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Abstract  

In this work, a comparative study of two approximate analytical methods for the thermal behaviour 

of convective-radiative porous fin subjected to the magnetic field using homotopy perturbation and 

differential transform methods is presented. Also, parametric studies of the effects of thermal-

geometric and thermo-physical fin parameters are investigated. From the study, it is found that an 

increase in a magnetic field, porosity, convective, radiative, and parameters increase the rate of heat 

transfer from the fin and consequently improves the efficiency of the fin. There are good agreements 

between the results of the homotopy perturbation and differential transform method with the results 

of the numerical method. Also, the results of the two approximate analytical methods agree very 

well with each other. It is hoped that the present work will serve as the basis of verifications of the 

other works on the nonlinear thermal analysis of the extended surface. 

Keywords:  Comparative method study; Thermal analysis; Porous Fin; Convective-Radiative fin; 

Magnetic field; Homotopy perturbation method; Differential transformation method 
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Nomenclature 
ar     aspect ratio ratio of the porous fin base area to the surface area 

 A    cross sectional area of the fins, m2 
 Ab porous fin base area  

 As    porous fin surface area 

 Bi   Biot number 
 h     heat transfer coefficient, Wm-2k-1  

 hb    heat transfer coefficient at the base of the fin, Wm-2k-1  

 cp     specific heat of the fluid passing through porous fin(J/kg-K) 
 Da  Darcy number 

g    gravity constant(m/s2) 

h     heat transfer coefficient over the fin surface (W/m2K) 
H    dimensionless heat transfer coefficient at the base of the fin, Wm-2k-1  

k     thermal conductivity of the fin material, Wm-1k-1  

kb   thermal conductivity of the fin material at the base of the fin, Wm-1k-1  

keff  effective thermal conductivity ratio 

K    permeability of the porous fin (m2) 

L    Length of the fin, m  
M   dimensionless thermo-geometric parameter 

m   mass flow rate of fluid passing through porous fin(kg/s) 

Nu  Nusselt number 
P     perimeter of the fin(m) 

Q     dimensionless heat transfer rate per unit area  

qb    heat transfer rate per unit area at the base (W/m2) 
Qb    dimensionless heat transfer rate the base in porous fin 

Qs    dimensionless heat transfer rate the base in solid fin 

Ra    Rayleigh number 
Sh       Porosity parameter 

t       thickness of the fin 

Tb    base temperature(K) 
T     fin temperature (K) 

Ta   ambient temperature, K 

Tb   Temperature at the base of the fin, K 
v      average velocity of fluid passing through porous fin(m/s) 

x      axial length measured from fin tip (m) 

X     dimensionless length of the fin 

w     width of the fin 

q     internal heat generation in W/m3 

 

Greek Symbols 

β      thermal conductivity parameter or non-linear parameter 
δ      thickness of the fin, m 

δb     fin thickness at its base.  

γ      dimensionless internal heat generation parameter 
θ     dimensionless temperature 

θb    dimensionless temperature at the base of the fin 

η     efficiency of the fin 
ε     effectiveness of the fin       

  coefficient of thermal expansion(K-1)  

ɛ      porosity or void ratio 

υ      kinematic viscosity(m2/s) 

ρ      density of the fluid(kg/m3) 

 
Subscripts 

s solid properties 

f fluid properties 
eff  effective porous properties 

 

  

'
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1. Introduction 

The continuous demands and production of high-performance equipment have parts of the driving 

forces behind the present advancement in technology. However, in many of such equipment, excess 

heat generation is unavoidable. Therefore, the removal of the excess heat by effective cooling 

technology is very vital for reliable operation, proper functioning and performance of the equipment. 

In removing the heat, it is obvious the use of fins or extended surface plays an essential and a very 

important role among various passive and active cooling options. Also, in the search of enhancing and 

augmenting the rate of heat transfer by fins from the prime surfaces, it has been found that the use of 

porous fin with certain porosity may give same performance as convectional fin and save 100ϕ of the 

fin material (Kiwan & Al-Nimr, 2014). 

 

The discovery of this idea has led to numerous studies and extensive research on the use of porous fins. 

The pioneer work on the heat transfer enhancement through the use of porous was carried out by Kiwan 

& Al-Nimr (2014). They applied numerical method to investigate the thermal analysis of porous fin 

while Kiwan (2007a and 2007b), and Kiwan & Zeitoun (2008) developed a simple method to study 

the performance of porous fins in natural convection environment. Also, the same authors investigated 

the effects of radiative losses on the heat transfer from porous fins.  

 

Gorla and Bakier (2007) numerically carried out the thermal analysis of natural convection and 

radiation in a rectangular porous fin. Kundu & Bhanja (2011) presented analytical model for the 

analysis of performance and optimization of porous fins. Kundu et al. (2012) proposed a model for 

computing maximum heat transfer in porous fins. Taklifi et al. (2010) investigated the effects of 

magnetohydrodynamics (MHD) on the performance of a rectangular porous fin. In the work, that by 

imposing MHD in system except near the fin tip, heat transfer rate from the porous fin decreases. 

Bhanja & Kundu (2011) analytically investigated thermal analysis of a constructal T-shape porous fin 

with radiation effects. An increase in heat transfer is found by choosing porous medium condition in 

the fin.   

 

Kundu et al. (2007) applied Adomian decomposition method on the performance and optimum design 

analysis of porous fin of various profiles operating in convection environment transient heat transfer 

analysis of variable section pin fins. Saedodin and Sadeghi (2013) analyzed the heat transfer in a 

cylindrical porous fin while Saedodin & Olank (2011).  Darvishi et al. (2015) studied the thermal 

performance of a porous radial fin with natural convection and radiative heat losses while Hatami and 

Ganji (2013) investigated the thermal performance of circular convective-radiative porous fins with 

different section shapes and materials. Hatami et al. (2013), Hatami & Ganji (2014a, 2014b), Hatami 

et al. (2014) presented various heat transfer studies in both dry and wet porous fins.  

 

In solving the heat transfer problem in porous fin, Kundu (2007), Kundu & Bhanji (2011), and Kundu 

et al. (2012) applied Adomian decomposition method (ADM) on the performance and optimum design 

analysis of the fins while Gorla & Bakier (2007), Kiwan (2007a and 2007b), Kiwan & Zeitoun (2008), 

Saedodin & Sadeghi (2013), and Kiwan & Al-Nimr (2014) applied Runge-Kutta for the thermal 

analysis in porous fin.  

 

Golar and Baker (2007) and Gorla et al. (2013) applied Spectral collocation method (SCM) to study 

the effects of variable thermal conductivity on the natural convection and radiation in porous fin. 

Saedodin and Shahababaei (2013) adopted Homotopoy perturbation method (HPM) to analyse heat 

transfer in longitudinal porous fins while Darvishi et al. (2015), Moradi et al. (2014) and Hoshyar, 

Ganji, and Abbasi (2015) adopted Homotopy analysis method (HAM) to provide solution to the natural 

convection and radiation in a porous and porous moving fins while Hoshyar et al. (2015) used 

Homotopy perturbation method and collocation method for Thermal performance analysis of porous 

fins with temperature-dependent heat generation.   
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Hatami and Ganji (2013) applied least square method (LSM) to study the thermal behaviour of 

convective-radiative in porous fin with different sections and ceramic materials. Also, Rostamiyan et 

al. (2014) applied variational iterative method (VIM) to provide analytical solution for heat transfer in 

porous fin.  Ghasemi et al. (2014) used differential transformation method (DTM) for heat transfer 

analysis in porous and solid fin while Petroudi et al. (2012) utilized both HPM and HAM to solve 

nonlinear equation arising in a natural convection porous fin.  Amirkolaei et al. (2014) applied 

homotopy analysis method and collocation method while Hoshyar et al. (2016) used least square 

method to predict the temperature distribution in a porous fin which is exposed to uniform magnetic 

field. In this work, comparative study of two approximate analytical methods for thermal behaviour of 

convective-radiative porous fin subjected to magnetic field using homotopy perturbation and 

differential transformation methods is presented. Parametric studies of the effects of thermal-geometric 

and thermo-physical fin parameters are investigated. The developed symbolic thermal solutions are 

used to investigate the effects of convective, radiative, magnetic parameters on the thermal 

performance of the porous fin.  

 

2. Problem formulation 

Consider a convective-radiative porous fin of length L and thickness t exposed on both faces to a 

convective environment at temperature T  and subjected to magnetic field as shown in Figure 1. The 

dimension x pertains to the height coordinate which has its origin at the fin tip and has a positive 

orientation from fin tip to fin base.  In order to analyze the problem, the following assumptions are 

made. 

1. Porous medium is homogeneous, isotropic and saturated with a single-phase fluid 

2. Physical properties of solid as well as fluid are considered as constant except density variation 

of liquid, which may affect the buoyancy term where Boussinesq approximation is employed. 

3. Fluid and porous mediums are locally thermodynamic equilibrium in the domain. 

4. Surface convection, radiative transfers and non-Darcian effects are negligible.  

5. The temperature variation inside the fin is one-dimensional i.e., temperature varies along the 

length only and remain constant with time.  

6. There is no thermal contact resistance at the fin base and the fin tip is adiabatic type. 

 
 

Figure 1 Schematic of the convective-radiative longitudinal porous fin with magnetic field fin  
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Based on Darcy’s model and following the above assumptions, the thermal energy balance could be 

expressed  
                                                                                                                       

 

                                                                                                                                                       (1) 
                                                                                                                                                        
where 

 

                                                                                                                                                       (2) 

 

The mass flow rate of the fluid passing through the porous material can be written as  

 

( )m u x Wdx=                                                                                                                                                         (3) 

 

From the Darcy’s Model 

 

( )( ) a

gK
u x T T

v


= −                                                                                                                      (4) 

Therefore, Equation (1) becomes 

 

 

                                                                                                                                                       (5) 

 

As dx→0, Equation (5) reduces  

 

 

                                                                                                                                                       (6) 

 

 

From Fourier’s law of heat conduction, the rate of heat conduction in the fin is given by  

                                                                                                                                                       (7)                   

 

 

where 

 

(1 )eff f sk k k = + −  

 

Following Rosseland diffusion approximation, the radiation heat transfer rate is  

 

 

                                                                                                                                                       (8) 

 

Therefore, the total rate of heat transfer is given by  

 

                                                                                                                                                       (9) 

 

 

Substituting Equation (9) into Equation (6), we have 

 

 

                                                                                                                                                     (10) 

( ) 4 4( ) ( ) ( ) c c
x x p a a a

J Jq
q q dx q T dx mc T T hP T T dx P T T dx dx

x




 

 
− + + = − + − + − + 
 

( )cJ E V B= + 

2 4 4( ) ( ) ( )
p c c

x x a a a

c gK J Jq
q q dx T T dx hP T T dx P T T dx dx

x v

 


 

 
− + = − + − + − + 
 

2 4 4( ) ( ) ( )
p c c

a a a

c gK J Jdq
T T hP T T P T T dx

dx v

 





− = − + − + − +

eff cr

dT
q k A

dx
= −

44

3

cr

R

A dT
q

dx




= −

44

3

cr
eff cr

R

AdT dT
q k A

dx dx




= − −

4
2 4 44

( ) ( ) ( )
3

pcr c c
eff cr a a a

R

c gKA J Jd dT dT
k A T T hP T T P T T dx

dx dx dx v

 


 

  
+ = − + − + − + 
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Further simplification of Equation (10) gives the governing differential equation for the fin as  
 

2 4
2 4 4

2

4
( ) ( ) ( ) 0

3

p c c
a a a

R eff eff eff eff eff cr

c gK J Jd T d dT h
T T T T T T dx

dx k dx dx k tv k t k t k A

  

 

  
+ − − − − − − − = 

      (11)                                                                

 

The boundary conditions are 

 

0, 0

, b

dT
x

dx

x L T T

= =

= =                                                                                                                             (12)
 

But  

 

2 2c c
o

J J
B u




=                                                                                                                                                    (13) 

 

After substitution of Equation (13) into Equation (11), taking the magnetic term as a linear function 

of temperature, we have  

 
2 22 4

2 4 4

2

4
( ) ( ) ( ) ( ) 0

3

p o
a a a a

R eff eff eff eff cr

c gK B ud T d dT h
T T T T P T T dx T T

dx k dx dx k tv k t k A

  




 
+ − − − − − − − − = 

 
     (14)  

 

The case considered in this work is a situation where small temperature difference exists within the 

material during the heat flow. This actually necessitated the use of temperature-invariant physical 

and thermal properties of the fin. Also, it has been established that under such scenario, the term T4 

can be expressed as a linear function of temperature. Therefore, we have 
 

( ) ( )
24 4 3 2 3 44 6 ... 4 3T T T T T T T T T T T      = + − + − +  −                                                                   (15) 

 

On substituting Equation (15) into Equation (14), we arrived at 

  
2 22 2

2 3

2 2

16
( ) ( ) 4 ( ) ( ) 0

3

p o
a a a a a

R eff eff eff eff cr

c gK B ud T d T h
T T T T PT T T dx T T

dx k dx k tv k t k A

  



+ − − − − − − − − =    (16) 

 

On introducing the following dimensionless parameters in Equation (17) into Equation (16),  

 

x
X

L
= , a

b a

T T

T T


−
=

−
    ( )b

r

gk T T b
Ra

k





−
=  

b eff

pbh
Nc

A k
=    

34

3

st

R eff

T
Rd

k




=  

34 st

eff

bT
Nr

k

 =     
2 2

0

eff b

B u
H

k A


= .     (17) 

we arrived at the dimensionless form of the governing Equation (16) as  

( )
2

2

2
1 4 (1 ) 0

d
Rd Ra Nc Nr H

dX


    + − − − − − =                                                         (18) 

 

and the dimensionless boundary conditions 
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0, 0

1, 1

d
X

dX

X





= =

= =                                                                                                                           
(19) 

 

3.  Method of Solution: Differential Transform Method 

It is very difficult to develop a closed-form solution for the above non-linear equation (18). 

Therefore, recourse has to be made to either approximation analytical method, semi-numerical 

method or numerical method of solution. In this work, differential transform method is used.  The 

basic definitions of the method is as follows 

 If )(tu  is analytic in the domain T, then it will be differentiated continuously with respect to time 

t. 

( )
( , )

p

p

d u t
t p

dt
=          for         all Tt                                          (20) 

 for itt = , then ( , ) ( , )it p t p =  , where p belongs to the set of non-negative integers, denoted as 

the p-domain. Therefore Equation (50) can be rewritten as  

( )
( ) ( , )

i

p

i p

t t

d u t
U p t p

dt


=

 
= =  

 
                                  (21) 

Where
pU  is called the spectrum of )(tu  at itt =  

  If )(tu  can be expressed by Taylor’s series, the )(tu  can be represented as  

( )
( ) ( )

!

p

i

p

t t
u t U p

p

  −
=  

  
                                                                                                                 (22)                                                                                 

 

Where Equ. (22) is called the inverse of )(kU  using the symbol ‘D’ denoting the differential transformation 

process and combining (21) and (22), it is obtained that 

 

 
( ) 1

0

( ) ( ) ( )
!

p

i

p

t t
u t U p D U p

p


−

=

 −
= = 

  
                                                                                 (23) 

 

3.1 Operational properties of differential transformation method 

If )()( tvandtu  are two independent functions with time (t) where ( )U p  and ( )V p  are the 

transformed function corresponding to )(tu  and )(tv , then it can be proved from the fundamental 

mathematics operations performed by differential transformation that. 
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i. If ),()()( tvtutz =     then ( ) ( ) ( )p U p V p =   

ii. If ),()( tutz =   then ( ) ( )Z p U p=  

iii. If ,
)(

)(
dt

tdu
tz =   then  ( ) ( 1) ( 1)p p U p = − +  

iv. If ),()()( tvtutz =  then 
0

( ) ( ) ( )
p

r

t V r U p r
=

 = −   

v. If )()( tutz m= , then 1

0

( ) ( ) ( )
p

m

r

t U r U p r−

=

 = −  

vi. If ),()()( tvtutz =    then 
0

( ) ( 1) ( 1) ( )
p

r

k r V r U p r
=

 = + + −    

 

The differential transformation of the governing differential Equation (18) is given as 

 

( )
0

( ) ( ) (1 ) ( )
1 4 ( 1)( 2) ( 2) 0

( ) ( )

k

l

l k l Nc k
Rd k k k Ra

Nr k H k

   


 =

 − − −
+ + + + − = 

− − 
                            (24) 

and the boundary condition in Equation (19) 

( )

( ) ( )
0

0, 1 0

1 1 0
k

l

k

a



 
=

= =

=  =
 

Equation (24) could be further simplified as 

( ) 0

( ) ( ) (1 ) ( )
( 2)

1 4 ( 1)( 2) ( ) ( )

k

l

l k l Nc kRa
k

Rd k k Nr k H k

   


 =

  − + − 
+ =   

+ + + + +   
                                   (25) 

Which can be written as  

 1 2

0

( 2) ( ) ( ) ( )
( 1)( 2) ( 1)( 2)

k

l

k l k l k
k k k k

 
   

=

+ = − +
+ + + +

                                                 (26) 

where 

( ) ( )1 2

(1 )
,

1 4 1 4

Ra Nc Nr H

Rd Rd


 

− + +
= =

+ +
 

Now for the counter k=0, 1, 2, 3,..., N in Equation (26), we have  

( )0 a =
 

( )1 0 =  
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( ) ( )2

1 2

1
2

2
a a  = +  

( )3 0 =  

( ) ( )3 2 2 2

1 1 2 1 2

1
4 2 3

24
a a     = + +

 

( )5 0 =  

( ) ( )4 3 3 2 2 2 3

1 1 2 1 2 2

1
6 10 20 11

720
a a a a      = + + +

 

( )7 0 =  

( ) ( )5 4 4 3 3 3 2 2 3 4

1 1 2 1 2 1 2 2

1
8 80 200 162 43

40320
a a a a a        = + + + +

 

( )9 0 =  

( )
6 5 5 4 4 3 2 3 2 3

1 1 2 1 2 1 2

2 4 5

1 2 2

1000 3000 3170 13401
10

3628800 171

a a a a

a a

      


  

 + + +
=   + +   

( )11 0 =  

( )
7 6 6 5 5 4 2

1 1 2 1 2

4 3 3 3 2 4 2 5 6

1 2 1 2 1 2 2

17600 61600 805601
12

476001600 47400 11522 683

a a a

a a a a

    


      

 + + +
=   + + +   

( )13 0 =  

( )

8 7 7 6 6 5 2

1 1 2 1 2

5 4 3 4 3 4 3 2 5

1 2 1 2 1 2

2 6 7

1 2 2

418000 1672000 2604000
1

14 1960000 7087300 101460
87178291200

2731

a a a

a a a

a a

    

      

  

 + + +
 

= + + + 
 

+   

( )15 0 =  

( )

9 8 8 7 7 6 2

1 1 2 1 2

6 5 3 5 4 4 4 3 5

1 2 1 2 1 2

3 2 6 2 7 8

1 2 1 2 2

12848000 57816000 104504800
1

16 95958800 46309440 10780600
20922789888000

904082 10923

a a a

a a a

a a a

    

      

    

 + +
 

= + + + 
 
+ + + 

 

( )17 0 =
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( )

10 9 9 8 8 7 2

1 1 2 1 2

7 6 3 6 5 4 5 4 5

1 2 1 2 1 2

4 3 6 3 2 7 2 8 9

1 2 1 2 1 2 2

496672000 248336000 5109512000
1

18 5537888000 3348125000 1091879000
642373705728000

166874690 8100380 43691

a a a

a a a

a a a a

    

      

      

 + +
 

= + + + 
 
+ + + + 

 

From the definition of DTM, we have 

( ) ( ) ( ) ( )

( )

2 2 3 2 2 2 4 4 3 3 2 2 2 3 6

1 2 1 1 2 1 2 1 1 2 1 2 2

5 4 4 3 3 2 2 2 3 4 8

1 1 2 1 2 1 2 2

6 5 5 4 4 3 2 3 2 3 2

1 1 2 1 2 1 2 1

1 1 1
2 3 10 20 11

2 24 720

1
80 200 162 43

40320

1
1000 3000 3170 1340 171

3628800

X a a a X a a X a a a a X

a a a a a X

a a a a a

             

       

       

= + + + + + + + + + +

+ + + + +

+ + + +( )4 5 10

2 2

7 6 6 5 5 4 2 4 3 3

1 1 2 1 2 1 2 12

3 2 4 2 5 6

1 2 1 2 2

8 7 7 6 6 5 2 5 4 3

1 1 2 1 2 1 2

4 3

1 2

17600 61600 80560 474001

476001600 11522 683

418000 1672000 2604000 19600001

87178291200 7087300

a X

a a a a
X

a a a

a a a a

a

 

      

    

      

 

+ +

 + + + +
+  + + 

+ + +

+

14

4 3 2 5 2 6 7

1 2 1 2 2

9 8 8 7 7 6 2 6 5 3

1 1 2 1 2 1 2

5 4 4 4 3 5 3 2 6 2 7 8

1 2 1 2 1 2 1 2 2

101460 2731

12848000 57816000 104504800 959588001

20922789888000 46309440 10780600 904082 10923

X
a a a

a a a a
X

a a a a a

    

      

        

 
+  + + + 

 + + + +
  + + + + 

16

10 9 9 8 8 7 2 7 6 3

1 1 2 1 2 1 2

6 5 4 5 4 5 4 3 6 3 2 7 18

1 2 1 2 1 2 1 2

2 8 9

1 2 2

496672000 248336000 5109512000 5537888000
1

3348125000 1091879000 166874690 8100380
642373705728000

43691

a a a a

a a a a X

a a

      

       

  

+

 + + +
 
+ + + + + 
 

+ 

 

                                                                                                                                                     (27) 

4. Method of Solution by homotopy Perturbation Method 

It is very difficult to develop a closed-form solution for the above non-linear equation (19). 

Therefore, recourse has to be made to either approximation analytical method, semi-numerical 

method or numerical method of solution. In this work, homotopy perturbation method is used to 

solve the equation.  

 

4.1 The basic idea of homotopy perturbation method 

In order to establish the basic idea behind homotopy perturbation method, consider a system of 

nonlinear differential equations given as 

( ) ( ) 0,A U f r r− =                                   (28) 

   with the boundary conditions 

, 0,
u

B u r


 
=  

 
                                 (29) 

where A is a general differential operator, B is a boundary operator, ( )f r  a known analytical 

function and  is the boundary of the domain   
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The operator A can be divided into two parts, which are L and N, where L is a linear operator, N is 

a non-linear operator. Equation (28) can be therefore rewritten as follows 

( ) ( ) ( ) 0L u N u f r+ − =                                      (30) 

   By the homotopy technique, a homotopy ( )  , : 0,1U r p R →  can be constructed, which satisfies 

( ) ( ) ( ) ( ) ( ) ( )  , 1 0, 0,1H U p p L U L U p A U f r p= − − + − =                    (31) 

Or 

( ) ( ) ( ) ( ) ( ) ( ), 0H U p L U L U pL U p N U f r = − + + − =                          (32) 

In the above Eqs. (31) and (32),   0,1p  is an embedding parameter, ou is an initial approximation 

of equation of Equation (28), which satisfies the boundary conditions. 

Also, from Eqs. (24) and (25), we will have 

( ) ( ) ( ),0 0oH U L U L U= − =                             (33) 

( ) ( ) ( ),0 0H U A U f r= − =                                      (34) 

The changing process of p from zero to unity is just that of ( ),U r p from ( )ou r to ( )u r . This is referred 

to homotopy in topology. Using the embedding parameter p as a small parameter, the solution of Eqs. 

(31) and (32) can be assumed to be written as a power series in p as given in Equation (35) 

 

2

1 2 ...oU U pU p U= + + +                                      (35) 

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. 

Therefore, setting 1p = , results in the approximation solution of Equation (28) 

1 2
1

lim ...o
p

u U U U U
→

= = + + +                                      (36) 

The basic idea expressed above is a combination of homotopy and perturbation method. Hence, the 

method is called homotopy perturbation method (HPM), which has eliminated the limitations of the 

traditional perturbation methods. On the other hand, this technique can have full advantages of the 

traditional perturbation techniques. The series Equation (36) is convergent for most cases. 

 

4.2 Application of the homotopy perturbation method to the present problem 

For ease of our analysis, Equation (18) is written as  

 

( )
2

2 2 2

2
1 0h a

d
S M M G

dX


  − − + + =                                                                                         (37) 
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where 

 

( )1 4
h

Ra
S

Rd
=

+
, 

( ) ( ) ( )
2 (1 )

1 4 1 4 1 4

Nc Nr H
M

Rd Rd Rd

−
= + +

+ + +
,   

( )1 4

Q
G

Rd
=

+
 

 

According to homotopy perturbation method (HPM), one can construct an homotopy for Equation 

(37) as  

( ) ( ) ( )
2 2

2 2 2

2 2
, 1 1h

d d
H p p p S M M G

dX dX

 
   

   
= − + − − + +   

   
                                                (38)  

where  0,1p  is an embedding parameter. For 0p = and 1p = we have 

( ) ( ) ( ) ( )0 0,0 , ,1X X X X   = =                                  (39) 

Note that when p increases from 0 1to , ( ),X p varies from ( )0 X to ( )0 X .  

 Supposing that the solution of Equation (18) can be expressed in a series in                         p :

( ) ( ) ( ) ( ) ( ) ( )2 3

0 1 2 2

0

...
n

i

i

i

X X p X p X p X p X     
=

= + + + + =                                              (40)                            

When Eq. (40) is substituted into Eq. (38) and then expands, after the collection of like terms with 

the same order of p together, the resulting equation appears in form of polynomial in p . On equating 

each coefficient of the resulting polynomial in p to zero, we arrived at a set of differential equations 

and the corresponding boundary conditions as

 
( ) ( ) ( )

2
0 0

0 02
: 0, 0 1 1 0

d
p X

dX


 = = =                         (41) 

( ) ( )
2

1 2 2 2 21
0 0 0 1 12

: 0, 0 0 1 0h

d
p M G S M M G

dX


    + − − + = = =                                     (42) 

( ) ( )
2

2 2 22
1 0 1 1 2 22

: 0, 0 0 1 0h

d
p M G S M

dX


     + − − = = =                                             (43) 

( ) ( )
2

3 2 2 2 23
2 1 0 2 1 3 32

: 2 0, 0 0 1 0h h

d
p M G S S M M G

dX


      + − − − + = = =                    (44) 

( ) ( )
2

4 2 24
3 1 2 0 3 3 4 42

: 2 2 0, 0 0 1 0h h

d
p M S S M G

dX


        − − − + = = =                           (45) 

 ( ) ( )
2

5 2 2 25
1 3 4 4 2 0 4 5 52

: 2 0, 0 0 1 0h h h

d
p S M G M S S

dX


        − + − − − = = =                (46)  
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( ) ( )

2
6 2 26

5 0 5 1 4 5 2 3 6 62
: 2 2 2 0, 0 0 1 0h h h

d
p M G S S M S

dX


          + − − − − = = =

        (47)                    

( ) ( )
2

7 2 27
6 1 5 0 6 6 2 4 7 72

: 2 2 2 0, 0 0 1 0h h h

d
p M G S S M S

dX


         + − − − − = = =             (48) 

( ) ( )
2

8 2 28
7 3 4 1 6 7 0 7 2 5 8 82

: 2 2 2 2 0, 0 0 1 0h h h h

d
p M G S S M S S

dX


           + − − − − − = = =  (49)         

( ) ( )
2

9 2 2 29
0 8 2 6 8 4 3 5 1 7 8 9 92

: 2 2 2 2 0, 0 0 1 0h h h h h

d
p S S M G S S S M

dX


             − − + − − − − = = =     (50)    

On solving the above (Equations 41-50), we arrived at 

( )0 1X =
                                                                                                                                    (51) 

( )
( )

( )
2

2

1

1 1
1

2

hM G S
X X

 − +  +   = −
                                                                                  (52)

 

( )
( ) ( )

( )
2 2 2

4 2

2

1 1 2
6 5

24

h hM G S M S M G
X X X

 − +  + + −    = − +

                                            (53)

 

( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

2
2

6

2 2 22 2

2
2

2 2 22 2

3

1 1

2

301 1 22

12 2

1 1
2

2

1 1 22

2 2

h

h

h hh

h

h

h hh

M G S
S

X

M G S M S M GM S M G

M G S
S

M G S M S M GM S M G

X

   − +  +      +
  

   −
   − +  + + −  + −      
  

  

   − +  +      +
  

 
   − +  + + −  + −      

 
 

=

( )

( ) ( ) ( )

( )

( ) ( )

4

2
2

2

2 2 22 2

2
2

2 2 22 2

12

1 1

2

21 1 25 2

12 2

1 111

30 2

1 1 261 2

360

h

h

h hh

h

h

h hh

X

M G S
S

X

M G S M S M GM S M G

M G S
S

M G S M S M GM S M G




 +



 


   − +  +      +
  

   −
   − +  + + −  + −      
  

  

  − +  +     +
 
 

 − +  + + − + −     ( )
2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
      
                                    (54) 

In the same manner, the expressions for ( )4 X , ( )5 X , ( )5 X , ( )6 X , ( )7 X , ( )8 X , ( )9 X  
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, were obtained. However, they are too large expressions to be included in this paper. 

From the definition, the solution of Equation (18) in HPM domain is 

2 3 4 5

0 1 2 3 4 5

6 7 8 9

6 7 8 9

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...

X X p X p X p X p X p X

p X p X p X p X

      

   

= + + + + +

+ + + + +
                                          

(55)           

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. 

Therefore, setting 1p = , results in the approximation solution of Equation (55) 

( ) 0 1 2 3 4 5
1

6 7 8 9

lim ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...

p
X X X X X X X X

X X X X

       

   

→
= = + + + + +

+ + + + +                                          (56)                                       

On substituting Equation (51-54), one arrives at 

 

( )
( )

( )
( ) ( )

( )

( )

( ) ( ) ( )

( )

2 2 2 2

2 4 2

2
2

6

2 2 22 2

2

1 1 1 1 2
1 1 6 5

2 24

1 1

2

301 1 22

12 2

1 1
2

2

h h h

h

h

h hh

h

h

M G S M G S M S M G
X X X X

M G S
S

X

M G S M S M GM S M G

M G S
S


   − +  + − +  + + −          = − − + − +

   − +  +      +
  

   −
   − +  + + −  + −      
  

  

  − +  +   

+

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2

4

2 2 22 2

2
2

2

2 2 22 2

2

121 1 22

2 2

1 1

2

21 1 25 2

12 2

1 111

30

h hh

h

h

h hh

h

X

M G S M S M GM S M G

M G S
S

X

M G S M S M GM S M G

M G
S

 
   +
  

   +
   − +  + + −  + −      
  

  

   − +  +      +
  

   −
   − +  + + −  + −      
  

  

− + 

( ) ( ) ( )

2

2 2 22 2

...

2

1 1 261 2

360 2

h

h hh

S

M G S M S M GM S M G

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  +
 
 
 
 
 
 
 
 
 
    +      + 
      
    − +  + + −  + −       
      

                 (57)

  

 

where 

 

( )1 4
h

Ra
S

Rd
=

+
,     

( ) ( ) ( )
2 (1 )

1 4 1 4 1 4

Nc Nr H
M

Rd Rd Rd

−
= + +

+ + +
,          

( )1 4

Q
G

Rd
=

+
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5. Exact analytical solution for model validation 

For the purpose of validation of the model results, we developed exact analytical solution for a 

porous fin with constant thermal conductivity. The dimensionless governing differential equation is 

given as 

 

( )

( )
( )

2
2

2

(1 )
0

1 4 1 4

Nc Nr Hd Ra

dX Rd Rd


 

− + +
− − =

+ +                                                                      (58) 

 

In order to find exact analytical solution for Equation (58), taking the transformation
d

dX


= , we 

arrived at  

( )

( )
( )

2
(1 )

0
1 4 1 4

Nc Nr Hd Ra

dX Rd Rd


  

− + +
− − =

+ +
                                                                     (59) 

On integrating Equation (59) wrt θ, we have 

( )

( )
( )

2
3 2

(1 )

2 3 1 4 1 4

Nc Nr HRa
C

Rd Rd


 

− + +
− − =

+ +
                                                                    (60) 

Recall that 

2

2d d

dX dX

 
 

 
= → =  

 
 

Therefore, Equation (60) becomes 

( )

( )
( )

2

3 2
(1 )1

2 3 1 4 1 4

Nc Nr Hd Ra
C

dX Rd Rd


 

− + + 
− − = 

+ + 
                                                          (61) 

With the application of the first boundary condition, 1, 0 1, o

d
X X

dX


 = = → = =  

( )

( )
( )

3 2
(1 )

3 1 4 1 4
o o

Nc Nr HRa
C

Rd Rd


 

− + +
= − −

+ +
                                                                        (62) 

On substituting Equation (62) into Equation (61), we arrived at 

( )
( )

( )
( )

( )
2

3 3 2 2
(1 )1

0
2 3 1 4 1 4

o o

Nc Nr Hd Ra

dX Rd Rd


   

− + + 
− − − − = 

+ + 
                                     (63) 

 

Which could be written as 
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( )

( )
( ) ( )

( )
( )

2

3 2 3 2
(1 ) (1 )2 2

0
3 1 4 1 4 3 1 4 1 4

o o

Nc Nr H Nc Nr Hd Ra Ra

dX Rd Rd Rd Rd

 
   

− + + − + + 
− − + + = 

+ + + + 
          (64)              

Then  

( )

( )
( ) ( )

( )
( )

3 2 3 2
(1 ) (1 )2 2

3 1 4 1 4 3 1 4 1 4
o o

d
dX

Nc Nr H Nc Nr HRa Ra

Rd Rd Rd Rd



 
   

−
=

− + + − + +
+ − −

+ + + +

         (65)                                    

Since θ decreases as x increases, the negative sign is used in when taking the square root . 

Integrating Equation (65)  

( )

( )
( ) ( )

( )
( )

0

3 2 3 2
(1 ) (1 )2 2

3 1 4 1 4 3 1 4 1 4

o

X

o o

d
dX

Nc Nr H Nc Nr HRa Ra

Rd Rd Rd Rd







 
   

= −
− + + − + +

+ − −
+ + + +

      (66)                                  

which gives 

( )

( )
( ) ( )

( )
( )

3 2 3 2
(1 ) (1 )2 2

3 1 4 1 4 3 1 4 1 4

o

o o

d
X

Nc Nr H Nc Nr HRa Ra

Rd Rd Rd Rd







 
   

=
− + + − + +

+ − −
+ + + +

         (67)                                           

Suppose that 

 

( )

( )

( )
( ) ( )

( )
( )

3 2 3 2

; , ,
(1 ) (1 )2 2

3 1 4 1 4 3 1 4 1 4

o

o

o o

d
G Ra M

Nc Nr H Nc Nr HRa Ra

Rd Rd Rd Rd






 

 
   

=
− + + − + +

+ − −
+ + + +


         (68)                          

where 

(1 )M Nc Nr H= − + +  

 

For instant  

 

( )

1 1 1 1
2

1 1 1 1

1 1 1 1
3

2
1 1 1 11

1 2 3

3 6 3 6 3 6 2
,

2 3 6

3 2 4 3 2 4 3 2 4 2
3 ,

2 3 6
;1,1,

3 6

o o o

o

o o o
o

o

o

o

EllipticF

EllipticF

G

      


    

         
  

    
 

   

   + + − − + + +
   

+ +   
  

 + + + − − + + + + +  − −    + +   =  
+ + 





 








 

                                                                                                                                                     (69) 
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Where 

 

2

1

3 2 3 2

2

2

3

57 12 12

6 18 9 6 18 9

2 2 2

o o

o o o

o o

  

      

  

= − −

= − + − + −

= − −

 

 

Therefore, the exact solution of Equation (60) in implicit form is given by 

 

( ); , , oX G Ra M =                                                                                                                    (70) 

 

Where the unknown θo in the solution can be determined from the second boundary condition  

 

( ) ( )0, 1 1 0; , , 0; , , 1o oX G Ra M G Ra M  = = → = → =  

 

i.e. for any given Sh,, and Q, θo is obtained from 

 

( )0; , , 1oG Ra M  =                                                                                                                         (71) 

 

And EllipticF in Equation (69) is the incomplete elliptic integral of the first kind defined as  

 

( )
2 2 20

,
1 1

X d
EllipticF X K

K



 
=

− −
                                                                                     (72a) 

 

This function can be exactly and analytically evaluated as follows 

 

Let    ,sin x sin  = =  

 

( )
20

,
1

d
EllipticF K

K sin

 



=

−
                                                                                              (72b) 

 

In order to evaluate the integral, we expand the integral in the form 

 
2 4 6 8

2 4 6 8

2 2

1 3 5 35
1 ...

2 8 16 1281

K K K K
sin sin sin sin

K sin
   


= + + + + +

−
                                      (73)  

 
 

which could written as                                                    

 
2 4 6 8

2 4 6 8 2 2

2 2
1

1 3 5 35 2 1
1 ...

2 8 16 128 21

N
n n

n

K K K K n
sin sin sin sin K sin

nK sin
    

 =

− 
− = + + + + +  

 −
             (74) 
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Generally, we can write 

 

2 2

2 2
11

1 2 1
1

21

N N
n n

nn

n
K sin

nK sin


 ==

− 
= +  

 −
                                                                                       (75) 

 

 

The above series is uniformly convergent for all , and may, therefore, be integrated term by term. 

Then, we have 

 

( ) 2 2

0
11

2 1
, 1

2

N N
n n

nn

n
EllipticF K K sin d

n



  
==

 − 
= +  

  
                                                              (76)                                     

 

 

But 

( )( ) ( )

( )( ) ( )

( )1
2 2 1 2 2 1

1

2 1 2 3 ... 2 2 1 2 1 !!

2 2 1 2 ... 2 !

n
n n n k

k n
k

n n n k ncos
sin d sin sin

n n n n k n


    

−
− − −

=

 − − − + −−  
= + + 

− − −  
              (77) 

 

 

Therefore 

 

( )

( )( ) ( )

( )( ) ( )

( )

1
2 1 2 2 1

12

11

2 1 2 3 ... 2 2 1

2 2 1 2 ...2 1
,

2 2 1 !!

2 !

n
n n k

kN N
kn

nn

n

n n n kcos
sin sin

n n n n kn
EllipticF K K

n n

n


 

 



−
− − −

=

==

   − − − +−  
+   

− − −−      = +   
  −  

+  
  


    (78) 

 

 

The symbolic and numerical calculations involved in the function ( )0; , , , oG Rd Ra M   were carried 

out via Wolfram’s Mathematica. 
 

    

4. Results and Discussion 

The results of the approximate analytical methods of solution for the non-linear thermal model as 

developed in this work are verified by the numerical method (NM) and the Exact analytical method. 

The results of the differential transformation method (DTM) and homotopy perturbation method 

(HPM) agrees very well with the results of the numerical method as shown in Tables 1 and 2. Also, 

the Tables show that the results of DTM and HPM are highly accurate and agree very well with the 

numerical method. 
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Table 1: Comparison of results for Rd = 0.5, 𝛆 = 0.1, Ra = 0.4, Nc = 0.3, Q=0, Nr = 0.2, H = 0.1 
X           DTM         NUM    | NM-DTM | 

0.00 0.863499158 0.863499231 0.000000073 

0.05 0.863828540 0.863828568 0.000000028 

0.10 0.864817031 0.864817090 0.000000059 

0.15 0.866465671 0.866465743 0.000000072 

0.20 0.868776195 0.868776261 0.000000066 

0.25 0.871751037 0.871751104 0.000000067 

0.30 0.875393336 0.875393404 0.000000068 

0.35 0.879706946 0.879707010 0.000000064 

0.40 0.884696438 0.884696500 0.000000062 

0.45 0.890367120 0.890367181 0.000000061 

0.50 0.896725040 0.896725096 0.000000056 

0.55 0.903777007 0.903777060 0.000000053 

0.60 0.911530606 0.911530658 0.000000052 

0.65 0.919994212 0.919994259 0.000000047 

0.70 0.929177015 0.929177056 0.000000041 

0.75 0.939089039 0.939089079 0.000000040 

0.80 0.949741166 0.949741203 0.000000037 

0.85 0.961145166 0.961145189 0.000000023 

0.90 0.973313722 0.973313764 0.000000042 

0.95 0.986260463 0.986260549 0.000000086 

1.00 1.000000000 1.000000000 0.000000000 

 
 

 

Table 2: Comparison of results of NM and HPM for θ(X) for Rd = 0.5, 𝛆 = 0.1, Ra = 0.4, Nc = 

0.3, Q=0, Nr = 0.2, H = 0.1 

X NM HPM NM – DTM | 

0.00 0.863499231 0.863499664 0.000000433 

0.05 0.863828568 0.863829046 0.000000478 

0.10 0.864817090 0.864817539 0.000000449 

0.15 0.866466182 0.866465743 0.000000439 

0.20 0.868776709 0.868776261 0.000000448 

0.25 0.871751555 0.871751104 0.000000451 

0.30 0.875393859 0.875393404 0.000000455 

0.35 0.879707472 0.879707010 0.000000462 

0.40 0.884696967 0.884696500 0.000000467 

0.45 0.890367650 0.890367181 0.000000469 

0.50 0.896725569 0.896725096 0.000000473 

0.55 0.903777531 0.903777060 0.000000471 

0.60 0.911531120 0.911530658 0.000000462 

0.65 0.919994710 0.919994259 0.000000451 

0.70 0.929177488 0.929177056 0.000000432 

0.75 0.939089476 0.939089079 0.000000397 

0.80 0.949741555 0.949741203 0.000000352 

0.85 0.961145491 0.961145189 0.000000302 

0.90 0.973313964 0.973313764 0.000000200 

0.95 0.986260599 0.986260549 0.000000005 

1.00 1.000.000.000 1.000.000.000 0.000000000 
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Figure 2 shows the effects of porous parameter or porosity on the temperature distribution in the 

porous fin are shown.  From the figures, as the porosity parameter increases, the temperature 

decreases rapidly and the rate of heat transfer (the convective-radiative heat transfer) through the 

fin increases as the temperature in the fin drops faster (becomes steeper reflecting high base heat 

flow rates) as depicted in the figures. The rapid decrease in fin temperature due to increase in the 

porosity parameter is because as porosity parameter, Raleigh number increases, the permeability of 

the porous fin increases and therefore the ability of the working fluid to penetrate through the fin 

pores increases, the effect of buoyancy force increases and thus the fin convects more heat, the rate 

of heat transfer from the fin is enhanced and the thermal performance of the fin is increased. 

Therefore, increase in the porosity of the fin improves fin efficiency due to increasing in convection 

heat transfer.  

 

 

Figure 2 Dimensionless temperature distribution in the fin parameters for varying porous 

parameter when Rd = 0.5, Nc = 0.6, Nr = 0.1, ɛ = 0.8 and Ha =0.7, Q =0  
 

 

Figure 3 show the effects of conduction-convection parameter on the temperature distribution in the 

fin. The figure depicts that as the conduction-convection parameter increases, the rate of heat 

transfer through the fin increases as the temperature in the fin drops faster (becomes steeper 

reflecting high base heat flow rates) as depicted in the figures. The profile has steepest temperature 

gradient at lower value of the conduction-convection term, but its much higher value gotten from 

the lower value of thermal conductivity than the other values of Nc in the profiles produces a lower 

heat-transfer rate. This shows that the thermal performance or efficiency of the fin is favoured at 

low values of convective parameter since the aim (high effective use of the fin) is to minimize the 

temperature decrease along the fin length, where the best possible scenario is when T=Tb 

everywhere. It must be pointed out that a small value of M correspond to a relatively short and thick 

fins of poor thermal conductivity  and high value of M implies a long fin or fin with low value of 

thermal conductivity. Since, the thermal performance or efficiency of the fin is favoured at low 

values of convective fin parameter, very long fins are to be avoided in practice.  
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Figure 3 Dimensionless temperature distribution in the fin parameters for varying 

convection-conduction parameter when Rd = 0.5, Ra = 0.3, Nr = 0.2, ɛ = 0.7, Q=0 and Ha 

=0.6.  

 

The effects of conduction-radiation parameter are shown in Figure 4. The Figure shows that increase 

in the conduction-radiation parameter, the rate of heat transfer through the fin increases.  

 

 

 
Figure 4 Dimensionless temperature distribution in the fin parameters for varying 

radiation-conduction parameter when Rd = 0.8, Ra = 0.7, Nc = 0.5, ɛ = 0.2, Q=0 and Ha 

=0.3.  

 

Figure 5 shows that effects of magnetic parameter, Hartman number on the temperature distribution 

in the porous fin. The figure depicts that the induced magnetic field in the fin can improve heat 

transfer through porous fins. This fact is also depicted in Figure 6 and it is also shown that 

conduction-radiation parameter increases the thermal performance of the fin. From 2-6, it is shown 

that increase in porosity, convective, radiative and magnetic parameters increase the rate of heat 

transfer from the fin and consequently improve the efficiency of the fin. 
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Figure 5 Dimensionless temperature distribution in the fin parameters for varying Hartman 

number (magnetic parameter), when Rd = 0.6, Ra = 0.5, Nc = 0.1, Q=0, Nr = 0.7 and ɛ = 0.4.  

 

 
Figure 6 Dimensionless temperature distribution in the fin parameters for varying Hartman 

parameters and surface-ambient radiation parameters, when Rd = 0.5, Ra = 0.4, Nc = 0.3, Q=0 and 

ɛ = 0.1.  

  

 

Figure 7 Dimensionless temperature distribution in the fin parameters for varying internal heat 

generation parameters, when Rd = 0.25, Ra = 2.0,  

Nc = 1.0, Nr=0.8, γ=0.2, H=0.4 and ɛ = 0.2.  
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Figure 8 Dimensionless temperature distribution in the fin parameters for varying internal heat 

generation parameters, when Rd = 0.25, Ra = 2.0, Nc = 1.0, Nr=0.8, γ=0.4, H=0.4 and ɛ = 0.2.  

 

Fig. 9 Dimensionless temperature distribution in the fin parameters for varying temperature-

dependent internal heat generation parameters, when Rd = 0.25, Ra = 2.0, Nr=0.8, Nc = 1.0, H=0.4, 

Q=0.2 and ɛ = 0.2. 

 

Figures 7 and 8 show the effects of internal heat generation parameter on the temperature 

distribution in the porous fin while Figures 9 and 10 depict the effects of temperature-dependent 

internal heat generation parameter on the temperature distribution in the fin.  From the figures, as 

the internal heat generation parameters increase, the temperature gradient of the fins decreases and 

consequently, the rate of heat transfer in the fin decreases.  It should be stated that fins with porous 

material give superior performance with a significant reduction in weight compared with solid metal 

fins because of its low thermal conductivity and large area of the material when it comes in contact 

with the cooling fluid.  
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Figure 10 Dimensionless temperature distribution in the fin parameters for varying temperature-

dependent internal heat generation parameters, when Rd = 0.25, Ra = 2.0, Nr=0.8, Nc = 1.0, 

H=0.4, Q=0.4 and ɛ = 0.2. 

 

Figure 11 present the comparison of the results of the Exact analytical, differential transformation, 

homotopy perturbation methods. Again, it is shown that the results of the differential transformation 

method and homotopy perturbation method agrees very well with the results of the exact analytical 

method. The attest to the high accuracy of the DTM and HPM. 

 

 
Figure 11 Comparison of the results of the Exact analytical, differential transformation, homotopy 

perturbation methods.   

 

6. Conclusion 

In this work, homotopy perturbation and differential transform methods have been used for 

comparative analysis of thermal behaviour of convective-radiative porous fin subjected to magnetic 

field.  The results of the approximate analytical method are verified by the numerical method. The 

results of the differential transformation method and homotopy perturbation method agree very well 

with the results of the numerical method. Also, parametric study revealed that increase in magnetic 

field, porosity, convective, radiative and parameters increase the rate of heat transfer from the fin 

and consequently improve the efficiency of the fin.  
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