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Abstract 

In this work, Laplace transform-Legendre-wavelet collocation method is adopted for a semi-

numerical analysis of predicting transient nonlinear behaviour of a radiative-convective fin with 

temperature-variant internal heat generation. The verification of the results of the hybrid method 

shown good agreements with the direct numerical and approximate analytical method s in previous 

works. Parametric analysis depicts the significance of the model parameters in a way that it is found 

that as the convective-conductive and radiative-conductive parameters increase, temperature 

distribution decreases in the extended surface. The thermal distribution is augmented in the passive 

device as thermal conductivity is amplified. At the different positions in the fin, the temperature is 

enhanced as time progress. The semi-numerical solution provides a very good platform for the 

predictive analyses of the extended surfaces. 

Keywords: Convective-radiative fin. Moving fin. Semi-numerical solution. Laplace transform-

Legendre Wavelet Collocation method. 

 

1. Introduction 

Fins are used for augmentations of heat transfer rate in thermal and electronic components. Such 

important passive method of heat transfer enhancements has provoked several studies over the past 

decades [1-59].  The study of thermal behavior of continuous moving surfaces such as extrusion, 
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hot rolling, glass sheet or wire drawing, casting, powder metallurgy techniques for the fabrication 

of rod and sheet have become an area of increasing research interests. In the processes such as 

rolling of strip, hot rolling, glass fiber drawing, casting, extrusion, drawing of sheets and wires, there 

is usually the presence of heat exchange between surrounding and the stationary or moving material 

as depicted in Fig. 1 where hot plate/billet emerges from a die or furnace. 

 

                                           
Fig. 1 Schematic diagram of rolling and extrusion 

 

Since the schematic depicted in Figure 1 satisfies the approximate working condition of a heat 

exchanging device, they can be modeled as fins moving uninterruptedly. Due to these adaptable and 

wide areas of applications, there have been extensive research works on the continuous moving fins. 

Moreover, in industrial processes, control of cooling rate of the sheets is very important to obtain 

desired material structure. As a result, Torabi et al. [1], Aziz and Lopez [2], Aziz and Khani [3], 

Singh et al. [4], Aziz and Torabi [5], Ma et al. [6]. Sun [7], Kanth and Kumar [8] and the other 

authors [8-66] explored the thermal behaviour of a radiative-convective moving fins with 

temperature-variant thermal properties. These authors adopted various mathematical techniques to 

analyze the thermal problems [1-66]. 

 

The obvious non-power series semi-numerical solutions to the nonlinear problems are very much 

important. Such solutions allow effective thermal predictions of the extended surface over a large 

domain and time. Also, the semi-numerical solutions reduce the complex mathematical analysis that 

gives analytic expressions involving large number terms, high computational cost and time. 

Therefore, there is a need for comparatively flexible, simple, generic and highly accurate solutions. 

Legendre wavelet collocation is an easy and simple mathematical method with fast rate of 

convergence. To the best of the authors’ knowledge, such application of the hybrid semi-numerical 

method for the heat transfer model of a moving convective-radiative porous fin under temperature-

reliant internal heat generation has not been presented in literature. Such solutions provide effective 

predictions to extended surfaces’ thermal performances. Therefore, in this study, Laplace transform-

Legendre-wavelet collocation method is used to develop semi-numerical solutions for the nonlinear 

thermals of a moving convective-radiative porous fin under temperature-variant thermal 

conductivity.  

 

 

2. Model Development for the Transient Thermal Flow Process 

Fig. 2 presents an internally heated longitudinal porous moving fin of length L, thickness δ and 

perfectly and thermally attached to a prime surface at temperature Tb.  Assuming that the porous fin 

tip is considered under adiabatic condition and the porous medium with fin material is homogeneous 

and isotropic for the unidirectional heat flow along the fin length. Also, local thermodynamic 

equilibrium prevails between the porous medium and the saturated with a single-phase fluid. The 

thermo-physical properties of the fin material and the fluid are constant, and the fluid density 

variation follows Boussinesq approximation. 
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Fig. 2 Schematic of a longitudinal moving porous fin with perfect thermal contact and insulated 

tip 

 

Using the assumptions stated above, the thermal energy balance equation (Fig. 3) of the extended 

surface is given by the following equation 

 

Energy in left face + heat generated in element = energy out right face +energy lost by convection 

+ energy lost by immersed fluid + energy lost by radiation + energy lost by moving +accumulated 

heat  

                                                                                                                                                 (1) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )4 4

( ) 1

( )

x cr x suf a p a

suf s p cr p creff eff

q
q q T A dx q dx h T A T T mc T T

x

T T
T A T T c A u dx c A dx

x t






  

 
+ = + + − − + − 

 

 
+ − + +

 

                                (2) 

 

 
Fig. 3 Thermal energy balance in the elemental strip 

 

Eq. (2) can be written as 

 

( ) ( ) ( ) ( )

( ) ( )4 4

1 ( ) 1

( )

x cr x a p a

s p cr p creff eff

q
q q T A dx q dx hP T T dx mc T T

x

T T
P T T dx c A u c A dx

x t


 



  

 
+ − = + + − − + − 

 

 
+ − + +

 

                           (3) 

 

The rate of flow of fluid through the porous medium is given by 

  

f wm V Wdx=                                                                                                                            (4) 

While the fluid flow velocity is and    
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( )w a

gK
V T T

v


= −                                                                                                                      (5) 

Therefore, after the substitution of Eq. (5) into Eq. (4), the mass flow rate of the fluid is given as  

 

( )f

a

gK W
m T T dx

v

  
= −                                                                                                             (6) 

 

The introduction of Eq. (7) into Eq. (3) produces Eq. (7)  

 

( ) ( ) ( )

( ) ( )

2

,

4 4

( )
1 1 ( )

( )

f p f a

cr a

s p cr p creff eff

c gK W T Tq
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T T
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 
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−
− + − = − − +



 
+ − + +

 

                     (7) 

 

Dividing Eq. (7) through by crA dx  

 

( ) ( )
( )

( ) ( )

2

,

4 4

( )1 ( )1
1
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cr cr cr
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p peff eff

cr
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                               (8) 

 

Eq. (8) can be written as  

 

( ) ( )
( )

( ) ( )

2

,

4 4

( )1 ( )1
1

( )

f p f aa

cr cr

s
p peff eff

cr
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 

−− −
− + − = +



−  
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 

                                    (9) 

 

The heat conduction rate through the solid portion of the fin is given by Fourier’s law as given  

 

s eff cr

T
q k A

x


= −


                                                                                                                       (10) 

 

The radiation heat transfer rate in the porous medium is given as  

 
44

3

cr
p

R

A T
q

x

 




= −


                                                                                                                  (11)  

Therefore, the total rate of heat transfer is given by  

 
44

3

cr
eff cr

R

AT T
q k A

x x

 



 
= − −

 
                                                                                                (12) 

 

The introduction of Eq. (12) into Eq. (9) provides,  
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( )
( ) ( )
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                                       (13) 

 

Further simplification of Eq. (13) the governing differential equation for the fin becomes  

 

( )

( ) ( ) ( ) ( )

24
,

4 4

( ) 14
( )

3

( ) 1
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 
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                                        (14) 

The temperature-dependent thermal conductivity and internal heat generation are respectively given 

by the linear expressions as  

 

( )1eff s fk k k = − +                                                                                                                    (15) 

 

where,  

 

( )  1 ( )o aq T q T T = + −                                                                                                              (16) 

 

And  

( ) ( )( ) ( )1p p peff s f
c c c    = − +                                                                                              (17) 

 

Therefore, the governing equation becomes 

 

( )( )
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2
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A x t
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                                         (18) 

 

For the case when the temperature between the base and tip of the fin is small, the radiative term 

can be linearized. Using Roseland’s approximation for the radiative term in the model, with the aid 

of Taylor series, expanding 4
T  about 

a
T   

 

( ) ( ) ( )
2 34 4 3 2

4 6 4a a a a a a aT T T T T T T T T T T+ − + − + − +                                      (19) 

 

and ignoring the higher order components in Eq. (21a), we have 

 
4 3 4

4 3a aT T T T −                       (20) 

 

Therefore, 

 

( )4 4 3
4a a T TaT T T− −                                                                                                                (21) 
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Substituting Eq. (21) into the second term in the Eq. (18), we have  

 
3 3 34

4 3( ) 164 4

3 3 3

a a a

R R R

T T T TT T

x x x
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  
                                                                   (22) 

 

Substituting Eqs. (21) and (22) into Eq. (18), we have 
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 

                               (23) 

 

The initial condition is 

 

0,T T=    when  0,t =   for  0 ,x L                                                                                      (24) 

 

The boundary conditions for the fin with insulated tip are given as 

 

,bT T=    at 0,x = for  0,t                                                                                                  (25a) 

 

0
dT

dx
= ,  at ,x L= for  0,t                                                                                                         (25b) 

 

Eq. (23) can be expressed as   
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2

3

( ) 116
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3
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                              (26) 

 

The temperature-dependent internal heat generation in the porous fin can be expressed as  

 

( ) ( ) ( ) ( )1 1 1o o o aq T q q T q T       = − + − − −                                                                                     (27) 

 

 

Therefore 
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23 32
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2

( ) 116 4
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 
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 

                   (28) 

 

 

Collecting like terms, we have 
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Which can be written as  

 

( )

( )( )
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3

23 2
,
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1 4

( )16
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3 1

1
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                        (30) 

 

Applying the following dimensionless variables 

 

( ) 2
, ,

effa

b a p eff

k tT Tx
X

L T T c L
 



−
= = =

−
                                                                                    (31) 

 

Which implies that  

( ) ( )
( ) 2

, , ,
p eff

b a a a b a
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 
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When Eq. (32) is substituted into Eq. (30), we have  
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                                           (33) 

 

Further simplification provides,  
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Which gives 
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The above equation can be written as  
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where 
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Eq. (36) is alternative written as  
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where 
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                                                          (39) 
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Also, the nondimensionalization for the initial and boundary conditions can be done by substituting 

Eq. (32) into Eqs. ( 24) and (25) 

 

The initial condition is 

( ) 0b a aT T T T − + =    when  
( ) 2

0,
p eff

eff

c L

k

 
=   for  0 ,XL L                                            (40) 

 

The boundary conditions for the fin with insulated tip are given as 

 

( ) ,b a a bT T T T − + =    at 0XL =  for 
( ) 2

0,
p eff

eff

c L

k

 
                                                                 (41a) 

 

( )
0

( )

b a aT T T

XL

 − +   =


,  at ,XL L= for  
( ) 2

0,
p eff

eff

c L

k

 
                                                          (41b) 

 

 

Therefore, the adimensional initial condition is 

 

0 =    when  0, =   for  0 1,X                                                                                      (42) 

 

Also, the dimensionless boundary conditions are given as 

 

1, =    at 0X =  for 0,                                                                                                           (43a) 

 

0
X


=


,  at 1,X = for  0,                                                                                                        (43b) 

 

 

3. Method of Solution: Laplace transform-Legendre Wavelet Collocation Method 

The developed nonlinear in Eq. (38) alongside with the initial and boundary conditions are solved 

using the hybrid method. The procedures of the applications are stated as follows:  

 

3.1. Laplace transform method (LT) 

The LT of function f(t) and corresponding inversion are enumerated as  

 

0
( ) ( )sts e d  


− =                                                                                                                              (44) 

 

1
( ) ( )

2

s i
s

s i
e s d

i

  


+ 
−

− 
=                                                                                                            (45) 

        

where s=a+ib (a, b  R) is a complex number. 

 

3.2 Applying Laplace Transform method to the Nonlinear Thermal Model 

Applying Laplace transform to Eq. (38), provides the following solutions 


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2
2

2 h R

d Q
S Mc Nr Q s Pe

dX s X

 
     


− − − + + = +


                                                                            (46) 

 

Collecting like terms, we have  

 

( )
2

2

2
0R h

d d Q
Pe S s Mc Nr Q

dX dX s

 
   − − − + + + + =

                                                             (47) 

 

with boundary conditions in Laplace domain are 

 

 

0, 0, 0

1
0, 1,

s X
x

s X
s






 = =



 = =

                                                                                                              (48) 

3.3 The Principle and Procedure of Legendre Wavelet Collocation Method  

Eq. (47) is still nonlinear after finding the Laplace transform of the governing equation, in order to 

solve the nonlinear equation, Legendre wavelet collocation method is applied. The principle and the 

procedure of the method is described as given below.  

 

Wavelets: The formula for the continuous wavelet are defined as 

 

( )
1

2
, , , , 0a b

X b
X a a b R a

a
 

− − 
=   

 
                                                                                    (49) 

 

The dilation and translation parameters are given as a and b, respectively. 

 

The Legendre wavelets defined on the interval [0, 1] is given by  

 

( )
( ) ( )21

2

,

ˆ ˆ1 1
ˆ2 2 ,

2 2

0

k k

m k k
n m

n n
m P X n

X

otherwise



− −
+ − 

= 



                                                           (50) 

 

where m=0,1,…,M-1 and n=1,2,...2k-1. ( )mP X is the Legendre polynomial of order m in Laplace 

domain. 

 

( ) ( )0 1

1
, ,

X
P X P X

s s
= =    

                                                                               

( ) ( ) ( )1 1

2 1
,

1 1
m m m

m m
P X XP X P X

m m
+ −

+
= −

+ +
                                                                                (51) 

 

1,2,3......, 1.m M= −  

 

A function ( )f X  defined in domain [0, 1] can be expressed as 
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( ) ( ), ,

1 0

n m n m

n m

f X c X
 

= =

=                                                                                                           (52) 

 

where ( ),n mc f X , ( ),n m X > in which <…> denotes the inner product 

 

Taking some terms in infinite series, then Eq. (52) can be written as  

 

( ) ( ) ( )
12 1

, ,

1 0

k M
T

n m n m

n m

f X c X C X 

− −

= =

= =                                                                                        (53) 

 

Where C and ( )X  are M x1 matrices given by 

1 11 1 1 2 2 2 2
,0, ,1,....., , 1, ,1,......, , 1, ,1,..., , 1k k

T

C c c c M c c M c c M− − = − − − 
                                               (54) 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 1 1

1 0 1,1 1, 1 2,0

2, 1 0 12 2 ,1 2

, , ,..., , ,......,

,........, , , ,...., ,k k k

T

M

M M

X X X X
X

X X X X

   


   − − −

−

− −

 
=  
  

 

 

(i) Property of the product of two Legendre wavelets 

 

The following property can be written if E is a given wavelets vector,  

 

       
ˆT T TE E =                                                                                                                       (55) 

 

(ii) Operational matrix of integration: From Eq. (52), the integration of wavelets ( )X  

can be written as 

 

                  ( ) ( )  
0

, 0,1

X

s ds P X X =   

 

                  where P is 2k-1M x 2k-1M, the operational matrix of integration is given by 

 

              

( )

( )

1
1 0 0

3

1 1
0 0

3 15

1
0 0 0

15

1

2

2 3
0 0 0

2 3 2 1

2 3
0 0 0

2 3 2 1

P

M

M M

M

M M

 
 
 
− 

 
 

− 
 
 
 =
 
 
 
 

− 
 − −
 
 − −
  − − 

                                                                         (56) 

 

 

3.4 Application of Legendre Wavelet Collocation Method to the Nonlinear Thermal Model 

 

In order to apply the Legendre wavelet collocation method to the nonlinear thermal model, let 
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Let   ( ) ( )TX C X  =                                                                                                                (57) 

 

If we integrate Eq. (57) with respect to X from 0 to X, one obtains 

 

( ) ( ) ( ) ( ) ( ) ( )0 0 0T TX C P x X C P x since        = +  = =                                   (58) 

 

Now, on integrating Eq. (58) and apply the boundary conditions, we get 

 

( ) ( ) ( )20 TX C P X  = +
                                                                                                         (59)

 

 

If we Put X=1 in Eq. (59), we have 

 

( ) ( )21
0 1TC P

s
 = − , since ( )1 1 = , we obtain                                                                        (60) 

 

If we substitute Eq. (60) into Eq. (58) 

 

( ) ( ) ( )2 21
1T TX C P C P X

s
   = − +                                                                                          (61) 

 

Again, the integrating of Eq. (61), with respect to X from 0 to X, one arrives at 

 

( ) ( ) ( ) ( )2 21
1T TX C P d P X C P X

s
   = − +                                                                            (62) 

The Substitution of ( )X , ( )X and ( )X  in Eqs. (57), (61) and (62) into Eq. (47), produced  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 2 2 2

2 2

1 2

1 1
1 1

1
1 , , ,.....,

T T T T T

R h

T T

n

C X Pe C P C P X S C P d P X C P X
s s

Q
s Mc Nr Q C P d P X C P X R X c c c

s s

     

    

   
− − + − − +   

   

 
− + + + − + + = 

 

                (63) 

 

n collocation points is chosen i.e. Xi, i =1,2,3,...,n in the interval (0,1), at which residual R(X, ci) 

equal to zero. It should be noted that the number of such points gives the number of coefficient ci, 

i=1,2,3,..,n.  

 

1 11 1 1 2 2 2 2
,0, ,1,....., , 1, ,1,......, , 1, ,1,..., , 1k k

T

C c c c M c c M c c M− − = − − −                                        (64) 

 

Thus, we arrives at R(X, c1,c2,c3,...,cn)=0, i =1,2,3,...,n.  

 

The above Eq. (63) gives a system of nonlinear equations which are solved simultaneously using 

Newton-Raphson method after the numerical inversion of the Laplace transform [67] and the values 

of C are obtained. When the values of C are substituted into Eq. (62), the solution of ( )X is found. 
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4. Results and Discussion 

The simulated results and parametric studies on the passive device are presented in this section. The 

effect of each parameter of the thermal model on the thermal behaviour of the extended surface is 

investigated. The results are presented in various sub-sections for better analysis and understanding. 

In Table 1, the results of the present study are compared with the results of the previous studies in 

literature using the following parameters Nc=0.30, Sh=0.10, Q=0.40 and γ=0.20. 

 

Table 1: Comparison of results 

X NUM LTLWCM HPM [68] VPM [69] 

0.00 0.934213428 0.934213444 0.934213428 0.934213432  

0.10 0.934856715 0.934856727 0.934856715  0.934856719 

0.20 0.936788309 0.936788323 0.936788310 0.936788315 

0.30 0.940013429 0.940013444 0.940013429 0.940013435 

0.40 0.944540802 0.944540815 0.944540802 0.944540807 

0.50 0.950382714 0.950382725 0.950382714 0.950382721 

0.60 0.957555079 0.957555090 0.957555080 0.957555084 

0.70 0.966077531 0.966077540 0.966077531 0.966077536 

0.80 0.975973531 0.975973539 0.975973531 0.975973535 

0.90 0.987270505 0.987270501 0.987270505  0.987270508 

1.00 1.000000000 1.000000000 1.000000000 1.000000000 
 

 

The influence of dimensionless time on moving porous fin thermal distribution is shown in Fig. 4. 

The temperature history increases with increasing time value. This is expected because with 

increasing heat transfer rate, the porous fin conducts more heat, thus temperature increases. 

 

 
Fig. 4 Dimensionless temperature distribution at different time in the fin  

 

Figures 5-8 displays the impacts of  porous, convective-conductive, radiative-conductive and Peclet 

numbers on the thermal behaviour of the fin. It is shown in the figures that the porous, convective-

conductive, radiative-conductive and Peclet numbers have significant effects on the heat transfer in 

the porous fin. The results depicted that as the porous, convective-conductive, radiative-conductive 
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and Peclet numbers increase, the dimensionless temperature distribution in the fin decreases and 

consequently, the rate of heat transfer by the fin increases.  

 

The swift reduction in temperature is because as these parameters increase, more heat is lost from 

the fin because the heat transfer rate is enhanced, and more cooling of the fin occurs which shows a 

decrease in the temperature profile and consequently, the fin thermal performance is increased. The 

effect of Pe on temperature distribution in the moving porous fin is shown in Fig. 8. An increase in 

Pe resulted in decreasing values of thermal distribution within the extended surface. This is expected 

because increasing Pe augments material motion and reduces exposure time to environment. Hence, 

fin temperature history intensifies.  

 

 
Fig. 5 Effect of porosity on the dimensionless temperature distribution in the fin  

 

 
Fig. 6 Effect of convective-conductive number on the temperature distribution in the fin  
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Fig. 7 Effect of radiative-conductive number on the temperature distribution in the fin 

  
Fig. 8 Effect of convective-conductive number on the temperature distribution in the fin 

 

 

The effect of internal heat generation on temperature distribution in the moving porous fin is shown 

in Fig. 9. An increase in internal heat generation resulted in increasing values of thermal distribution 

within the extended surface. This is expected because increasing Pe augments material motion and 

reduces exposure time to environment. Hence, fin temperature history intensifies.  
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Fig. 9 Effect of internal heat generation on the temperature distribution in the fin  

 

 

Fig. 10 shows the impacts of radiative number on the dimensionless temperature profiles along the 

fin length. It is shown in the figures that the radiative number, Rd has considerable impact on the 

fin thermal performance The results depicted that as the radiative number increases, the 

dimensionless temperature distribution in the fin also increases and consequently, the rate of heat 

transfer by the fin decreases.  

 

 
Fig. 10 Effect of temperature-dependent internal heat generation parameter on the temperature 

distribution in the fin 
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5. Conclusion 

The present study developed a semi-numerical analysis of transient nonlinear thermal model of 

radiative-convective fin with varying internal heat generation using Laplace transform-Legendre-

wavelet collocation method. Thereafter, parametric studies were carried out. The research outcomes 

establish that the temperature history increases with increasing time value. When the porous, 

convective-conductive and radiative-conductive parameters increase, the dimensionless 

temperature distribution in the fin decreases and consequently, the rate of heat transfer by the fin 

increases. An increase in Pe resulted in increasing values of thermal distribution within the extended 

surface. However, as the radiative number increases, the dimensionless temperature distribution in 

the fin also increases and consequently, the rate of heat transfer by the fin decreases. The semi-

numerical solutions in the present work will serve as basis for comparisons for the numerical and 

approximate analytical solutions of the subsequent works on the thermal analysis of the extended 

surfaces. Moreover, the parametric studies established that the controlling parameters of the fin 

during operation should be prudently selected to make sure that it retains its principal function of 

heat removal from the main surface. 

 

Nomenclature 

Acr    fin cross sectional area, m2 

Bo    magnetic field intensity, Tesla or kg/sec2Amp 

cpa   specific heat capacity, J/kgK 

h   coefficient of convective heat transfer, W/m2K 

Jc    conduction current intensity, A 

k   fin thermal conductivity, W/mK 

kb    fin thermal conductivity at the base temperature, W/mK 

L   fin length , M  

Mc    adimensional convective parameter 

Nr    adimensional radiation parameter 

P   fin perimeter, m 

Pe   Peclet number 

t    time, sec. 

T    fin temperature, K 

T∞   ambient temperature, K 

Tb   fin temperature at the base, K 

x   fin axial distance, m  

X    adimensional fin length  

 

Greek Symbols 

δ  fin thickness , m 

θ   adimensional temperature 

θb    adimensional temperature at the fin base 

ρ   fin material density, kg/m3 

σ   Stefan-Boltzmann constant, W/m2K4 

σ   Electrical conductivity, Ω-1m-1 or sec2Amp2/kgm3 
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