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Abstract:  

Several professors of mathematics from the renowned universities in Australia, Canada, Europe, 

India, USA, etc. argue with me that the gamma function was not derived from the factorial function. 

For them, this paper presents the derivation of gamma function from the natural logarithm and 

Euler’s factorial function. Also, a novel factorial theorem, which is alternative to the gamma 

function, is introduced in this article and it computes the accurate values of factorial for positive real 

numbers.     
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1.   Introduction 

In general, the factorial for positive integer n, denoted by n!, is the product of all positive integers 

less than or equal to n. For example, 5! = 1 × 2 × 3 × 4 × 5 = 720. Note that 0!=1. In this article, 

the gamma function is proved using the natural logarithm and Pi function [Annamalai, 2023a; 

Annamalai, 2023b; and Annamalai, 2023c], also known as Euler’s factorial function. Also, a novel 

factorial theorem, which is alternative to the gamma function, is introduced in this article and it 

computes the accurate values of factorial for positive real numbers.     

 

2.   Natural Logarithm 

The natural logarithm of a real or complex number is a technique to solve the exponential function 

and vice-versa (Annamalai, 2023d; and Annamalai, 2023e). 

 

The natural logarithm is defined as follows: 

 

log𝑒 𝑢 = 𝐥𝐧 𝑢               (1) 

 

The properties of natural logarithm are given below: 

 

𝐥𝐧 𝑢𝑣= v 𝐥𝐧 𝑢               (2) 

  

𝐥𝐧 𝑢𝑣 =  𝐥𝐧 𝑢 + 𝐥𝐧 𝑣             (3) 

 

𝐥𝐧 𝑢
𝑣

= 𝐥𝐧 𝑢−𝐥𝐧 𝒗              (4) 
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𝐥𝐧 1
𝑢

= 𝐥𝐧1 − 𝐥𝐧 𝒖=− 𝐥𝐧 𝑢 (∵ 𝐥𝐧1=0)            (5) 

 

𝐥𝐧 𝑒 = 1               (6) 

 

Let 𝑒𝑚 = 𝑛, then 𝐥𝐧 𝑛 = 𝑚.  Also, 𝑒  𝐥𝐧 𝑛 = 𝑛 and 𝐥𝐧 𝑒𝑚 = 𝑚      (7) 

 

− 𝐥𝐧 𝑒−𝑟 = −(−𝑟) = 𝑟             (8) 

 

3.   Gamma Function 

The gamma function is proved here using Pi function and natural logarithm. The Pi (Π) function is 

given below: 

 

𝚷(𝑥) = 𝑥! = 𝑥(𝑥 − 1)(𝑥 − 2) ⋯ 1, ∀ 𝑥 𝜖 𝑾,                                                                                           (9) 

 

where 𝑾 denotes the system of whole numbers. 

 

Euler’s factorial function, also known as Pi (Π) function, is the basis for gamma function (Abbas, 

2023; Annamalai, 2023a; Annamalai, 2023b; Annamalai, 2023c; Annamalai, 2023d; and 

Annamalai, 2023e),   

 

Swiss mathematician Leonhard Euler has defined the pi function by integral as follows (Assad, 

2007; Borwein et al., 1989; and Tsiganov, 2009):  

 

𝚷(𝑥) = ∫ (− 𝐥𝐧 𝑡)𝑛
1

0

𝑑𝑡, ∀ 𝑛 𝜖 𝑾,                                                                                                             (10) 

 

where 𝐥𝐧 denotes the logarithm to the base of the mathematical constant 𝑒.   
 

By substituting 𝑡 = 𝑒−𝑥;  𝑑𝑡 = −𝑒−𝑥𝑑𝑥;   𝑡 = 0 ⟹ 𝑒−𝑥 = 0 ⟹ 𝑥 = ∞   
 

and 𝑡 = 1 ⟹ 𝑒−𝑥 = 1 ⟹ 𝑥 = 0  in (10), we obtain: 

 

𝚷(𝑥) = ∫ −𝑥𝑛
0

∞

𝑒−𝑥𝑑𝑥 = ∫ 𝑥𝑛
∞

0

𝑒−𝑥𝑑𝑥, ∀ 𝑛 𝜖 𝑾,                                                                      (11) 

 

where (− 𝐥𝐧 𝑡)𝑛 = (− 𝐥𝐧 𝑒−𝑥)𝑛 = (−(−𝑥))𝑛 = 𝑥𝑛. 
 

By integrating (11), we obtain: 

 

𝚷(𝑥) = [−𝑥𝑛𝑒−𝑥]0
∞ − ∫ −𝑛𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥            (12) 

 

𝚷(𝑥) = [𝑥∞𝑒−∞ − 0] − ∫ −𝑛𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥            (13) 
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Here, 𝑥∞𝑒−∞ is in indeterminate form. Let us apply L′Hospital′s rule,   
 

𝑖. 𝑒. lim
𝑥→∞

−
𝑥𝑛

𝑒𝑥 = lim
𝑥→∞

−
𝑛𝑥𝑛−1

𝑒𝑥 = ⋯ = lim
𝑥→∞

−
𝑛(𝑛−1)⋯1

𝑒𝑥 = 0         (14) 

 

𝚷(𝑥) = 0 − ∫ −𝑛𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥              (15) 

 

Now, 𝚷(𝑥) = 𝑛 ∫ 𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥           (16) 

 

By substituting (11) in (16), we obtain: 

 

𝚷(𝑥) = 𝑛𝚷(𝑥 − 1)              (17) 

 

The gamma function Г(𝑥) is obtained as follows. 

 

𝚷(𝑥) = 𝑛𝚷(𝑥 − 1) ⟹ Г(𝑥 + 1) = 𝑛Г(𝑥)         (18) 

 

𝑛Г(𝑥) = 𝑛 ∫ 𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥 ⟹ Г(𝑥) = ∫ 𝑥𝑛−1∞

0
𝑒−𝑥𝑑𝑥       (19) 

 

The gamma function (Annamalai, 2023b; and Annamalai, 2023e), therefore, is derived from the 

Euler’s factorial function (Pi function) that uses the actual factorial function.  

 

4. Error in Calculation using Gamma Function 

 

The gamma function (Abbas, 2023) for integer values is given below:  

 

Г(𝑥 + 1) = 𝑥(𝑥 − 1)! = 𝑥Г(𝑥)           (20) 

 

Then,  

 

Г(1) = 0! = 1;  Г(2) = 1! = 1;  Г(3) = 2! = 2         (21) 

 

The gamma function (Davis, 1972; Sebah & Gourdon, 2002; and Artin, 2015) for real arguments or 

real numbers is shown below:  

 

Г(𝑟) = (𝑟 − 1)! = ∫ 𝑡𝑟−1∞

0
𝑒−𝑡𝑑𝑡           (22) 

 

Then,  

 

Г(1

2
) = (1

2
− 1)! =  (− 1

2
)! =  √𝜋           (23) 

 

 

Г(1

2
) = (−1

2
)! = √𝜋 ≈ 1.77245385091           (24) 

 

but  Г(3) > Г(1

2
) > Г(2), which is a contradiction. 
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Г(3

2
) = (3

2
− 1)(3

2
− 1 − 1)! = (1

2
)(−1

2
)! = √𝜋

2
         (25) 

 

So, Г (
1

2
)  is not true and also 𝑐alculating the value of Г (

3

2
)  using Г (

1

2
)  can not be true. 

From these results, it is concluded that the calculated values using Г(1

2
) are not true.  

 

5. Factorial Theorem 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟏: (𝑥 + 1)! = 𝑥! + {(𝑥 + 1)! − 𝑥!}, where 𝑥 ≥ 0. 
 

Proof: 

𝑥! + {(𝑥 + 1)! − 𝑥!} = 𝑥! + {𝑥! (𝑥 + 1) − 𝑥!} = 𝑥! + 𝑥! (𝑥) = 𝑥! {1 + 𝑥) = (𝑥 + 1)!, (x≥ 0). 
 

Hence, theorem is proved.  

 

Let us verify the theorem with positive real numbers. 

 
(𝑥 + 1)! = 𝑥! + {(𝑥 + 1)! − 𝑥!} = 𝑥! + (0.64){(𝑥 + 1)! − 𝑥!} + (0.36){(𝑥 + 1)! − 𝑥!} 

𝑥! + (0.64 + 0.36){(𝑥 + 1)! − 𝑥!} = 𝑥! + {(𝑥 + 1)! − 𝑥!} 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟐: 𝑦! = (𝑦 + 1)! − {(𝑦 + 1)! − 𝑦!}, where 𝑦 ≥ 1. 
 

Proof: 
(𝑦 + 1)! − {(𝑦 + 1)! − 𝑦!} = 𝑦! (𝑦 + 1) − {𝑦! (𝑦 + 1) − 𝑦!} 
                                                  = 𝑦! (𝑦 + 1) − 𝑦! (𝑦) = 𝑦! (𝑦 + 1 − 𝑦) = 𝑦!, (𝑦 ≥ 1) 

 

Hence, theorem is proved. 

 

Let us verify the theorem with positive real numbers. 

 

𝑦! = (𝑦 + 1)! − {(𝑦 + 1)! − 𝑦!}
= (𝑦 + 1)! − (1 − 0.64){(𝑦 + 1)! − 𝑦!} − (1 − 0.36){(𝑦 + 1)! − 𝑦!} 

           = (𝑦 + 1)! − (0.36){(𝑦 + 1)! − 𝑦!} − (0.64){(𝑦 + 1)! − 𝑦!} = (𝑦 + 1)! − {(𝑦 + 1)! − 𝑦!} 

 

6. Factorial for Positive Real number 

Let 𝑧 = 𝑖. 𝑓 be a positive real number, where 𝑖 is an integer part, 𝑓 is the decimal or fractional part, 

and 𝑧 ≥ 1  The factorial function to positive real number is established from the perspective of the 

above theorems as follows:  

 

𝑧! = (𝑖. 𝑓)! = 𝑖! + (0. 𝑓){(𝑖 + 1)! − 𝑖!} 

 

Then, 

 
(1.0)! = 1! + (0.0){(𝑖 + 1)! − 𝑖!} = 1 + 0 = 1 

 

(4.6)! = 4! + (0.6)(5! − 4!) = 24 + (0.6)(120 − 24) = 81.6 

 

The gamma function calculator computes the factorial function (4.6)! as follows: 

 

Г(5.6) = (5.6 − 1)! = (4.6)! = 61.5 
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7. Factorial for Rational and Irrational numbers 

If  
𝑝

𝑞
, (𝑞 ≠ 0) = 𝑖

𝑓

𝑞
  is  a common rational number, where 

𝑝

𝑞
≥ 1, f < q, & i is an integer.  

 

Then, (
𝑝

𝑞
) ! = 𝑖! + (

𝑓

𝑞
) {(𝑖 + 1)! − 𝑖!}. 

 

And,  

 

1! = (1
0

1
) ! = 1! + (

0

1
) {(1 + 1)! − 1!} = 1 + 0 = 1 

 

(
14

4
) ! = (3

2

4
) ! = 3! + (

2

4
) (4! − 3!) = 6 + 9 = 15 

 

Let √𝑥 be a irrational number, where √𝑥  ≥ 1. If 𝑖 is the integer part on √𝑥 . 
 

Then, (√𝑥)! = 𝑖! + √𝑥{(𝑖 + 1)! − 𝑖!} − 𝑖{(𝑖 + 1)! − 𝑖!}. 
 

And,  

(√1)! = 1! + √1(2! − 1! − 1(2! − 1!) = 1 + 1 − 1 = 1 

 

(√15)! = 3! + √15(4! − 3!) − 3(4! − 3!) 

 

(119)! = 10! + √119(11! − 10!) − 10(11! − 10!) 

 

8.   Conclusion 

In this paper, factorial theorem for positive real numbers has been introduced and it is an alternative 

to the gamma function. This result can be used as an application in computing and mathematical 

sciences including probability and statistics.    
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