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Abstract 

The electrocardiogram (ECG) is an essential tool in the field of cardiology, as it enables the electrical 

activity of the heart to be measured. It involves placing electrodes on the patient's skin, facilitating 

the measurement and analysis of cardiac rhythms. This non-invasive and painless test provides 

essential information about the heart's function and helps in diagnosing various cardiac conditions. 

The classification of ECG signals using deep learning techniques has garnered substantial interest 

in recent years; ECG classification tasks have exhibited promising outcomes with the application of 

deep learning models, particularly convolutional neural networks (CNNs). The GoogleNet, 

AlexNet, and ResNet Deep-CNN models are proposed in this study as reliable methods for 

accurately diagnosing and classifying cardiac diseases using ECG data. The primary objective of 

these models is to predict and classify prevalent cardiac ailments, encompassing arrhythmia (ARR), 

congestive heart failure (CHF), and normal sinus rhythm (NSR). To achieve this classification, 2D 

Scalogram images obtained through the continuous wavelet transform (CWT) are utilized as input 

for the models. The study's findings demonstrate that the GoogleNet, AlexNet and Resnet models 

achieve an impressive accuracy rate of 96%, 95,33% and 92,66%, in accurately predicting and 

classifying ECG signals associated with these cardiac conditions, respectively. Overall, the 

integration of deep learning techniques, such as the GoogleNet, AlexNet, and ResNet models, in 

ECG analysis holds promise for enhancing the accuracy and efficiency of diagnosing and classifying 

cardiac diseases, potentially leading to improved patient care and outcomes. 

Keywords: Electrocardiogram (ECG). Convolutional Neural Network (CNN). Normal Sinus 

Rhythm (NSR). Arrhythmia (ARR). Congestive Heart Fail (CHF). 
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1. Introduction  

Heart diseases comprise a wide range of conditions that affect both the heart and the blood 

vessels. Some common examples of these conditions include coronary heart disease, stroke, heart 

failure, and cardiac arrhythmias. These conditions can have significant impacts on the 

cardiovascular system and overall heart health. Based on data provided by the World Health 

Organization (WHO), these diseases account for approximately 31% of global fatalities, positioning 

them among the primary causes of death globally. Hence, it is imperative to establish preventive 

measures, early diagnostic strategies, and effective treatments to mitigate the impact of these 

diseases on public health (Rajamhoana et al., 2018; Ahsan et al., 2022). Congestive heart failure 

(CHF) is a severe and critical cardiac condition that significantly contributes to mortality rates on a 

global scale. It occurs when the heart becomes incapable of pumping a sufficient amount of blood 

to maintain blood flow and meet the oxygen and metabolic demands of body tissues. The prevalence 

of CHF is staggering, with over 26 million adults worldwide suffering from the condition, and the 

number increasing by 3.6 million cases annually. Detecting CHF at an early stage plays a crucial 

role in improving treatment options and slowing down its progression. Timely identification allows 

for the implementation of appropriate therapeutic measures that can alleviate symptoms, enhance 

quality of life, and potentially improve long-term outcomes (Jahmunah et al., 2019; Naik Jahmunah 

et al. 2021; Dalia et al. 2021). Arrhythmia (ARR) is another notable cardiac disorder that is linked 

to substantial morbidity and the risk of sudden death. Arrhythmia refers to an abnormal heart rhythm 

characterized by irregular heartbeats (Moghadas et al. 2020; Behar et al., 2019; Pavel et al., 2019). 

On the other hand, a normal sinus rhythm (NSR) indicates the proper propagation of electrical 

signals from the sinus nodes, serving as an indication of a healthy cardiac rhythm (Faust et al. 2021; 

Carrara et al., 2015). Understanding the different cardiac conditions, such as CHF and Arrhythmia, 

is of utmost importance in the field of cardiology. Accurate diagnosis and classification of these 

conditions, including distinguishing NSR from abnormal rhythms, are crucial for guiding 

appropriate treatment strategies and reducing adverse cardiac events. Such advancements contribute 

to the development of personalized treatment plans and enhanced patient outcomes in the realm of 

cardiac care (Çınarc et al. 2021; Chenv et al. 2022; Nahak et al. 2020). The electrocardiogram 

(ECG) is a widely used diagnostic test that offers valuable insights into heart function by capturing 

and analyzing the electrical signals generated by the heart muscles. This non-invasive procedure has 

proven to be highly effective in providing cardiologists with comprehensive information about the 

presence and nature of cardiac pathologies. By assessing the electrical activity patterns of the heart, 

the ECG serves as a reliable tool for the early detection, diagnosis, and monitoring of a wide range 

of cardiac disorders, including but not limited to arrhythmias, myocardial infarction, conduction 

abnormalities, and structural abnormalities.  Identification and rapid intervention of cardiac 

disorders play a crucial role in minimizing complications and improving clinical results. However, 

the interpretation of ECG signals can be subjective and dependent on the Cardiology specialist, 

which can lead to variations in results. It is possible to exploit the advantages of artificial intelligence 

and machine learning to improve the accuracy and reliability of cardiac disorders 

diagnosis.Advances in medical technology, including electrocardiography (ECG) and deep learning 

algorithms, have shown promise in improving the accuracy and efficiency of identifying and 

managing these cardiac disorders. Recent advancements in machine learning, specifically 

convolutional neural networks (CNNs), have the potential to play a pivotal role in this context. 

CNNs are machine learning models specifically designed for image analysis and have proven highly 

effective in classifying and detecting objects in complex images. This is why the use of popular 

machine learning models, namely GoogLeNet, AlexNet, and ResNet, for automatic detection and 

classification of cardiac disorder from ECG signals. Many authors have used deep learning for 

automatic identification and classification of ECG, the author in (Atal et al. 2020; Yıldırım et al. 

2018) has improved the classification of arrhythmias using electrocardiogram (ECG) signals 

through the use of deep convolutional neural networks (CNNs) supported by optimization 

techniques. The paper (Olanrewaju et al. 2021) presents an advancement in the detection of 

arrhythmia and congestive heart failure using a combination of continuous wavelet transform and a 
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deep convolutional neural network (CNN) model called AlexNet.This approach utilizes the 

continuous wavelet transform to extract relevant features from ECG signals and employs deep 

neural networks for accurate classification. By combining these techniques, the classification of 

ECG signals becomes a powerful tool for detecting arrhythmia and congestive heart failure, 

facilitating timely diagnosis and targeted treatment interventions in the field of cardiology. In their 

paper (Çınarc et al. 2021), The authors of the paper have introduced a novel architecture that 

combines LSTM (Long Short-Term Memory) and a hybrid AlexNet-SVM model for the 

classification of ECG signals into three categories: normal sinus rhythm, abnormal arrhythmia, and 

congestive heart failure. This architecture aims to enhance the accuracy and effectiveness of ECG 

signal classification in differentiating between these cardiac conditions. In our study, we will 

explore the effectiveness of deep convolutional neural networks (deep-CNN) utilizing three specific 

models (GoogleNet, AlexNet, and ResNet) for the automated detection of arrhythmia (ARR), 

congestive heart failure (CHF), and normal sinus rhythm (NSR) using ECG signals. By investigating 

the performance of these deep-CNN models, we aim to assess their potential in accurately 

identifying and classifying these cardiac conditions, thereby contributing to advancements in the 

field of ECG-based diagnostics. Google Net is a deep model distinguished by its innovative 

architecture based on inception blocks (Aswathy et al. 2018; Sekhar et al. 2021), Alex Net, 

meanwhile, is a pioneering model in the CNN field. Although it has a shallower architecture than 

GoogLeNet and ResNet, it has demonstrated its ability to extract discriminating features from 

complex images. Finally, ResNet is a revolutionary model that introduced residual connections. By 

exploiting the specific advantages of each model, we hope to deliver promising results and 

contribute to improving the detect of heart disease from ECG signals, which could have a significant 

impact on patient management and reducing diagnostic errors. 

The methodology employed in this dissertation can be summarized through the following 

steps: Section two provides a comprehensive description of our methodology for the classification 

of ECG signals, offering detailed insights into the approach we have adopted. The classification 

process will be presented, outlining the various steps involved in the methodology. Section three 

delves into the utilization of transfer learning on three deep convolutional neural network (CNN) 

models, specifically GoogleNet, AlexNet, and ResNet, with the aim of customizing them for our 

classification task. Furthermore, section four entails a comprehensive examination and evaluation 

of a classification study using these three deep CNN models, including the assessment of 

performance criteria. Lastly, in section five, we present our conclusions derived from the findings 

and contributions of this paper, synthesizing the key insights obtained throughout the study. 

 

2. Methodology 

This section offers a thorough and detailed description of the strategic approaches that have 

been proposed. and their underlying assumptions, the procedures used to classify ECG signals that 

have been confirmed as ARR, CHF, or NSR, the database used during the activity was described, 

as were the techniques used to carry out the tests and analyses. To achieve the goal of ECG signal 

classification using Deep Learning, the following methodology was used: 

 

2.1 Data collection 

For our study, we have utilized three distinct categories of ECG signals. to model a deep 

convolutional neural network (deep CNN): Cardiac arrhythmia (ARR); Congestive heart failure 

(CHF), and Normal sinus rhythm (NSR). Figure 1 provides an illustration of these three categories. 
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Figure 1 - ECG signals categorized into three types: a) ARR, b) CHF, and c) NSR. 

 

These signals were acquired from 162 ECG recordings sourced from three Physionet 

databases. These databases encompass the following:  

- The MIT-BIH arrhythmia database, which consists of 96 recordings of ARR signals. 

- The MIT-BIH normal sinus rhythm database, which comprises 30 records of NSR signals. 

- The BIDMC congestive heart failure database, which includes 36 records of CHF signals. 

 

2.2 Data pre-processing 

The data matrix has dimensions of 162 x 65536, indicating that it encompasses a total of 162 

ECG signals. Each ECG signal in the matrix is composed of 65536 samples. These signals have 

been accurately labeled, providing information about their respective types. Specifically, lines 1 to 

96 in the database represent ARR signals, lines 97 to 126 correspond to CHF signals, and lines 127 

to 162 correspond to NSR signals. 

To address our specific problem, data pre-processing begins at the database level. Each 

individual record, with a length of 65536 samples, is segmented into smaller signals of 500 samples 

to increase the database size and make it suitable for training a convolutional neural network, such 

as GoogleNet. Additionally, to ensure a balanced distribution, we select 30 recordings of each type 

(ARR, CHF, and NSR). Each recording is further divided into 10 chunks, each consisting of 500 

samples. As a result, we obtain 300 records (30 recordings x 10 chunks) of each category, yielding 

a total of 900 records in 500-sample segments (Olanrewaju et al. 2021). 

 

2.2.1 Conversion of ECG signals into images using the continuous wavelet transform (CWT) 

We aim to convert one-dimensional ECG signals into two-dimensional RGB images by 

extracting frequency-specific features using continuous wavelet transform. The resulting images, 

obtained through time-frequency representation, serve as inputs to the GoogleNet deep CNN model. 

Each ECG signal undergoes CWT, generating a cwt scalogram comprising all coefficients. These 

scalograms are transformed into 224x224 images using a 128-color jet-like color map and saved in 

separate folders for each signal category (ARR, NSR, and CHF). In total, we generate 900 scalogram 

images as a result of the data processing steps, with 300 images for each signal category, facilitating 

classification with models GoogleNet, AlexNet and ResNet. The selection of continuous wavelet 

transform (CWT) as our chosen method is driven by several compelling factors. Firstly, CWT 

enables the extraction of valuable and pertinent information from signals in the time domain. Unlike 

other signal processing techniques, CWT provides a flexible representation that captures both local 

and global characteristics of the signal. By applying wavelets with different scales and positions, 

the CWT allows for the analysis of signals at different resolutions, revealing fine details and 

variations that may be crucial for signal interpretation. 
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Moreover, CWT offers control over the waveform shape, which is advantageous for signal 

analysis. By manipulating the scale and translation parameters of the wavelet function, the CWT 

can be tailored to emphasize specific features or frequency components of interest. This adaptability 

makes CWT a powerful tool for signal processing tasks, including feature extraction and pattern 

recognition. The mathematical expression representing the CWT of a function s(t) is defined as 

follows: 

 

 *(a,b) ( ). ((t b) / a)dtCWT x t = −           (1) 

 

In this equation, the scale parameter 'a' regulates the width of the wavelet function, while the 

translation parameter 'b' determines the position of the wavelet function along the time axis. The 

input signal is denoted by 'x(t)', and the complex conjugate of the wavelet function is represented 

by ' *((t b) / a − '. 

The integral is taken over the entire range of t, indicating that the CWT is calculated for each 

possible value of the scale parameter a and the translation parameter b. The result is a two-

dimensional representation of the signal's time-frequency content, where different values of a and b 

correspond to different scales and positions in the time-frequency plane. 

By varying the values of a and b, the CWT captures the signal's spectral information at 

different resolutions, allowing for the detection of transient events and localized frequency 

components. This provides a valuable tool for analyzing time-varying signals such as ECG data, as 

it enables the extraction of relevant features and patterns for further classification and analysis.  

The converted results of the three signal categories are displayed in Figure 2, representing the 

outcome of the conversion process conducted on all 900 signals within our database. 
 

 

Figure 2 - Converting 1D ECG signals to the appropriate scalogram images. 

Our data-base is partitioned into two distinct parts: one for training, which accounts for 80% 

of the data, and the other for testing, which constitutes 20% of the data (see figure 3). 
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Figure 3- Basic data chart. 

2.3 Model selection 

Different CNN - Deep learning architectures, such as Googlenet, Alexnet, and RESNET, were 

examined and assessed to determine their efficacy in ECG signals classification. The selection of 

the optimal model took into consideration factors such as accuracy, computational efficiency, and 

compatibility with the dataset. 

 

2.4 Model training 

The selected model was trained using the pre-processed dataset. This involved supplying the 

model with images and optimizing its parameters through an iterative process called 

backpropagation. The training process aimed to enable the model to learn the distinctive features 

and patterns associated with pneumonia-infected lungs. 

 

2.5 Model evaluation 

The trained model was evaluated using a separate set of test images. Performance measures 

such as precision, recall and F1 score were calculated to assess the model's effectiveness in ECG 

signals classification. 

 

2.6 Model enhancement 

Based on the evaluation results, the model is refined and improved to optimize its 

performance. This may involve techniques such as fine-tuning, regularization or architectural 

modifications to achieve better accuracy and generalization. 

 

2.7 Implementation 

The revised model, demonstrating superior performance in pneumonia detection, has been 

implemented in future research. This could involve deploying the model in a real clinical 

environment, or integrating it into existing medical imaging systems. 

By following this methodology, the goal of automated and accurate classification of ECG 

signals using deep learning techniques can be achieved, potentially contributing to improved health 

outcomes and saving lives. 

 

  

Data set 

ARR CHF NSR 

Train Test Train Test Train Test 



The Journal of Engineering and Exact Sciences – jCEC 

7 

3. Transfert Learning 

Transfer learning is a machine learning approach that leverages knowledge acquired from 

solving one task to enhance performance on a different task. The underlying concept is that the 

general knowledge obtained from tackling one task can be effectively utilized to address another 

task that shares similarities or connections. Transfer learning can be achieved in a number of ways. 

For example, a pre-trained model can be used on a main task (such as image classification) and 

reused, adapting only the final layers for a specific task (such as object detection). In this way, the 

model benefits from the general knowledge learned during the main task and can specialize more 

quickly in the specific task. Transfer learning is a technique widely used in neural network models 

such as GoogLeNet, AlexNet and ResNet. 

GoogLeNet is celebrated for its innovative architecture featuring inception modules that 

combine different filter sizes to extract features at different scales. In transfer learning with 

GoogLeNet, we can use a model pre-trained on a large image database (such as ImageNet) and adapt 

it to a specific task by modifying or re-training the last layers of the network for that task. 

AlexNet was the first model to demonstrate the effectiveness of deep learning for computer 

vision. In transfer learning with AlexNet, we can also use a model pre-trained on ImageNet and 

adapt it to a specific task by adjusting the final layers or re-training them. 

ResNet, or Residual Network, was introduced to solve the problem of performance 

degradation when adding extra layers to neural networks. ResNet's architecture includes residual 

connections to circumvent the problem of vanishing gradients. In transfer learning with ResNet, we 

can use a model pre-trained on large databases (such as ImageNet) and reuse it by adapting the last 

layers for a specific task. 

In our work, we have used these three models, which have been pre-trained on an image 

database containing over a million images and capable of classifying images into 1,000 different 

object categories. This pre-training on such a large amount of data enables these models to acquire 

general knowledge about the representation of objects in images. 

When we applied our three models without using transfer learning on our database, these 

models gave us the wrong results, as illustrated in figure 4, we entered the models with four random 

scalogram images, but at the output, we obtained erroneous classification. 

 

                 
 

                       (a)                                                (b)                                                  (c) 

Figure 4- Image classification without using transfer learning with the a) GoogleNet            

b) AlexNet     c) ResNet. 

To classify ARR, CHF, and NSR in our spectogram images, we modified the last layers of 

these three models as follows: we replaced the last three layers, for GoogleNet, {loss3-classifier; 

prob; output} by {fullyconnected; softmax; output}, for AlexNet: {fc8; prob; output} by {new_fc; 

prob; new_classout} and for ResnetNet: {fc1000; prob; ClassificationLayer_predictions} by 

{new_fc; prob; new_classout}, as shown in the three Figures 5, 6, and 7. 
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Figure 5- Modification of the last three GoogleNet layers. 

 

Figure 6- Modification of the last three AlexNet layers. 

 

Figure 7- Modification of the last three ResNet layers. 

 

 

ARR 

CHF 

NSR 

ARR 

CHF 

NSR 

ARR 

CHF 

NSR 
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4. Results and discussion 

Results and discussion may vary depending on specific data, dataset quality, training 

parameters and other factors. The performance of the proposed model is assessed using various 

metrics, including Accuracy, Precision, F1 Score, and Recall, as detailed in Table 1.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)       (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                              (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                             (4) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2/((1/𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + (1/𝑅𝑒𝑐𝑎𝑙𝑙)                                        (5) 

 

Table 1 – Performance results of our models. 

 

 Model Accuracy TP FN Recall FP Precesion 
F1-

score 

GoogleNet 
0.96 

(96%) 
48 1 

0.9796 

(98%) 
1 

0.9796 

(98%) 

0.9796 

(98%) 

AlexNet 

 

92.6667 

(92.7%) 

46 0 
1 

(100%) 
0 

1 

(100%) 

1 

(100%) 

ResNet 
95.3333 

(95.3%) 
47 

       

       1 

 

0.9792 

(98%) 
1 

0.9792 

(98%) 

0.9792 

(98%) 

 

 

4.1 Results 

Here are the results and discussion of the application of the GoogLeNet, AlexNet and ResNet 

models to the detection of pneumonia: 

- GoogLeNet: The GoogLeNet model achieved an accuracy (accuracy: 0.96) of 96% for 

spectrogram images of ECG signals classification. Recall was 98% (Recall: 0.9796), indicating that 

the model correctly classified the majority of ARR, CHF and NSR. Precision was 98% (Precision: 

0.9796), meaning that that, on average, approximately 98% of the positive predictions made for 

each class (ARR, CHF, and NSR) are correct. This indicates a high level of accuracy in identifying 

instances of each cardiac condition. The F1 score was 96% (F1 Score: 0.96081), indicating good 

harmony between precision and recall. 

- ResNet: The ResNet model achieved an accuracy of 95.33% (Accuracy: 95.3333) for the 

classification of three cases. Recall was 98% (Recall: 0.9792), meaning that the model identified a 

large proportion of positive three cases (ARR, CHF and NSR). Precision was 98% (Precision: 

0.9792), indicating that most positive cases were correctly identified. The F1 score was 98% (F1 

Score: 0.9792), indicating a reasonably balanced performance between precision and recall. 

- AlexNet: The AlexNet model achieved an accuracy of 92.67% (92.667) for the for the 

classification of three cases. Recall was 100% (1), indicating that the model successfully identified 

a large proportion of positive three cases (ARR, CHF and NSR). Precision was 100% (1), showing 

that all of the three cases identified as positive. The F1 score was 100% (1), suggesting good overall 

model performance. 

As training iterations progress, model accuracy is measured and recorded. The graph of 

accuracy versus number of iterations for the GoogleNet model (Figure 8) shows how accuracy 

evolves as the model is trained. Initially, accuracy may be relatively low, but as the number of 
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iterations increases, the model learns to detect pneumonia better and accuracy gradually increases. 

This graph may show fluctuations, but overall, accuracy should increase until it reaches a plateau 

where it converges on a maximum value. Similarly to GoogLeNet, the graph of accuracy versus 

number of iterations for AlexNet Figure 9) represents how accuracy evolves as the model is trained 

to detect pneumonia. Initially, accuracy may be low, but as training progresses, the model adjusts 

and accuracy improves. As with GoogLeNet, accuracy may fluctuate with each iteration, but should 

increase overall until it reaches a maximum value or stabilizes. For ResNet, the graph of accuracy 

versus number of iterations for ResNet (Figure 10) represents how accuracy evolves during training 

for pneumonia detection. As iterations progress, the ResNet model learns to better extract relevant 

features from the pneumonia image, leading to improved accuracy. Again, accuracy may vary 

during training, but should increase overall until it reaches a maximum value or stabilizes. 

The confusion matrix is used to evaluate various measures of model performance, such as 

precision, recall, specificity and F1 score. These measures provide information on the model's 

ability to correctly classify samples from both classes. 

It's important to note that the confusion matrix may be different for each model (GoogLeNet, 

AlexNet, ResNet) depending on their individual performance in detecting pneumonia. Extracting 

specific confusion matrices requires training and testing the models on specific data. 

Figures 11, 12 and 13 show the confusion matrix obtained from our work. 

 

 

Figure 8- The figures show (a) Accuracy (%) as a function of the number of iterations and 

(b) Loss as a function of the number of iterations (GoogleNet). 
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Figure 9- The figures show (a) Accuracy (%) as a function of the number of iterations and 

(b) Loss as a function of the number of iterations (AlexeNet). 

 

Figure 10-  The figures show (a) Accuracy (%) as a function of the number of iterations and 

(b) Loss as a function of the number of iterations (ResNet). 
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Figure 11- Confusion matrix (GoogleNet) 

 

Figure 12- Confusion matrix (AlexNet) 
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Figure 13- Confusion matrix (ResNet) 

Figures 14, 15 and 16 show the classification of eight test image scalograms, using the 

modified deep-CNN model (transfer learning) for all three of our models. The results show the 

classification efficiency of these models. 

 

 

Figure 14- Classifications of eight scalogram images (ECG signal) with the modified deep-

CNN model (GoogleNet). 
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Figure 15- Classifications of eight scalogram images (ECG signal) with the modified deep-

CNN model (AlexNet). 

 

 

Figure 16- Classifications of eight scalogram images (ECG signal) with the modified deep-

CNN model (ResNet). 

4.2.  Discussions 

The three deep CNN models, GoogLeNet, AlexNet and ResNet, performed well in 

classification of ECG signals. They all achieved high accuracy rates, indicating their ability to 

correctly classify scalogram images as ARR, CHF or NSR.  

Comparing the performance of the three models, GoogLeNet achieved the best overall 

accuracy, closely followed by ResNet and AlexNet. However, all models showed similar 

performance in terms of recall, accuracy and F1 score, demonstrating a similar ability to identify 

positive pneumonia cases. 

It is important to note that these results are based on an assessment specific to the dataset used 

and may vary depending on the quality of the dataset and the training parameters chosen. It is 
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recommended to perform cross-validation and test models on different datasets to obtain a more 

robust assessment of their performance. 

 

5. Conclusion 

In this study, we have developed a classification model that integrates the continuous wavelet 

transform (CWT) with a deep learning network to effectively classify ECG signals into three 

categories: Normal Sinus Rhythm (NSR), Congestive Heart Failure (CHF), and Arrhythmia (ARR). 

The ECG signals used in this study were obtained from publicly available databases, namely MIT-

BIH and BMDMC. To facilitate the classification process, the 900 one-dimensional ECG recordings 

were transformed into 2D RGB scalograms. These scalogram images were then fed into deep neural 

networks, specifically the GoogleNet, AlexNet, and ResNet models. The dataset was split into 

training and test sets to evaluate the performance of the models. In conclusion, the utilization of 

machine learning models, such as GoogLeNet, AlexNet, and ResNet, for the classification of ECG 

signals represents a significant advancement in the field of computer-aided diagnosis. The results 

of our work have demonstrated that these CNN models achieved high performance in the automatic 

classification of ECG signals. This indicates that these models are capable of learning to recognize 

specific characteristics of ECG signals and provide accurate classification. 

The experimental results have highlighted the effectiveness of integrating continuous wavelet 

transform (CWT) with deep neural networks, specifically GoogleNet, ResNet, and AlexNet, for 

detecting cardiac abnormalities from ECG signals. These models achieved impressive average 

accuracies of 96.00%, 95%, and 93% respectively, emphasizing their performance in classification 

tasks. 

Moreover, the use of 2D deep-CNN models, notably GoogleNet, demonstrated excellent 

classification accuracies, making them highly suitable for arrhythmia diagnosis and automated 

classification in diverse medical applications. 

Funding: Not applicable. 
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