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Abstract  

Most recently, the production of polystyrene by Free Radical Polymerization (FRP) via 

microchannels has been a subject of core interest due to the efficiency of a micro- or milli-reactor. 

In addition, especially in pilot experimentations, a micro or milli-reactor has been known widely to 

be efficient in monitoring the microstructural end-use features or properties of the polymer as the 

chain propagates and ultimately terminates. However, the limitations posed by using micro or milli-

reactors in process intensification such as clogging of pores can be a bottleneck when tracking the 

common phenomena associated with FRP such as cage, gel, and glass effects. In this work, the 

simulation of the synthesis of polystyrene in FRP via microchannels is computed using a robust and 

time-efficient hybrid Gillespie Algorithm (GA) or Hybrid Stochastic Simulation Algorithm (HSSA). 

The obtained results of the end-use properties of polystyrene such as Monomer conversion(𝑋), 
Polydispersity Index (𝑃𝐷𝐼), Number-Average Molar Mass (𝑀𝑛) and Weight Average Molar Mass 
(𝑀𝑤) were compared to experimental data. The simulation results agree well with the experimental 

results reported in this work. Hence, stochastic simulations prove to be an effective tool in making 

decisions in the context of process intensification of chaingrowth polymerization reactions even at 

a large scale. 

Keywords: Polystyrene, Microchannels, Hybrid Stochastic Simulation Algorithm, Gillespie 

Algorithm, Free Radical Polymerization, Process Intensification. 

 

Nomenclature 

Average Percentage Error        APE     (−) 
Chemical Master Equation                       CME     (−) 
Dead Polymer Concentration       𝐷°          (𝑚𝑜𝑙.𝑚−3) 
Differential Algebraic Equation      DAE     (−) 
Free Radical Polymerization                FRP     (−) 
Gillespie Algorithm                                  GA      (−) 
Monomer Conversion                 X              (−) 
Hybrid Stochastic Simulation Algorithm                      HSSA                    (−) 
Stochastic Simulation Algorithm                       SSA              (−) 
Initiator Concentration        I          (𝑚𝑜𝑙.𝑚−3) 
Initiator Efficiency        f                      (−) 
Kinetic Constant for Chain Initiation     𝐾𝑖         (𝑚𝑜𝑙−1𝑠−1) 
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Kinetic Constant for Chain Propagation             𝐾𝑝       (𝑘𝑔𝑚−3𝑠−1) 

Kinetic Constant for Chain Termination by Combination   𝐾𝑡𝑐       (𝑘𝑔𝑚−3𝑠−1) 
Kinetic Constant for Chain Termination by Disproportionation 𝐾𝑡𝑑       (𝑘𝑔𝑚−3𝑠−1) 
Kinetic Constant for Chain Transfer to Monomer   𝐾𝑡𝑟𝑀       (𝑘𝑔𝑚−3𝑠−1) 
Kinetic Constant for Chain Transfer to Solvent    𝐾𝑡𝑟𝑆                  (𝑘𝑔𝑚−3𝑠−1) 
Kinetic Constant for Initiator dissociation    𝐾𝑑           (𝑠−1) 
Kinetic Constant for Thermal Initiation      𝐾𝑖𝑡𝑒𝑟𝑚  (𝑚6𝑚𝑜𝑙−2𝑠−1) 
Live Polymer Concentration       𝑃°          (𝑚𝑜𝑙.𝑚−3) 
Long Chain Approximation                        LCA     (−) 
Monomer Concentration       M          (𝑚𝑜𝑙.𝑚−3) 
Number-Average Molar Mass                       Mn                    (𝑔𝑚𝑜𝑙−1) 
Operating Temperature                            T            (°𝐾) 
Ordinary Differential Equation      ODE     (−) 
Polydispersity Index                         PDI              (−) 
Pseudo Steady-State Hypothesis       PSSH    (−) 
Quasi-Steady State Approximation                      QSSA              (−) 
Radical Concentration        𝑅°          (𝑚𝑜𝑙.𝑚−3) 
Solvent Concentration        S          (𝑚𝑜𝑙.𝑚−3) 
Uniform Random Distribution                       URD              (−) 
Weight-Average Molar Mass                Mw                    (𝑔𝑚𝑜𝑙−1) 
 

List of Symbols 

Molecular Species        𝑋𝑖                           (−) 
Number of Moles of the Reacting Species    N      (𝑚𝑜𝑙𝑒𝑠) 
Number of Reaction Combinations      ℎ𝑗                                                 (−) 

Rate of Polymerization        𝛽     (𝑚𝑜𝑙𝑚−3𝑠−1) 
Reaction Channel        𝑅𝑗            (−) 

Reaction Propensity        𝛼𝑗     (−) 

Reaction Volume         V            (𝑚3) 
Simulation or Residence time      𝑡          (𝑚𝑖𝑛) 
State Vector                         𝑣𝑖𝑗     (−) 

Stochastic Constant        𝑐𝑗                                             (−) 

Time Interval or Leap        𝜏              (𝑠) 
 

1. Introduction 

In recent years, the synthesis of polystyrene via Free Radical Polymerization (FRP) in 

microchannels continues to probe into the increasing level of macromolecular details of polymers. 

Moreover, among many recently published literatures, Dagmar et al. (2015) further validate that the 

performance of polymeric materials depends on the control over the polymer microstructure during 

the reaction steps. One of the pivotal applications of the micro- or milli- reactor technology is that 

it bridges the gap between the synthesis of the end-use features of the polymer at the microscale and 

macroscale. Furthermore, Vianna  et al. (2007) proposed the utilization of continuous flow processes 

to improve polystyrene’s flow dynamics as there were stochastic perturbations observed. Hence, the 

importance of stochastic modelling and simulation of a chain growth polymerization reaction in 

microchannels cannot be overemphasized. Moreso, this computational technique can in turn result 

in both high reproducible molecular weight distribution and improved productivity.  

 

According to Gillespie (2007), an ensemble of the stochastic trajectories obtained within the 

bounds of statistical confidence could reveal the latent behavior of a chemical reaction system at 
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small molecular copy numbers. Thus, from a microscopic perspective, this information can be used 

to predict the key end-use features of the polymer as feeding conditions are varied. This technique 

in monitoring a chain growth reaction is vital at a pilot level since such reactions constitute both fast 

and slow reaction steps. Furthermore, the reproducibility of the simulation results or outcomes at 

small molecular scales is of pivotal towards the improvement the polymer’s final properties. The 

main aim of the work is to find an effective, robust, and scalable approach to simulating Free Radical 

Polymerization (FRP) of Styrene in microchannels by mimicking a micro- or milli-reactor volume. 

The specific objectives are:  

 

 

I. To investigate the statistical discrepancies between experimental and simulated results by 

considering each successive growing chain length per macromolecule of the polymer. This 

implies the application of a simulation technique that does not apply Long-Chain 

Approximation (LCA) or Quasi-Steady State Approximations (QSSA). As earlier suggested 

by Higham (2008), mathematical models rely on modelling assumptions.  

 

II. To apply a Hybrid Stochastic Simulation Algorithm (HSSA) that has the capacity of 

performing parallel simulation of both a stochastic and deterministic simulation. The 

resulting deterministic trajectory for every feed condition provides a ’sanity’ check for the 

corresponding stochastic trajectories. 

 

2. Stochastic Simulation and Modelling Technique  

 

According to Hahl et al. (2016), by comparing the application of the deterministic and 

stochastic simulations, stochastic simulation of the kinetics of complex chemical systems like the 

FRP has proven to be an effective technique for having a clearer understanding of the given chemical 

system at low molecular copy numbers. Furthermore, Meimaroglou et al. (2014) initially suggested 

that each simulation technique has its advantages and limitations, which influence their choice 

regarding the problem at hand. As illustrated in Section 2.2, the Hybrid Stochastic Simulation 

Algorithm (HSSA) is applied in the simulation of the FRP of styrene because of its capacity to 

perform parallel stochastic and deterministic simulations to capture both the fast and slow dynamics 

of the reaction and in addition, the robustness to simulates the chain growth reaction up to 231 − 1 

of the chain length per macromolecule. 

 

 

2.1 Gillespie Algorithm (GA)  

 

As earlier published by Gillespie (1976), the Gillespie Algorithm (GA) which is also known 

as Stochastic Simulation Algorithm (SSA), was introduced to predict or simulate the exact 

realizations of biochemical or cellular reactions that involve interactions of millions of molecular 

species. Although computationally expensive, it effectively solves the intractable nature of the 

Chemical Master Equation (CME) that governs complex chemical reactions. 

 

  Furthermore, assuming 𝛼0 the cumulative sum of propensity after an iteration is completed 

and  𝛼𝑗  is the respective propensity for every reaction channel, 𝑅𝑗 .  The value of 𝜏  is a function of 

the cumulative sum of propensities  𝛼𝑗 of the successive chemical reactions taking place within the 

time interval, 𝑑𝜏 and a variable, 𝜉1 which is generated from a uniform random distribution or URD. 

Moreso, the degree of discreteness of the simulation is also dependent on the numerical values 

of 𝛼𝑗 , 𝜉1 .The original Gillespie Algorithm (Direct Method) is then described according the 

following steps: 
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STEP 1: Initialize the simulation time, 𝑡 and state vector,  𝑣𝑖𝑗. Where 𝑣𝑖𝑗 is the product of the 

molecular species, and reaction channels,  𝑅𝑗. 

STEP 2: Compute the cumulative sum of propensities for every reaction channel, 𝑅𝑗  for 𝑗 =
(1, 2, … ,𝑀) using the equation:  

𝛼0 =∑𝑐𝑗ℎ𝑗

𝑀

𝑗

      

STEP 3: Compute two (2) pseudorandom numbers 𝜉1,𝜉2 from a URD or ~𝑁(0,1). Again, compute 

the next reaction time 𝑡 → 𝑡 + 𝜏 using the equation: 

𝜏 =  
1

𝛼𝑗
ln (

1

𝜉1
)  

STEP 4: Compute the propensity for the next reaction channel 𝑅𝑗 such that: 

1

𝛼0
∑𝛼𝑗  ≤  𝜉2 >

1

𝛼0
∑𝛼𝑗

𝑀

𝑗=1

𝑀−1

𝑗=1

 

STEP 5: Update the next reaction system such that: 

𝑋 ← 𝑋 + 𝑣𝑖𝑗      &     𝑡 ← 𝑡 + 𝜏 

The iteration or computation continues until the number of iterations 𝑛 exceed the time of simulation 

𝑡𝑓 where:  𝑛 ≥ 𝑡𝑓 . Else, repeat STEP 2. 

There are some other variants of the GA or SSA. They do offer not only increased computational 

speed to the simulation of complex chemical reactions such as the FRP but also, they are robust 

enough to solve the problems associated with the CME representing complex chemical reactions. It 

is worth noting that the deterministic rate constants or kinetic constants were converted to stochastic 

rate constants based on the chemistry of the reaction illustrated in the equations below. According 

to the publication of Gillespie (2007), the kinetic constants were mathematically transformed into 

stochastic rate constants as follows in Equations 1 through to 4: 

For unimolecular reactions: 

𝐾𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 𝐾𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐                                                                                                                        (1) 

For bimolecular reactions between different species: 

𝐾𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 =
𝐾𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐

𝑉. 𝑁
                                                                                                                       (2) 

For bimolecular reactions between same species: 

𝐾𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 =
2𝐾𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐

𝑉.𝑁
                                                                                                                     (3) 

For termolecular reaction among same species: 
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𝐾𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 =
6𝐾𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐

𝑉.𝑁
                                                                                                                     (4) 

Where 𝑉 is the reactor volume and 𝑁 the number of moles of the reacting species. 

 

2.2 Application of the Hybrid Stochastic Simulation Algorithm (HSSA) 

Haseltine and Rawlings (2002) earlier proposed the idea of the Hybrid Stochastic Simulation 

Algorithm (HSSA) used in this work. It aims at improving accuracy and speed of computation by 

partitioning the chemical reactions of a given system into fast and slow components or simply by 

applying “Stochastic Partitioning”. As shown in the computational steps below, the program of the 

FRP of styrene was developed and simulated by using the gillespy2 python module earlier 

developed by Abel et al. (2017).  The program allows the parallel computation of the stochastic and 

deterministic simulation of the FRP of styrene model. With 𝐶++ integration, the version 1.7.0 of the 

gillespy2 python library is computationally robust and scalable for a number of complex chemical 

reaction systems such as the FRP with up to a chain length of 231 − 1  per macromolecule. This 

resulted to a high-speed computation for every varying input or feeding condition for a maximum 

of approximately 10 minutes.  

Usually, analytical solutions for a complex chemical reaction system such as the FRP of styrene 

produces over 100,000 stiff ODEs. Moreover, with approximate method like the application of 

method of moments (MoM), these large set of ODEs are reduced to a fewer number of non-stiff 

differential equations and differential algebriac euqations (or DAEs) of index 1. This reduces the 

accuracy of the prediction of the polymer’s end use properties. Nonetheless, it is worth noting that 

the HSSA used in this work combines ODE and SSA solvers for the chain growth reaction 

mechanism for every propensity change without partitioning the system. It can be further employed 

to track the polymer’s end use properties for an increasing number of chain lengths within a 

predefined time of simulation. The HSSA computational steps are shown below:: 

STEP 1: Initiate the FRP of styrene model according to the chemistry of reaction in Table 1. Next, 

define the microchannel volume and initial reaction kinetic parameters. 

STEP 2: By applying, the respective stochastic constants, 𝑐𝑗 from Equation 1 to Equation 4, 

compute the cumulative propensities for every reaction channel, 𝑅𝑗 for each of the chain growth 

reaction depicted in Table 1 using the equation: 

𝛼0 =∑𝑐𝑗ℎ𝑗

𝑀

𝑗

      

Give that given that 𝑗 =  (1,2,3, … ,𝑁) and ℎ𝑗  is the number of instant combinations of reactants for 

reaction, 𝑅𝑗. 

STEP 3: Generate two (2) pseudorandom numbers 𝜉1, 𝜉2 satisfying a URD or  ~𝑁(0,1) . 

STEP 4: Initiate the stochastic simulation in order to generate the stochastic trajectories by 

computing the next reaction time and propensity at 𝑡 → 𝑡 + 𝜏 using equations: 
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𝜏 =  
1

𝛼𝑗
ln (

1

𝜉1
)      𝑎𝑛𝑑     

1

𝛼0
∑𝛼𝑗  ≤  𝜉2 >

1

𝛼0
∑𝛼𝑗

𝑀

𝑗=1

𝑀−1

𝑗=1

 

 

STEP 5: Update the reaction system such that: 

𝑋 ← 𝑋 + 𝑣𝑖𝑗      &     𝑡 ← 𝑡 + 𝜏 

The iteration or computation continues until the number of iterations 𝑛 exceed the predetermined 

time of simulation 𝑡𝑓 where:  𝑛 ≥ 𝑡𝑓 . Else, repeat STEP 3. 

STEP 6: Initiate the stochastic simulation to generate an ensemble of 100 stochastic trajectories by 

computing the “leaping” time and propensity at 𝑡 → 𝑡 + 𝜏  using equations in STEP 4 and the 

equation: 

𝜆 =
𝑒−𝛼𝑗𝜏(𝛼𝑗𝜏)

𝑘

𝑘!
 

STEP 7: Update the reaction system such that: 

𝑋 ← 𝑋 + 𝜆   &     𝑡 ← 𝑡 + 𝜏 

The iteration or computation continues until the number of iterations 𝑛 exceed the predetermined 

time of simulation 𝑡𝑓 where: ≥ 𝑡𝑓 . Else, repeat STEP 3. 

STEP 8: Initiate the deterministic simulation to generate the deterministic trajectory by integrating 

the ODEs from the same reaction system for every fired reaction channel 𝑅𝑗 and reaction time 

according to equations in STEP 4. 

STEP 9: Update the reaction system such that: 

𝑋 ← 𝑋 + 𝑣𝑖𝑗      &     𝑡 ← 𝑡 + 𝜏 

The iteration or computation continues until the number of iterations 𝑛 exceed the predetermined 

time of simulation 𝑡𝑓 where:  𝑛 ≥ 𝑡𝑓 . Else, repeat STEP 3. 

STEP 10: Data frame Processing and Computation of the values of 𝑋, 𝑀𝑛 , 𝑀𝑤, and 𝑃𝐷𝐼 using 

Equation (15) to Equation (18). 

 

Referring to STEP 6 of HSSA above, it is worth noting, that this technique sacrifices the exact 

simulation for an approximate simulation that is quicker to compute. The ‘leaping condition’ holds 

when there exists an infinitesimal time step 𝜏 > 0, which is small enough to represent each reaction 

channel in the chemical reaction system. Furthermore, instead of computing the next infinitesimal 

time step for the next reaction, 𝑅𝑗, the algorithm ‘leaps’ forward in time following a Poisson random 

distribution (PRD) by updating the population of the respective molecular species in one step. 

Furthermore, the appropriate size of the ‘leap’ determines the accuracy of the algorithm thus, the 

larger the size of the ‘leap’, the higher the speed of implementation. In contrast, a small ‘leap’ 
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denotes many steps or iterations that may not capture a reaction channel 𝑅𝑗 hence, the algorithm 

would compute extremely slowly. Therefore, from each iteration, the propensity at 𝜏 > 0  will be a 

function of the leaping time with the number of occurrences 𝑘𝑗  (or frequency of an event occurring 

within the defined ‘leap’) for every𝑅𝑗, which is sampled from a Poisson Random Distribution 

(PRD): 

𝜆 =
𝑒−𝛼𝑗𝜏(𝛼𝑗𝜏)

𝑘

𝑘!
                                                                                                                                           (5) 

Thus, mimicking an explicit Euler iteration technique, the above Equation 5 approximates "leap" 

for the next chemical reaction system within a time 𝜏 which is given by: 

𝑋(𝑡 + 𝜏) = 𝑋(𝑡) +∑𝑃𝑗

𝑀

𝑗=1

(𝛼𝑗𝜏)𝑣𝑖𝑗                                                                                                            (6) 

2.3 Simulation of the FRP of styrene reaction 

In this work, the chemical reaction is mainly made-up initiation, propagation, chain transfer, and 

termination steps. A phenomenological model for the Free Radical Polymerization (FRP) of styrene 

is shown below: 

Table 1- Chemistry of Reaction for the FRP of Styrene. 

Reaction 

Step (#) 

Annotation Chemistry of Reaction 

1 Initiator Dissociation 𝐼
𝐾𝑑
→ 2𝑅⦁ 

2 Chemical Initiation 𝑅⦁ +𝑀
𝐾𝑖
→ 𝑃1

⦁ 

3 Thermal Initiation 3𝑀
𝐾𝑖𝑡𝑒𝑟𝑚
→    𝑅1

⦁ + 𝑅2
⦁  

4 Chain Propagation by Thermal Initiation 𝑅1
⦁ +𝑀

4𝐾𝑝
→  𝑃2

⦁ 

5 Chain Propagation by Thermal Initiation 𝑅2
⦁ +𝑀

4𝐾𝑝
→  𝑃3

⦁ 

6 Chain Propagation 𝑃𝑛
⦁ +𝑀

𝐾𝑝
→ 𝑃𝑛+1

⦁  

7 Chain Transfer to Monomer 𝑃𝑛
⦁ +𝑀

𝐾𝑡𝑟𝑀
→   𝐷𝑛 + 𝑃1

⦁ 

8 Chain Transfer to Solvent 𝑃𝑛
⦁ + 𝑆

𝐾𝑡𝑟𝑆
→  𝐷𝑛 + 𝑃1

⦁ 

9 Termination by Combination 
                         𝑃𝑛

⦁ + 𝑃𝑚
⦁
𝐾𝑡𝑐
→ 𝐷𝑛+𝑚  (∗)  

10 Termination by Disproportionation 𝑃𝑛
⦁ + 𝑃𝑚

⦁
𝐾𝑑
→ 𝐷𝑛 + 𝐷𝑚  (∗) 

(∗) Where m≠ 𝑛 . It worth noting that m ,𝑛  are different chain lengths of the growing polymer. 

In this work, is it assumed that the chain termination is predominantly by disproportionation thus 

the kinetic constant of termination by combination and disproportionation are related as follows:  

 

                                          𝐾𝑡𝑑 + 𝐾𝑡𝑐 ≫ 𝐾𝑡𝑑                                                                                           (6) 
  

 

Applying Flory statistical distribution, the molecular weight distribution (𝑀𝑊𝐷), polydispersity 

index (𝑃𝐷𝐼) and monomer conversion (𝑋) in terms of the dead polymer, 𝐷𝑛 when termination is by 

disproportionation, then the propensity of propagation for the chain growth reaction is given by:  
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𝛽 =
(Rate of Propagation)

(Rate of Propagation) + (Rate of Termination of Chain)
                                                (7) 

 

Moreso, by definition 𝛽 is the probability that a radial on an active chain will propagate rather than 

terminate. 

 

From the chemistry of reaction in Table 1, 

 

𝛽 =
(𝐾𝑝𝑀𝑅

⦁)

(𝐾𝑝𝑀𝑅⦁) + (𝐾𝑡𝑟𝑀𝑀𝑅⦁) + (𝐾𝑡𝑟𝑆𝑆𝑅⦁) + (𝐾𝑡𝑑(𝑅⦁)2)
                                                           (8) 

 

Or 

𝛽 =
(𝐾𝑝𝑀)

(𝐾𝑝𝑀) + (𝐾𝑡𝑟𝑀𝑀) + (𝐾𝑡𝑟𝑆𝑆) + (𝐾𝑡𝑑𝑅⦁)
                                                                              (9) 

 

Where 𝑅⦁ is the formed radicals in the chain growth reaction.  

 

 

Considering chain initiation by only chemical initiation and the rate of termination of chain or the 

net rate of disappearance of radicals of the growing polymer chain: 

  

∑−𝑟𝑖 = −2𝑓𝐾𝑑𝐼2 + 𝐾𝑡𝑑(𝑅
⦁)2

∞

𝑖=1

                                                                                                     (10) 

Applying Pseudo Steady State Hypothesis (PSSH) the Equation 27, the net free radical 

concentration is given by: 

∑−𝑟𝑖 = −2𝑓𝐾𝑑𝐼2 + 𝐾𝑡𝑑(𝑅
⦁)2

∞

𝑖=1

= 0                                                                                             (11) 

𝑅⦁ = (
2𝐾𝑑𝑓𝐼2
𝐾𝑡𝑑

)
2

                                                                                                                                  (12) 

 

Upon substituting Equation (12) into Equation (9) :  

𝛽 =
(𝐾𝑝𝑀)

(𝐾𝑝𝑀) + (𝐾𝑡𝑟𝑀𝑀) + (𝐾𝑡𝑟𝑆𝑆) + (2𝐾𝑡𝑑𝑓𝐼2)
1
2

                                                                      (13) 

 

The initiator, solvent, styrene monomer, live and dead polymer are denoted by 𝐼, 𝑆,𝑀, 𝑃, and 𝐷  

respectively. In addition, the respective kinetic constant for initiator dissociation, chemical, thermal 

initiation, propagation, transfer to monomer, transfer to solvent, termination by combination and 

disproportionation are  𝐾𝑑 ,  𝐾𝑖 ,  𝐾𝑖𝑡𝑒𝑟𝑚 ,  𝐾𝑝 ,  𝐾𝑡𝑟𝑀 ,  𝐾𝑡𝑟𝑆 ,  𝐾𝑡𝑐  and,  𝐾𝑡𝑑. The constant 𝑓  at the 

chemical initiation reaction step is referred as initiator’s efficiency, which ranges between 0.2 <
 𝑓 ≤  0.7 

Since, 𝛽  is a function of time and when chain transfer is negligible then, the monomer conversion 

rate can be simply be obtained assuming, 𝛽 = 𝑋 . Alternatively, by definition assuming that the 
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concentration of [𝑀], [𝐼] are constant at low conversion, the probability that a dead chain is an 𝑖 −
𝑚𝑒𝑟 : 

𝑃(𝑖) = 𝛽𝑖−1(1 − 𝛽)                                                                                                                            (14) 

From Equation 14, it can be shown by further mathematical derivation that the number- average and 

weight - average molecular weights as well as the polydispersity index are given by Equations 15, 

16 and 17 respectively: 

𝑀𝑁 =
2𝑀𝑠
(1 − 𝛽)

                                                                                                                                     (15) 

𝑀𝑊 = 𝑀𝑆
(2 + 𝛽)

(1 − 𝛽)
                                                                                                                              (16) 

𝑃𝐷𝐼 =
𝑀𝑊
𝑀𝑁

=
2 + 𝛽

2
                                                                                                                           (17) 

𝑀𝑠 is the molecular mass of styrene monomer (𝑀𝑠 = 104.15 g/mol)  

In addition, the monomer conversion for a monofunctional monomer is given by: 

𝑋 =
[𝑀]0 − [𝑀]

[𝑀]0
                                                                                                                                 (18) 

Where [𝑀]0 ,[𝑀] are the original monomer concentration and the unreacted monomer 

concentration after a certain period of time. 

3. Results and Discussions 

The simulation of FRP of styrene was carried out by adhering to the same feeding conditions in 

the experiment performed by Fullin et al. (2015) to validate the HSSA. The styrene monomer was 

polymerized in a Syrris Asia 120 microreactor with a volume of 4 ml, which was also adopted in 

the HSSA simulation as reactor volume.  

 

As shown in Table 2, the  ratio between solvent and monomer were chosen to match the 

empirical correlation already presented in the same experiment by Fullin et al. (2015). The initial 

concentration of Styrene monomer, Toluene solvent and Benzoyl peroxide Initiator were fed into 

the milli-reactor in integral volumetric ratios. The respective volumetric ratios of monomer to 

solvent were 60/40, 40/60 and 30/70. The same empirical correlation was also applied in the HSSA 

in order to compute the monomer conversion(𝑋), polydispersity index (𝑃𝐷𝐼), number-average 

molar mass (𝑀𝑁) and weight-average molar mass (𝑀𝑊) . For completeness, the referenced 

experimental and the HSSA simulation outcomes were compared. The results generated in Table 2 

were used to validate the proposed HSSA model used in this work. Moreso, within a reaction time 

of 20 to 80 minutes, the Average Percentage Errors or APEs for both the monomer conversion (𝑋) 
and polydispersity index (𝑃𝐷𝐼) were 23.27%, 11.83% and 20.04%, 13.24%  for this work and the 

referenced work respectively, when considering only the deterministic simulation of the FRP model. 
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Table 2 - A comparative table of results obtained from the HSSA and experimental results 

Fullin et al. (2015). 

Table of results for 𝑴𝑵(𝑔𝑚𝑜𝑙
−1) , 𝑴𝑾(𝑔𝑚𝑜𝑙

−1), 𝑷𝑫𝑰 and  𝑿 

Operating temperature, T = 100 ℃ 

DETERMINISTIC 

 SIMULATION * 

STOCHASTIC  

   SIMULATION * 

EXPERIMENTAL  

RESULTS * 

𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 

10008 14908 1.49 0.18 -   -    -    - 6768 13607 1.57 0.091 

DETERMINISTIC 

 SIMULATION ** 

 STOCHASTIC  

      SIMULATION ** 

EXPERIMENTAL  

RESULTS ** 

𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 

6384 9471 1.49 0.24 - - -   - 5640 8223 1.68 0.391 

* M/S = 60/40 𝑣/𝑣  OR  41g / 59g,     I=1g     &    Simulation time, 𝑡 = 5mins. 

** M/S = 60/40 𝑣/𝑣  OR  41g / 59g,   I=1g     &     Simulation time, 𝑡 = 20mins. 

 

Furthermore, referring to Table 2, it could be observed that the corresponding stochastic 

outcomes based on the predefined conditions could not be captured. Thus, this proves the 

effectiveness of the mill reactor used in the referenced experimental work for FRP of styrene. 

Moreso, the selectivity and optimization of the feeding conditions as well as operating temperatures 

deployed also ensured that predictions of polymer’s end-use properties. However, for the purpose 

of scaling the polymerization reaction from a microscale to a macroscale, the initial conditions were 

adjusted for this work. By implementing a scale factor, 𝑘 of 102 to the respective monomer, solvent 

and initiator input volumetric ratios as well as increasing the temperature correspondingly to 140℃; 

the following results were recorded in Table 3. 

 

Again, as shown in Table 3, while there were observed deviations for  the monomer 

conversion between the deterministic and stochastic result, the corresponding deviations for the 

PDIs were reportedly minimal. Moreso, as the reaction time increased, the observed deviation in 

terms of monomer conversion rates between the stochastic trajectories and corresponding 

deterministic profiles reduced. This behavioral pattern is captured in Figures 1 and 2. On the other 

hand,  the molecular weight distribution or MWD were well distributed as shown in the Figures 

below. However, considering the adjusted operating condition, the MWD becomes narrower as 

shown in the results recorded in Table 3. Overall, as observed for both the deterministic and 

stochastic outcomes, the recorded PDIs were lesser than 1.50 thus, further indicating a narrow 

MWD. Therefore, it can be inferred that the polymer chains have a uniform size or length per 

molecule. 

 

As earlier shown in the HSSA steps in Section 2.2, the HSSA comprises of three (3) separate 

stochastic trajectories that depicted different outcomes of the chemical reaction as shown in Figure 

1 and Figure 2. In addition, the computation of an ensemble of 100 stochastic trajectories using the 

tau-leaping algorithm were carried-out, which are denoted by dashed green lines in Figures 1 and 2. 

The tau - leaping stochastic trajectory showed closer agreement with the corresponding 

deterministic profiles. It  is worth noting that the deterministic trajectory or curve provides a “sanity” 

check to the corresponding stochastic trajectories obtained from every simulation.  
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Table 3 – Deterministic versus Stochastic simulation results of the HSSA. 

Results for 𝑴𝑵(𝑔𝑚𝑜𝑙
−1) , 𝑴𝑾(𝑔𝑚𝑜𝑙

−1), 𝑷𝑫𝑰 and  𝑿 

Operating temperature, 𝐓 = 140 ℃ 

Multiplicative Scale Factor, 𝒌 = 102 

DETERMINISTIC 

SIMULATION * 

STOCHASTIC 

   SIMULATION * 

𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 

2472 3605 1.46 0.87 4994 7387 1.48 0.14 

DETERMINISTIC 

 SIMULATION * 

STOCHASTIC 

  SIMULATION * 

𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 𝑴𝑵 𝑴𝑾 𝑷𝑫𝑰 𝑿 

1467 2096 1.43 0.94 2282 3318 1.45 0.30 

* M/S = 60/40 𝑣/𝑣  OR  41g / 59g,     I=1g     &    Simulation time, 𝑡 = 5mins. 

** M/S = 60/40 𝑣/𝑣  OR  41g / 59g,   I=1g     &     Simulation time, 𝑡 = 20mins. 

 

 

Figure 1 - A graphical plot of the stochastic versus deterministic trajectories of the FRP of 

styrene in a microchannel (4mL). The green dashed line represents an ensemble of 100 

stochastic trajectories. The initial value of the monomer (M) to solvent (S) in grammes = 

41g/59g and initiator (I) = 1g. Operating temperature, T = 140℃, time, t = 30mins and a 

multiplicative scale factor, k = 𝟏𝟎𝟐 . 
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Figure 2 - A graphical plot of the stochastic versus deterministic trajectories of the FRP of 

styrene in a microchannel (4mL). The green dashed line represents an ensemble of 100 

stochastic trajectories. The initial value of the monomer (M) to solvent (S) in grammes = 

41g/59g and initiator (I) = 1g. Operating temperature, T = 140℃, time, t = 60mins and a 

multiplicative scale factor, k = 𝟏𝟎𝟐 . 

 

4. Conclusion 

Therefore, it suffices to say that the HSSA provided a good prediction of the experiment. The 

mean polydispersity index (or PDI ) was close to 1.5, which implies perfect mixedness of the 

reaction constituents with the milli-reactor. However, non-idealities due to viscosity variations, 

fouling of the milli-reactor and micromixing processes may cause numerical deviations from a 

standpoint of the experimental situation. Therefore, the application of the HSSA to simulate the FRP 

reaction not only helps in understanding the reaction taking place in the microchannels at a micro-

scale but is also, applicable in scaling up the process with better productivity while ensuring good 

end-use polymer qualities. 
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