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Abstract 

This paper discusses a commutative group, ring, and field under addition and multiplication of the 

binomial coefficients in combinatorial geometric series. The combinatorial geometric series is 

derived from the multiple summations of geometric series. The coefficient for each term in 

combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific 

researchers to solve the real life problems. 
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1. Introduction  

When the author of this article was trying to compute the multiple summations of geometric series 

(Annamalai, 2010; Annamalai, 2017a; Annamalai, 2017b; Annamalai, 2017c; Annamalai, 2018a; 

Annamalai, 2018b; Annamalai, 2018c; Annamalai, 2018d; Annamalai, 2019a; Annamalai, 2019b; 

and Annamalai, 2020), a new idea stimulated his mind to create a combinatorial geometric series 

(Annamalai, 2022a; Annamalai, 2022b; Annamalai, 2022c; Annamalai, 2022d; Annamalai, 2022e; 

Annamalai, 2022f). The combinatorial geometric series is a geometric series whose coefficient of 

each term of the geometric series denotes the binomial coefficient 𝑉𝑛
𝑟. In this paper, a commutative 

group, ring, and field under addition of the binomial coefficients of combinatorial geometric series 

(Annamalai, 2022d; and Annamalai, 2022e) are introduced in detail.  

 

2. Combinatorial Geometric Series  

The combinatorial geometric series (Annamalai, 2022f; Annamalai, 2022g; Annamalai, 2002h) is 

derived from the multiple summations of geometric series. The coefficient of each term in the 

combinatorial geometric series refers to the binomial coefficient 𝑉𝑛
𝑟 (Annamalai, 2022i; Annamalai, 

2022j; Annamalai & Siqueira, 2022b).  

∑ ∑ ∑ ⋯

𝑛

𝑖3=𝑖2

∑ 𝑥𝑖𝑟

𝑛

𝑖𝑟=𝑖𝑟−1

𝑛

𝑖2=𝑖1

𝑛

𝑖1=0

= ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

 &  𝑉𝑛
𝑟 =

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) ⋯ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)

𝑟!
, 

where  𝑛 ≥ 0, 𝑟 ≥ 1  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁 = {1, 2, 3, ⋯ }.  

Here, ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

refers to the combinatorial geometric series and   

https://orcid.org/0000-0002-0992-2584
mailto:anna@iitkgp.ac.in
https://orcid.org/0000-0001-9334-0394
mailto:antonio.siqueira@ufv.br


The Journal of Engineering and Exact Sciences – jCEC 

2 

𝑉𝑛
𝑟 𝑖𝑠 the binomial coefficient for combinatorial geometric series. 

 
𝑉0

1 = 1; 𝑉1
1 = 2;  𝑉2

1 = 3; 𝑉3
1 = 4; 𝑉4

1 = 5; 𝑉5
1 = 6; ⋯ 

𝑁 = {𝑉0
1, 𝑉1

1, 𝑉2
1, 𝑉3

1,  𝑉4
1, 𝑉4

1, ⋯ } is a set of natural numbers (Annamalai & Siqueira, 2022a).  

𝑊 = {0, 𝑉0
1, 𝑉1

1, 𝑉2
1, 𝑉3

1,  𝑉4
1, 𝑉4

1, ⋯ } is a set of whole numbers (Annamalai & Siqueira, 2022a).  

𝑍 = {⋯ , −𝑉2
1, −𝑉1

1, −𝑉0
1, 0, 𝑉0

1, 𝑉1
1, 𝑉2

1, ⋯ } is a set of integers. 

{+, −,×,÷, ⋯ } is a set of binary operators, where the symbol + is used for addition, the symbol –  
for subtraction, the symbol × for multiplication, the symbol ÷ for  division, etc. 
 
𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. 𝟒: 𝑉𝑟

𝑛 − 𝑉𝑟
𝑛−𝑟 = 𝑉𝑛

𝑟 − 𝑉𝑛−𝑟
𝑟 , (𝑛 ≥ 𝑟 & 𝑛, 𝑟 ∈ 𝑁  ). 

 

𝑃𝑟𝑜𝑜𝑓. 𝑉𝑟
𝑛 − 𝑉𝑟

𝑛−𝑟 =
(𝑟 + 1)(𝑟 + 2) ⋯ (𝑟 + 𝑛 − 𝑟)(𝑟 + 𝑛 − 𝑟 + 1) ⋯ (𝑟 + 𝑛 − 𝑟 + 𝑟)

𝑛!
 

                                      −
(𝑟 + 1)(𝑟 + 2)(𝑛 − 3) ⋯ (𝑟 + 𝑛 − 𝑟)

(𝑛 − 𝑟)!
 

=
(𝑟 + 1)(𝑟 + 2)(𝑛 − 3) ⋯ (𝑟 + 𝑛 − 𝑟)

(𝑛 − 𝑟)!
(

(𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)

(𝑛 − 𝑟 + 1)(𝑛 − 𝑟 + 2) ⋯ (𝑛 − 𝑟 + 𝑟)
− 1). 

𝐻𝑒𝑟𝑒, 𝑟! 𝑉𝑛
𝑟 = (𝑛 + 1)(𝑛 + 2) ⋯ (𝑛 + 𝑟) 𝑎𝑛𝑑  𝑟! 𝑉𝑛−𝑟

𝑟 = (𝑛 − 𝑟 + 1)(𝑛 − 𝑟 + 2) ⋯ (𝑛 − 𝑟 + 𝑟). 

∴  𝑉𝑟
𝑛 − 𝑉𝑟

𝑛−𝑟 = 𝑉𝑟
𝑛−1 (

𝑟! 𝑉𝑛
𝑟

𝑟! 𝑉𝑛−𝑟
𝑟

− 1) = 𝑉𝑟
𝑛−1 (

𝑉𝑛
𝑟

𝑉𝑛−𝑟
𝑟

− 1) = 𝑉𝑛
𝑟 − 𝑉𝑛−𝑟

𝑟 . 

Hence, theorem is proved. 

 

3. Ring and Field   

Z = {−𝑉𝑟
𝑛, 0, 𝑉𝑟

𝑛 | 𝑛 ≥ 1, 𝑟 ≥ 0  &  𝑛, 𝑟 ∈ 𝑁} is a set of integers. 

Closure property: Addition of any two binomial coefficients is also a binomial coefficient. 

(𝑉𝑚
𝑛 + 𝑉𝑝

𝑞) ∈ 𝑍 for all  𝑉𝑚
𝑛, 𝑉𝑝

𝑞 ∈ 𝑍. 

Associativity: For all 𝑉𝑚
𝑛, 𝑉𝑝

𝑞 , 𝑉𝑟
𝑠 ∈ 𝑍,  𝑉𝑚

𝑛 + (𝑉𝑝
𝑞 + 𝑉𝑟

𝑠) = (𝑉𝑚
𝑛 + 𝑉𝑝

𝑞) + 𝑉𝑟
𝑠 . 

Identity element:  0 + 𝑉𝑟
𝑛 = 𝑉𝑟

𝑛 + 0 = 𝑉𝑟
𝑛, where 0 is an additive identity .  

Inverse element: 𝑉𝑟
𝑛 + (−𝑉𝑟

𝑛) = (−𝑉𝑟
𝑛) + 𝑉𝑟

𝑛 = 0, where − 𝑉𝑟
𝑛  is an additive inverse. 

Commutativity:  𝑉𝑚
𝑛 + 𝑉𝑝

𝑞 = 𝑉𝑝
𝑞 + 𝑉𝑚

𝑛  for  𝑎𝑙𝑙 𝑉𝑚
𝑛, 𝑉𝑝

𝑞 ∈ 𝑍. 

(Z, +) is a commutative group under addition (Annamalai & Siqueira, 2022a). 

 

A RING is a non-empty set R which is CLOSED under two binary operators + and × and satisfying 

the following properties:  

(1) R is a commutative group under +.  

(2) R is an associativity of ×. For a, b, c ∈ R, a × (b × c) = (a × b) × c. 

(3) R has distributive properties, i.e. for all a, b, c ∈ R the following identities hold: 

a × (b + c) = (a × b) + (a × c)   and  (b + c) × a = (b × a) + (c × a). 

 

∴ (Z, +, ×) is a RING. 

  

Note that (Z, +, ×) is a Ring with Unity which has 1 as multiplicative identity such that 1 × 𝑉𝑟
𝑛 =

𝑉𝑟
𝑛 × 1 = 𝑉𝑟

𝑛 and also Commutative Ring: 𝑉𝑚
𝑛 × 𝑉𝑝

𝑞 = 𝑉𝑝
𝑞 × 𝑉𝑚

𝑛 . 

 

A FIELD is a non-empty set F which is CLOSED under two binary operators + and × and satisfying 

the following properties: 

(1) F is an abelian group under +. 

(2) F – {0} is an abelian group under ×. 
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∴ (Z, +, ×) is a FIELD.   

 

Note.  A division ring is a ring in which 0 ≠ 1 and every nonzero element has a multiplicative 

inverse. A noncommutative division ring is called a skew field. A commutative division ring is 

called a field. 

 

4. Conclusion 

In this article, a commutative group, ring, and field were formed on the binomial coefficients of 

combinatorial geometric series under addition and multiplication. This new idea can enable the 

scientific researchers for research and development further (Annamalai, 2010). 
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