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Abstract  

Thermal distribution of a rectangular moving convective-radiative porous fin with temperature-

dependent thermal conductivity and internal heat generation is analyzed in this work homotopy 

perturbation method. With the aid of the approximate analytical solutions, the impacts of the model 

parameters on the thermal behaviour of the fin are investigated.  The parametric analysis reveals 

that increase in porosity and convective parameters, thermal distribution decreases. The values of 

the temperature distribution in the fin increase as the Peclet number increases. Also, as the thermal 

conductivity and internal heat generation increase, the fin thermal distribution increases. It is 

believed that the present study will help in the device of the thermal passive devices.  

Keywords:  Thermal analysis; Porous Fin; Convective fin; Moving fin; Variable thermal 

conductivity; homotopy perturbation method. 
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Nomenclature 
A    Cross sectional area of the fins, (m2). 

h    Heat transfer coefficient, (Wm-2k-1). 
Cp   Specific heat of the fluid passing through porous fin (J/kg-K). 

Da   Darcy number. 

g    Gravity constant(m/s2). 
h    Heat transfer coefficient over the fin surface (W/m2K). 

H   Dimensionless heat transfer coefficient at the base of the fin, (Wm-2k-1). 

k    Thermal conductivity of the fin material, (Wm-1k-1). 
keff  Effective thermal conductivity of the porous fin. 

0k     Permeability of the porous fin (m2). 

b    Length of the fin, (m). 

M   Dimensionless Convective parameter. 

m   Mass flow rate of fluid passing through porous fin (kg/s). 

p    Perimeter of the fin (m). 

Pe  Peclet number. 
Q   Dimensionless heat transfer rate per unit area. 

q    internal heat generation 

qT     Heat flux. 
Sp   Porosity parameter. 

*t   Thickness of the fin. 

T    Fin temperature (K). 

Ts   Ambient temperature, (K). 

Tb   Temperature at the base of the fin, (K). 
U   Velocity of fin (m/s). 

vw   velocity of fluid passing through the fin at any point (m/s). 

w    Width of the fin (m). 
x     Axial length measured from fin tip (m). 

X    Dimensionless axial length of the fin. 

Ht   Dimensionless internal heat generation parameter 
G    Heat Generation number 

 

Greek Symbols 

β     Thermal conductivity parameter or non-linear parameter. 

θ     Dimensionless temperature. 

η     Efficiency of the fin. 
υ     Kinematic viscosity(m2/s). 

ρ     Density of the fluid(kg/m3). 

λ    Measure of thermal conductivity variation with temperature. 
 

Subscripts 

s   Solid properties. 
f   Fluid properties. 

eff  Effective porous properties. 

 

1. Introduction 

The applications of passive devices such as fins and spines have been widely used for heat transfer 

augmentations in thermal and electronics systems. Also, the study of thermal behavior of continuous 

moving surfaces such as extrusion, hot rolling, glass sheet or wire drawing, casting, powder 

metallurgy techniques for the fabrication of rod and sheet has become an area of increasing research 

interests. In the processes such as rolling of strip, hot rolling, glass fiber drawing, casting.  extrusion, 

drawing of wires and sheets, there is an exchange of heat between material and the surroundings 

while the material moves through the roller of or furnace. Since, the operations and the thermal 

configuration of these metal fabrication technologies satisfy the criterion for fin approximation, they 

can be modeled as continuously moving fins. Due to these adaptable and wide applications, there 

have extensive research on continuous moving fins.  
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Moreover, in industrial processes, control of cooling rate of the sheets is very important to obtain 

desired material structure.  Consequently, various studies on heat transfer and thermal analysis of a 

continuously moving fin have been carried out many researchers. Torabi et al. (2012) presented the 

analytical solutions for convective-radiative heat transfer in a continuously moving fin with variable 

thermal conductivity while Aziz & Lopez (2011) studied the convection–radiation heat transfer from 

a continuously moving surface with variable thermal conductivity. Aziz and Khani (2011) adopted 

homotopy analysis method to analyze the same problem. Singh et al. (2013) carried the thermal 

analysis of a convective-radiative continuously moving fin with temperature-dependent thermal 

conductivity using wavelet collocation method. Also, Aziz & Torabi (2012) analyzed the moving 

fin with temperature-dependent thermal properties.  

 

The effectiveness of spectral element method was demonstrated in the study carried out by Ma et 

al. (2016) on thermal behaviour of longitudinal porous moving fins of different profiles.  Sun et al. 

(2015) predicted the heat transfer in convective-radiative moving rod using spectral collocation 

method while Aziz and Khani (2011) adopted homotopy analysis method to analyze the same 

problem. In the previously cited work of Aziz and Lopez (2011), fourth-fifth-order Runge-Kutta-

Fehlberg method was used to numerically investigation of the convective-radiative moving fin while 

Torabi et al. (2012) utilized differential transformation method for the continuously moving fin 

losing heat through both convection and radiation and having temperature-dependent thermal 

conductivity.  

 

In another study, Ravi Kanth & Kumar (2013) applied Haar wavelet method for the moving 

convective-radiative Fin with variable thermal conductivity. Singla & Das (2014) used Adomian 

decomposition method for the inverse heat transfer problems in a moving fin. Moradi & Rafiee 

(2013) developed analytical solution using differential transformation method for the convection-

radiation heat transfer in a continuously moving fin with temperature-dependent thermal 

conductivity. Dogonchi & Ganji (2016) considered the flow of convection-radiation heat transfer in 

moving fin with variable thermal properties and internal heat generation while Sun & Ma (2015) 

used collocation spectral method to theoretically investigate the same problem. Singh et al. (2013) 

used wavelet collocation approach for convective-radiative moving fin with variable thermal 

Conductivity. With the application of simplex search method, Das (2011) presented for a 

conductive-convective fin with variable conductivity.   

 

Apart from the fact that there are very few studies on thermal analysis of moving porous fin, to the 

best of the authors’ knowledge, comparative and predictive studies of heat transfer in a moving 

convective-radiative porous fin with temperature-dependent thermal conductivity and internal heat 

generation using differential transformation and finite difference methods have not been carried out. 

Therefore, Thermal distribution of a rectangular moving convective-radiative porous fin with 

temperature-dependent thermal conductivity and internal heat generation is analyzed in this work 

homotopy perturbation method. With the aid of the analytical solutions, the impacts of the model 

parameters on the thermal behaviour of the fin are investigated.  
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2. Problem formulation 

It is considered as shown in Figure 1 that a straight rectangular porous fin of constant cross-sectional 

area, A, with length, b, width W, and thickness, *t  is subjected to heat form the prime surface. The 

fin is porous to allow the flow of fluid infiltrate through it. The axial coordinate, x is measured from 

the base of the fin. The fin is moving horizontally at a constant velocity UX. The development of the 

thermal model is based on the the assumptions that  

i. the porous medium in the porous fin is homogeneous and isotropic and it is saturated with 

single-phase fluid.  

ii. There exists thermal equilibrium between the fluid and the solid matrix of the porous fin.  
iii. The fin is in perfect contact with the prime surface. 

iv. The heat loss through the tip of the fin is negligible. 
v. With the exception of thermal conductivity of the fin, all the other thermal and physical 

properties of the fin are assumed constant.  

 

  

Figure 1 Schematic of the convective longitudinal porous fin  

 

Based on energy balance and Darcy formulation for the porous medium, the thermal model of the 

moving fin is developed as  

 

( ) ( ) ( )2 4 4
( )

( ) 0
ap a p wa o

P T TC gk T T c VhP T T q Td T dT
k T

dx x t A A A dx A

  



  −− − 
− − − − + = 

 
                             (1) 

 

The thermal conductivity and internal heat generation vary linearly with temperature as  

 

( ) ( )( )0 1 sk T k T T= + −                                 (2) 

 

( ) ( )( )1o sq T q T T = + −                                 (3) 
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Substituting equations (3)-(4) into equation (1), gives 

( )( )
( ) ( ) ( ) ( )( )2 4 4

1
1 0

a o ap a pa

s

o o o o

P T T q T TC gk T T c uhP T Td T dT
T T

dx x k t k A A k A dx k A

   




  − + −− − 
+ − − − − − + = 

 
 

  (4) 

Subject to the following boundary conditions;                                                                                                                       

when 0, bx T T= =                                                                                                                                   (5) 

when , 0
dT

x L
dx

= =                                                                                                                                      (6) 

 

when there is small temperature difference within the material/fin during the heat flow, the term T4 

can be expressed as a linear function of temperature. Therefore, we have 

 

                                                               (7) 

 

( )( )
( ) ( ) ( )( )2

3 14 ( )
1 0

o ap a pa a a
s

o o a o o

q T TC gk T T c uhP T T T T Td T dT
T T

dx x k t k A k k A dx k A

  


 

 + −− −  − 
+ − − − − − + = 

 
 

                                                                                                                                                       (8) 

Introducing the following dimensionless variables, 

22 3 22
2

2

( ) 4
    = ,     ,

     =      ( ) ( ), ,
( )

s b s a
C h R

b s o a

o o
b s b s C R

p b s

T T gk b T T PT Lx hpL DaxRa L
X N S N

T T L k A t K t k A

k qUL
Pe T T T T G M N N

C hP T T

 




    
 





− −  
= = = = = 

−  

= = − = − = = +
−

(9) 

where M is convection-radiative parameter that indicates the effect of surface convection of the fin; 

Sp is a porous parameter that indicates the effect of the permeability of the porous medium as well 

as buoyancy effect, β is the dimensionless thermal conductivity and Pe is the Peclet number which 

represent the dimensionless speed of the moving fin (Pe =0 represents a stationary fin). G represents 

the heat generation number.
tH , represents the dimensionless internal heat generation number. 

Substituting the dimensionless variables into equation (10), gives the non-dimensional governing equation  

22 2
2 2 2

2 2
(1 ) 0h

d d d d
S M Pe M G

dX dX dX dX

   
    

 
+ + − − − + + = 

 
                                                 (10)                                                    

The boundary conditions appear in dimensionless form as 

when 0, 1X = =                                                                                                                              (11) 

( ) ( )
24 4 3 2 3 44 6 ... 4 3a a a a a a aT T T T T T T T T T T= + − + − +  −
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when 1, 0
d

X
dx


= =                                                                                                                              (12) 

3.  Method of Solution by homotopy Perturbation Method 

Due to the nonlinear terms in Equation (10), the development of exact analytical solution will be 

difficult. Therefore, in this work, homotopy perturbation method is used to solve the equation.  

 

3.1 The basic idea of homotopy perturbation method 

In order to establish the basic idea behind homotopy perturbation method, consider a system of 

nonlinear differential equations given as 

( ) ( ) 0,A U f r r− =                                    (13) 

   with the boundary conditions 

, 0,
u

B u r


 
=  

 
                                   (14) 

where A is a general differential operator, B is a boundary operator, ( )f r  a known analytical 

function and  is the boundary of the domain   

The operator A can be divided into two parts, which are L and N, where L is a linear operator, N is 

a non-linear operator. Equation (13) can be therefore rewritten as follows 

( ) ( ) ( ) 0L u N u f r+ − =                                    (15) 

   By the homotopy technique, a homotopy ( )  , : 0,1U r p R →  can be constructed, which satisfies 

( ) ( ) ( ) ( ) ( ) ( )  , 1 0, 0,1H U p p L U L U p A U f r p= − − + − =                 (16) 

Or 

( ) ( ) ( ) ( ) ( ) ( ), 0H U p L U L U pL U p N U f r = − + + − =                        (17) 

In the above Equation (16) and (17),   0,1p  is an embedding parameter, 
ou is an initial 

approximation of equation of Equation (13), which satisfies the boundary conditions. 

Also, from Equation (16) and (17), we will have 
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( ) ( ) ( ),0 0oH U L U L U= − =                          (18) 

( ) ( ) ( ),0 0H U A U f r= − =                                    (19) 

The changing process of p from zero to unity is just that of ( ),U r p from ( )ou r to ( )u r . This is referred 

to homotopy in topology. Using the embedding parameter p as a small parameter, the solution of 

Equation (16) and (17) can be assumed to be written as a power series in p as given in Equation (20): 

 
2

1 2 ...oU U pU p U= + + +                                    (20) 

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. 

Therefore, setting 1p = , results in the approximation solution of Equation (13) 

1 2
1

lim ...o
p

u U U U U
→

= = + + +                                   (21) 

The basic idea expressed above is a combination of homotopy and perturbation method. Hence, the 

method is called homotopy perturbation method (HPM), which has eliminated the limitations of the 

traditional perturbation methods. On the other hand, this technique can have full advantages of the 

traditional perturbation techniques. The series Equation (21) is convergent for most cases. 

 

3.2 Application of the homotopy perturbation method to the present problem 

According to homotopy perturbation method (HPM), one can construct an homotopy for Equation (10) 

as  

( ) ( )
22 2 2

2 2 2

2 2 2
, 1 (1 ) 0h

d d d d d
H p p p S M Pe M G

dX dX dX dX dX

    
     

    
= − + + + − − − + + =   

     

    (22) 

where  0,1p  is an embedding parameter. For 0p = and 1p = we have 

( ) ( ) ( ) ( )0 0,0 , ,1X X X X   = =                                  (23) 

Note that when p increases from 0 1to , ( ),X p varies from ( )0 X to ( )0 X .  

 Supposing that the solution of Equation (10) can be expressed in a series in  p :

( ) ( ) ( ) ( ) ( ) ( )2 3

0 1 2 2

0

...
n

i

i

i

X X p X p X p X p X     
=

= + + + + =                                                (24)                            
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On substituting Equation (24) and into Equation (22) and expanding the equation and collecting all 

terms with the same order of p together, the resulting equation appears in form of polynomial in p . 

On equating each coefficient of the resulting polynomial in p to zero, we arrived at a set of differential 

equations and the corresponding boundary conditions as

 2
0 0

2
: 0,

d
p

dX


=                                                                                                                              (25) 

The boundary conditions are    ( ) ( )0 00 1, 1 0,  = =                                                              (26)

       

222
1 2 2 20 0 01

0 0 0 02 2
: (1 ) 0,h

d d dd
p S M Pe M G

dX dX dX dX

  
    

 
+ + − − − + + = 

 
                        (27) 

The boundary conditions are     ( ) ( )1 10 0, 1 0,  = =                                                                 (28) 

22 2
2 2 20 02 1 1 1

1 0 0 1 1 12 2 2
: 2 2 0,h

d dd d d d
p S M Pe M G

dX dX dX dX dX dX

    
      

 
+ + + − − − + = 

 
          (29)     

The boundary conditions are    ( ) ( )2 20 0, 1 0,  = =                                                                  (30) 

 

22 22 2
3 3 0 02 1 1 2

0 1 22 2 2 2

2 2 22
1 0 2 2 2

: 2

2 0,h h

d d dd d d d
p

dX dX dX dX dX dX dX

d
S S M Pe M G

dX

     
    


    

  
+ + + + +   

   

− − − − + =

                                 (31) 

The boundary conditions are    ( ) ( )3 30 0, 1 0,  = =                                                                     (32) 

On solving the above solution, we have 

( )0 1;X =                                                                                                                                       (33) 

 

( )
( )

( )
2 2

2

1 2 ;
1

2

hM S M
X X

G
X

− + +
= − 
 

                                                                             (34) 
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( )
( ) ( ) ( )

( ) ( )

( )

2 2 2 2 2 2

2

4 3 4 3
2

2 2

2

2

2 4 3
2

2

2 2

1 1 1
2

12 3 12 3

1 1
2

2 12

2 2 2

2 2 3

1 16

32
2

h h h

h

h h

h

h

G G GX X X X
X S X M

G GX X X
Pe X M

M S M M S M M S M

M S M M S M

M

G

GS M M
S

  
 

 





     + + +
     
     

   + +


− + − + − +   
= − − + −   

   

− + − +   
+ − − −   

   
  

   

 +
 

−
+

 

+

+

( )

( ) ( )

2 2

2 2

2

2

2

2

1

1 1

2

2

8 8

23 3

h

h h

G

X
G G

M M G

S M

M S M M S M



 


 +
 
 

   + +
 

 − +
 
 
 

− + − + + −
 
 

 
   

                                                                                                                                                                         

                                                                                                                                                       (35) 

From the definitions of HPM in Equation (21) we obtain the infinite series solution given by 

 

( ) (0) (1) (2) .....X   = + + +                                                                                            (36) 

Therefore, substituting Equations (33), (34) and (35) into Equation (36), we have  

( )
( )

( )
( ) ( )

( ) ( ) ( )

2 2 4 3
2

4 3

2 2 2 2

2

2 2 2 2 22 4 3
2 2

2

1 1 1
2

12 3

1 1 1

1 2
2 2 2

2
2

12 3 2 12

2

2 2 3

h h h

h

h h h

G G GX X
S X

G

M S M M S M M S M
X X X

M S M M S G GX X X X X
M Pe X M

M
G

M S M

M

  


  



     + + +

= + − +     
     

     + + +


− + − + − + 
− − 

 

− + − + − +     
+ − + − − −     

 
   

     

+

 

( ) ( )

( ) ( )

2 2 2 2

2 2 2 2

2 2

1 116

3

1 18

2
;

8

3

2

23 2

h h

h

h h

S M M S M

M S M

G G
S

X
G G

M M G
M S M

 


 


   + +
   
   

   + +
   
   

 − + − +
+ 

 
 

− + − + + −
 
 

 

                                                                                                                                                     (37)
  

4. Exact analytical solutions 

If the nonlinear terms are removed, the dimensionless form of the governing equation reduces to 

( )
2

2 2

2
1Pe M G M G

X X

 
 

 
− − − = −

 
                                                                                        (38) 

And the exact analytical solution is given by 
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( )
( )

( ) ( )

( )

( )

( )

( )

2 2 2 2

2 2 2 2

4 1 4 1

2 2
2 2

4 1 4 1

2 2
2 2 2 2

4 1 1
1

( )

4 1 4 1

Pe Pe M G Pe Pe M G
X X

Pe Pe M G Pe Pe M G
X

G
Pe Pe M G e e

G
X

Pe Pe M G e Pe Pe M G e

 

 






 

   + + − − + −
   − −
   
   

   + + − − + −
   − −
   
   

  
    + + − − +     −   =   

 

    − + − − + + −
   



( )1

G

G

 
 
 

 
 

 
+ 

− 
 
 
 
  

 

                                                                                                                                                                   (39)                                              

5. Results and Discussion 

With aid of the MATLAB, the symbolic solutions are simulated, and the results are given in Figure 3-

8. These results show the parametric studies of the effects of the model parameters on the thermal 

behaviour of the extended surface. However, prior to this parametric study, it is required to verify the 

results of the present approximate analytical solutions. The results of the developed exact analytical 

solutions are compared with the approximate analytical solutions i.e., homotopy perturbation method 

used in the present study. Table 1 shows the comparison of the results. The Table depict that there are 

excellent agreements between the results of the two analytical methods for the linear thermal model. 

However, the approximate analytical solution provides insight into the nonlinear thermal behaviour of 

the device. 
 

 Table 1: Comparison of results of linear thermal model 

θ(X) for Sp=0;  β=0; Pe=0.1; M=0.1; Ht=0.0,G=0.0; 

X Exact HPM 

1.00 0.994851 0.994851 

0.90 0.994091 0.994091 

0.80 0.995052 0.995052 

0.70 0.995304 0.995304 

0.60 0.995658 0.995658 

0.50 0.996116 0.996116 

0.40 0.996679 0.996679 

0.30 0.997348 0.997348 

0.20 0.998123 0.998123 

0.10 0.999007 0.999007 

0.00 1.000000 1.000000 
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Figure 2 Effect of porous term on the dimensionless temperature distribution of the fin  

 

 

Figure 3 Effect of convective-term term on the dimensionless temperature distribution of the fin  
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Figure 4 Effect of Peclet number on the dimensionless temperature distribution of the fin  

 

 

Figure 5 Effect of nonlinear thermal conductivity term on the dimensionless temperature 

distribution of the fin  
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Figure 6 Effect of temperature-variant internal heat generation term on the dimensionless 

temperature distribution of the fin  

 

 

Figure 7 Effect of internal heat generation term on the dimensionless temperature distribution of 

the fin  
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Figure 2 shows the effects of porous parameter or porosity on the temperature distribution in the porous 

fin are shown.  From the figures, as the porosity parameter increases, the temperature decreases rapidly 

and the rate of heat transfer (the convective-radiative heat transfer) through the fin increases as the 

temperature in the fin drops faster (becomes steeper reflecting high base heat flow rates) as depicted 

in the figures. The rapid decrease in fin temperature due to increase in the porosity parameter is because 

as porosity parameter increases, the permeability of the porous fin increases and therefore the ability 

of the working fluid to penetrate through the fin pores increases, the effect of buoyancy force increases 

and thus the fin convects more heat, the rate of heat transfer from the fin is enhanced and the thermal 

performance of the fin is increased. High value of porosity parameter not only decreases the effective 

thermal conductivity but also reduces ideal heat transfer.  
 

The impacts of the thermal-geometric variable, M, on the temperature distribution in the fin is shown 

Figure 3. It is illustrated that the temperature of the fin increases when the value of M decreases. It is 

evident that as the convection-conduction parameter is increased it contributes to more heat loss from 

the fin and hence cooling of the fin occurs which shows a decrease in the temperature profile.  
 

Figure 4 shows the influence of Peclet number on the fin temperature profiles. It is shown that the fin 

temperature increases with an increase in the Peclet number. This is because when the Peclet number 

increases, it is an indication that the fin moves faster and the time for which the material is exposed to 

the environment gets shorter as well as the losing heat form fin surface gets stronger, thus the fin 

temperature increases.  
 

Figure 5 establishes the significance of the thermal conductivity parameter    on the temperature 

distribution along the fin. It is shown that when the thermal conductivity parameter is increased, the 

temperature of the fin increases because of the enhancement of the heat conduction process which 

leads to an increase in the local temperature of the fin. The impact of internal heat generation on the 

thermal behaviour of the fin is shown in Figures 6 and 7. It is shown that the fin temperature increases 

as the internal heat generation increases.  
 

5. Conclusion 

In this paper, thermal distribution of a rectangular moving convective-radiative porous fin with 

temperature-dependent thermal conductivity and internal heat generation is analyzed in this work 

homotopy perturbation method. Also, from the analysis, it is found that  

i. increase in porosity and convective parameters, the rate of heat transfer from the fin 

increases and consequently improve the efficiency of the fin.  

ii. the thermal efficiency of the fin is improved by increasing the Peclet number.  

iii. as thermal conductivity and the internal heat generation increase, the rate of heat transfer 

from the fin decreases. 

iv. increase in thermal conductivity and the internal heat generation cause the rate of heat 

transfer from the fin to decrease.  

It is believed that the present study will help in the design of the passive device so as to optimal 

performance of the ultimate purpose of heat transfer enhancement.  
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