0}^{n} V_n^r x^i \quad \text{and} \quad V_n^r = \frac{(n + 1)(n + 2)(n + 3) \ldots (n + r - 1)(n + r)}{r!},
\]

where \(n \geq 0, r \geq 1 \) and \(n, r \in \mathbb{N} = \{1, 2, 3, \ldots \} \).

Here, \(\sum_{i=0}^{n} V_n^r x^i \) refers to the combinatorial geometric series and \(V_n^r \) is the binomial coefficient for combinatorial geometric series.

\(V_0^1 = 1; V_1^1 = 2; V_2^1 = 3; V_3^1 = 4; V_4^1 = 5; V_5^1 = 6; \ldots \)
\[N = \{V_0^1, V_1^1, V_2^1, V_3^1, V_4^1, \ldots \} \text{ is a set of natural numbers} \]
\[W = \{0, V_0^1, V_1^1, V_2^1, V_3^1, V_4^1, \ldots \} \text{ is a set of whole numbers} \]
\[Z = \{\ldots, -V_2^1, -V_1^1, -V_0^1, 0, V_1^1, V_2^1, \ldots \} \text{ is a set of integers.} \]
\{ +, −, ×, ÷, \ldots \} \text{ is a set of binary operators, where the symbol + is used for addition, the symbol − for subtraction, the symbol × for multiplication, the symbol ÷ for division, etc.}

Note that \[V_0^r + V_1^r + V_2^r + V_3^r + \ldots + V_{n-1}^r + V_n^r = V_{n+1}^r \]
\[\Rightarrow V_{n+1}^r = V_n^r + V_0^r = V_{n+1}^r \]
where \[V_n^r = V_{n-1}^r + V_{n-2}^r + \ldots + V_1^r + V_0^r \]

Proof

For \[V_0^r + V_1^r + V_2^r + V_3^r + \ldots + V_{n-1}^r + V_n^r = V_{n+1}^r \]
\[V_0^r + V_1^r + V_2^r + V_3^r + \ldots + V_{n-1}^r + V_n^r = V_{n+1}^r \]
\[\Rightarrow V_{n+1}^r = V_{n+1}^r \]

Note that \[V_n^r = \frac{(n + r)!}{n! \cdot r!} \]
\[\Rightarrow V_{n+1}^r = \frac{(n + r)!}{n! \cdot r!} \]
\[\Rightarrow V_{n+1}^r = \frac{(n + r)!}{(n + r)!} \]
\[\Rightarrow V_{n+1}^r = V_{n+1}^r \]

Hence, it is proved.

Also, \[V_n^r = V_{n+1}^r + V_{n+1}^r \]
which is the sum of partitions of \[V_n^r \]

In general, addition or multiplication of any two binomial coefficients is an integer as all binomial coefficients are integers such that \[V_n^r \in N \].

1. **Abelian Group**

\[Z = \{−V_n^r, 0, V_n^r \mid n \geq 1, r \geq 0 \text{ and } n, r \in N \} \text{ is a set of integers.} \]

Closure property: Addition of any two binomial coefficients is also a binomial coefficient.
\[(V_m^n + V_p^q) \in Z \text{ for all } V_m^n, V_p^q \in Z. \]

Associativity: For all \[V_m^n, V_p^q, V_r^s \in Z \],
\[V_m^n + (V_p^q + V_r^s) = (V_m^n + V_p^q) + V_r^s. \]

Identity element: \(0 + V_r^n = V_r^n + 0 = V_r^n \), where 0 is an identity element.

Inverse element: \(V_r^n + (−V_r^n) = (−V_r^n) + V_r^n = 0 \), where \(−V_r^n \) is an additive inverse.

Commutativity: \(V_m^n + V_p^q = V_p^q + V_m^n \) for \(V_m^n, V_p^q \in Z. \)

\([Z, +] \text{ is an abelian group under addition.}\)

3. **Conclusion**

In this article, an abelian group was formed on the binomial coefficients of combinatorial geometric series under addition. This new idea can enable the scientific researchers to solve the real life problems (Annamalai, 2010).
References

