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Resumo  

A análise matemática, aplicada neste trabalho, serve de pilar para uma investigação mais ampla 

sobre a regularidade das Equações de Navier-Stokes. Nesse contexto, esta investigação marca um 

passo significativo no avanço do modelo de Smagorinsky acoplado à metodologia LES, resultando 

com base nos Espaços de Banach e de Sobolev, um novo teorema que aponta o caminho para a 

construção de um modelo de viscosidade anisotrópica (ainda não discutido no presente trabalho). A 

princípio, o esforço dedicado aqui, visa apresentar uma análise matemática mais abrangente, 

promovendo uma compreensão mais nivelada do desafio proposto pela regularidade das equações 

de Navier-Stokes. 

Palavras-chave: Modelo Smagorinsky. Espaços de Banach e de Sobolev. Escoamento turbulento. 

 

Abstract  

The mathematical analysis, applied in this work, serves as a pillar for a broader investigation on the 

regularity of the Navier-Stokes Equations. In this context, this investigation marks a significant step 

forward in the advancement of the Smagorinsky model coupled with the LES methodology, 

resulting, based on the Banach and Sobolev Spaces, a new theorem that points the way to the 

construction of an anisotropic viscosity model (not yet discussed in the present work). At first, the 

effort dedicated here aims to present a more comprehensive mathematical analysis, promoting a 

more leveled understanding of the challenge posed by the regularity of the Navier-Stokes equations. 

Keywords: Smagorinsky model. Banach and Sobolev spaces. Turbulent flow.  

 

1. Introduction 

 

Turbulent formations emerge in both natural occurrences and human endeavors, such as the flow of 

rivers or the emissions billowing from chimneys. Scrutinizing the dynamics of motion carries 

importance across domains like aeronautics, meteorology, and engineering. The quantifiable factor 

referred to as the Reynolds number 
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𝑅𝑒 =
𝑈𝐿

𝜈
=

𝜌𝑈𝐿

𝜇
 (1) 

 

(with characteristic velocity 𝑈, characteristic length 𝐿, kinematic viscosity 𝜈, density 𝜌 and dynamic 

viscosity 𝜇) is a measure for turbulence of a flow. As demonstred by Reynolds' experiment with 

piper-flow, a fluid motion featuring a Reynolds number exceeding 4 × 103 displays turbulence, see 

more in Li Ta-tsien & Yu Wen-ci (1985), Germano (1991), Kolmogorov (1991) and Pope (2000). 

 

2. The Smagorinsky model 

 

To conclude the equations and consequently determine the filtered velocity field �̅�(𝐱, 𝑡) along 

with the adjusted filtered pressure �̅�(𝐱, 𝑡), it is imperative to formulate the anisotropic residual-

stress tensor 𝜏𝑖𝑗
𝑟 (𝐱, 𝑡). Among the available models, the Smagorinsky model stands out due to its 

simplicity and its demonstrated capability to yield satisfactory performance (more details at Pope 

(2000)). 

In the Smagorinsky model, the anisotropic residual-stress tensor 𝜏𝑖𝑗
𝑟 (𝐱, 𝑡) correlates with the 

filtered strain rate 

 

𝑆�̅�𝑗 = 𝑆�̅�𝑗(𝐮): = 𝑆𝑖𝑗(�̅�): = 0.5(𝜕�̅�𝑖 + 𝜕�̅�𝑗) , (2) 

as 

𝜏𝑖𝑗
𝑟 (𝐱, 𝑡) = −2𝜈𝑟𝑆�̅�𝑗 . (3) 

  

This embodies the mathematical representation of the Boussinesq conjecture, which proposes 

that turbulent fluctuations display dissipative characteristics on an average basis. The mathematical 

structure shares similarities with that of molecular diffusion, (for further information, see more at 

Sagaut (2005)). The residual subgrid-scale eddy-viscosity 𝜈𝑟 acts as an artificial viscosity (Sagaut 

(2005),) and represents the eddy-viscosity of the residual motions. It is modeled as  

 

𝜈𝑟 = ℓ𝑆
2(2 𝑆�̅�𝑗𝑆�̅�𝑗)

1
2 = (𝐶𝑆∆)2 (2 𝑆�̅�𝑗𝑆�̅�𝑗)

1
2. (4) 

 

In this context, we encounter the Smagorinsky length scale ℓ𝑆 = 𝐶𝑆∆, the Smagorinsky 

coefficient 𝐶𝑆, the filter width ∆. Lastly, we can express the filtered momentum equation as follows  

 

𝜕𝑡�̅�𝑖𝑗 + �̅�𝑖𝜕𝑖�̅�𝑗 = 2𝜕𝑖 ((𝜈 + ℓ𝑆
2(2 𝑆�̅�𝑗𝑆�̅�𝑗)

1
2) 𝑆�̅�𝑗) − 𝜕𝑗�̅� + 𝑓�̅� , 𝑗 = 1,2,3. (5) 

 

3. Mathematical analysis of the Smagorinsky model 

 

In order to conduct a mathematical analysis of the Smagorinsky model, it is essential that the 

problem is clearly and precisely defined. 

 

3.1 Vector spaces 

 

The Lebesgue space 𝐿𝑝(Ω), 𝑝 ∈ [1, ∞], is the Banach space of measurable functions 𝐯 on Ω which 

satisfy 

 

‖𝐯‖𝐿𝑚,𝑝(Ω): = (∫ |𝐯(𝐱)|𝑑𝐱

Ω

)

1
𝑝

< ∞, 𝑖𝑓 𝑝 ∈ [1, ∞), (6) 
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‖𝐯‖𝐿𝑚,𝑝(Ω): =  𝑒𝑠𝑠 𝑠𝑢𝑝 |𝐯(𝐱)| < ∞, 𝑖𝑓 𝑝 = ∞,  

 

For 𝑝 = 2 the Lebesgue space is also a Hilbert space with the scalar product 

 

(𝐱, 𝐯) = ∫ 𝐯(𝐱) ∙ 𝐰(𝐱)𝑑𝐱.

Ω

 (7) 

 

in the case of one-dimensional functions, the dot signifies straightforward multiplication; however, 

when dealing with vectors or matrices, it denotes the dot product for vectors or the Frobenius inner 

product for matrices. 

 

The Sobolev space 𝑊𝑚,𝑝 is the Banach space of functions for wich 

 

‖𝐯‖𝑊𝑚,𝑝(Ω): = ( ∑ ‖𝐷𝛼𝐯‖
𝐿𝑝(Ω)
𝑝

0≤⌈𝛼⌉≤𝑚

)

1
𝑝

< ∞, if 𝑝 ∈ [1, ∞), 
(8) 

 

‖𝐯‖𝑊𝑚,𝑝(Ω): =  𝑚𝑎𝑥 ‖𝐷𝛼𝐯‖
𝐿𝑝(Ω)
𝑝 < ∞, if 𝑝 = ∞,  

 

remains valid, i.e., it can be defined as 

 

𝑊𝑚,𝑝(Ω) = {𝐯 ∈ 𝐿𝑝(Ω): 𝐷𝛼𝐯 ∈ 𝐿𝑝(Ω), ∀|𝛼| ≤ 𝑚}. (9) 

 

Let 

 

𝑊1,3
0,𝑑𝑖𝑣(Ω) = {𝐯 ∈ 𝑊1,3(Ω): 𝐯|Γ = 0, ∇ ∙ 𝐯 = 0 in Ω}, (10) 

 

be the divergence-free Sobolev space where functions vanish on the boundary Γ = 𝜕Ω, 

 

𝐻1(0, T; 𝐿2(Ω)): = 𝑊1,2(0, T; 𝐿2(Ω)) (11) 

 

a Sobolev space that is also a Hilbert space and 

 

𝑉 ≔ 𝐻1(0, T; 𝐿2(Ω)) ∩ 𝐿3 (0, 𝑇; 𝑊1,3
0,𝑑𝑖𝑣(Ω)), (12) 

 

a Banach space with the norm 

 
‖𝐯‖𝑉 = ‖∇𝐯‖

𝐿3(0,𝑇;𝐿3(Ω))
+ ‖𝜕𝑡𝐯‖

𝐿2(0,𝑇;𝐿2(Ω))
. (13) 

 

3.2 Strong and weak formulation of Navier-Stokes Equation 

 

Consider the Navier-Stoke Equation with the conditions 

 

𝜕𝑡𝐮 + (𝐮 ∙ ∇)𝐮 = 𝜈∇ ∙ ∇𝐮 −
1

𝜌
∇P + f, in Ω × (0, 𝑇],  

(14) 

∇ ∙ 𝐮 = 0, in Ω × [0, 𝑇], 
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𝐮(𝐱, 0) = 𝐮0(𝐱), in Ω 
𝐮 = 0 on Γ × [0, 𝑇], 

∫ 𝑃
𝛀

d𝐱 = 0, in Ω × (0, 𝑇], 

 

with Γ = 𝜕Ω. The first and second equations correspond to the momentum equation and continuity 

equation from above. The initial flow field 𝐮0(𝐱) is also divergence-free, i.e., ∇ ∙ 𝐮0 = 0 in Ω. The 

fourth equation is the no slip boundary condition. It relies on the supposition that the fluid does not 

permeate or slide along the wall. Without the last equation, the pressure 𝑃 would only be determined 

up to a constant, according Sagaut (2005), Hunt & Vassilicos (1991). 

 

Filtering Eqs. (14)  and using a similar condition for the modified filtered pressure, we get 

 

𝜕𝑡�̅� + (�̅� ∙ ∇)�̅� = ∇(𝜈 + 𝜈𝑟)∇�̅� − ∇�̅� + �̅�, in Ω × (0, 𝑇],  

(15) 

∇ ∙ �̅� = 0, in Ω × [0, 𝑇], 
�̅�(𝐱, 0) = �̅�0(𝐱), in Ω 
�̅� = 0 on Γ × [0, 𝑇], 

∫ �̅�
𝛀

d𝐱 = 0, in Ω × (0, 𝑇], 

 

by multiplying the first equation with 𝒗 ∈ 𝑉 and integrating over time and space, we achieve a 

weak formulation. Now, let �̅� ∈ 𝐿2(0, T; 𝐿2(Ω)). Find �̅� ∈ 𝑉 that satisfies �̅�(𝐱, 0) = �̅�0(𝐱) ∈

𝑊1,3
0,𝑑𝑖𝑣(Ω) and 

 

∫(𝜕𝑡�̅� + (�̅� ∙ ∇)�̅�, 𝐯) +

𝑇

0

((𝜈 + 𝜈𝑟)∇�̅�, ∇𝐯)𝑑𝑡 = ∫(�̅�, 𝐯)𝑑𝑡

𝑇

0

 , (16) 

 

for all 𝐯 ∈ 𝑉, with (∙,∙) denoting the 𝐿2(Ω)  scalar product.  

 

3.2 Asymptotic behavior and regularity 

 

Let us first introduce some standard notations and function spaces which will be used in the 

following analysis. We denote 

 

𝒱 = {𝜑 ∈ 𝒟(Ω)3, ∇ ∙  𝜑 = 0}, 

𝐻 = the closure of 𝒱 in 𝐿2(Ω)3, 

𝑉 = the closurr of 𝒱 in 𝑊1,3(Ω)3, 

 

where 𝐿2(Ω)2 is the space of functions which are square integrable over Ω with respect to the 

Lebesgue measure and 𝑊1,3(Ω)3 is the 𝐿3 Sobolev space. 𝐻 is a Hilbert space with respect to the 

inner product. We will use the notation 𝑉′ for the dual space of 𝑉, ‖∙‖𝑉, for the induced norm and 
〈∙,∙〉 for the duality product. For spaces of functions which depend on both time and space variables, 

we will frequently use the two following spaces: (i) 𝐶([0, 𝑇]; 𝑋) space of continuous functions 

𝑢: [0, 𝑇] ⟶ 𝑋, where 𝑋 is a Banach space with the norm denoted by |∙|𝑋. (ii) 𝐿𝑝(0, T; 𝑋) the space 

of strongly measurable functions 𝑢: ]0, 𝑇[ ⟶ 𝑋 with a finite norm 

 

|𝑢|
𝐿𝑝(0,𝑇;𝑋)
𝑝 ≔ ∫|𝑢|𝑋

𝑝  𝑑𝑡 <  ∞.

𝑇

0
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In the case 𝑝 = ∞, the norm is defined by 

 

|𝑢|
𝐿∞(0,𝑇;𝑋)
𝑝

≔ 𝑒𝑠𝑠 sup𝑡∈]0,𝑇[|𝑢(𝑡)|𝑋. 

 

Finally, we will denote by |∙|𝑝 the usual norm in 𝐿𝑝(Ω). 

 

 

Theorem. Let 𝐮0 ∈ 𝐻 and 𝒇 ∈ 𝐿
3

2(0, 𝑇; 𝑉′). Then for any 𝒯 > 0, the problem (𝒮) has a unique weak 

solution on [0, 𝑇]. Moreover, if 𝐮0 ∈ 𝑉 then the unique weak solution is in 𝐿∞(0, T; 𝑊1,3(Ω)3). 

 

Proof. To prove the existence of a weak solution we used a classical Galerkin method. We omit it, 

since it is straightforward from the proof done in Lions (2008) and Jiroveanu (2002). We only 

present here, the proof of uniqueness. Let us suppose that there exist two weak solutions 𝐮 and 𝐯 to 

problem (𝒮), with the same initial condition 𝐮0 ∈ 𝐻 and let 𝐰 = 𝐮 − 𝐯. After subtracting the weak 

formulation for 𝐯 from the one for 𝐮 and talking 𝐰 as test functions in the resulting equation, we 

get: 

 

1

2

𝑑

𝑑𝑡
𝐰2

2 + ∑ ∫[𝒯𝑖𝑗(𝑆(𝐮)) − 𝒯𝑖𝑗(𝑆(𝐯))]𝑆𝑖𝑗(𝐰)𝑑𝐱

Ω

= − ∫ (𝐰 ∙ ∇)𝐮

Ω

3

𝑖,𝑗=1

𝐰𝑑𝐱. 

 

(17) 

 

Moreover, from the definition of the tensor 𝒯 (see more in Pope (2000), Hoffman & Johnson 

(2006)), we have: 

 

  

∑ ∫[𝒯𝑖𝑗(𝑆(𝐮)) − 𝒯𝑖𝑗(𝑆(𝐯))]𝑑𝐱

Ω

= 𝑐1 ∑ ∫|𝑆𝑖𝑗(𝐰)|
2

Ω

3

𝑖,𝑗

3

𝑖,𝑗=1

𝑑𝐱 , 

 

(18) 

 

with 𝑐1 > 0.  

 

Using Korn’s inequality 

 

(∫ |𝑆(𝐮)|𝑝

Ω

𝑑𝐱)

1
𝑝

≥ 𝐶𝑝|∇𝐮|𝑝 

 

for 𝐮 ∈ 𝑊0
1,𝑝

 with 𝐶𝑝 > 0 (1 < 𝑝 < ∞) and Hölder’s inequality we obtain from Eq. (18) 

 

 

1

2

𝑑

𝑑𝑡
|𝐰|𝟐

𝟐  + 𝑐2|∇𝐰|2
2 ≤ ∫ |𝐰|𝟐

Ω

|∇𝐮|𝑑𝐱 ≤ |∇𝐮|𝟑|𝐰|𝟑
𝟐 . 

 

(19) 
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In three dimensions we have the embedding 

 

𝐻1(Ω) ⊂ 𝐿6(Ω) 

from which we deduce 

 

|𝒘|3 ≤ |𝒘|
2

1
2|𝒘|

6

1
2 ≤ 𝑐3|𝒘|

2

1
2|∇𝒘|

2

1
2 . 

 

Moreover, it follows from Eq. (19), via Young’s inequality, that 

 
𝑑

𝑑𝑡
|𝐰|𝟐

𝟐  + 𝑐4|∇𝐰|2
2 ≤ 𝑐𝟓|∇𝐮|3

2 ≤ |𝐰|𝟑
𝟐 . 

 

(20) 

 

Since the functions 𝑔(𝑡) = |∇𝐮|3
2 is integrable on ]0, 𝑇[ and 𝒘(0) = 0, using Gronwall’s inequality 

we get 

|𝒘(𝑡)|𝟐
𝟐 

 

on [0, 𝑇] and thus uniqueness of the solution to problem (𝒮). 

 

The uniform in time regularity is related to the asymptotic behavior of the solution that we 

now consider. 

Let 𝐮0 ∈ 𝐻 and suppose now that 𝒇 ∈ 𝐿2(Ω)3 is time independent. According Theorem, the 

unique weak solution is continous 

 

𝐮 ∈ 𝐶((0, 𝑇); 𝐻). 

 

Consequently, we can define the family of operators (𝑆(𝑡))
𝑡≥0

 by 

 

 
𝑆(𝑡): 𝐻 ⟶ 𝐻
          𝐮0 ↦ 𝑆(𝑡)𝐮0=𝐮(𝑡)

 

 

(21) 

is the solution to problem (𝒮).  

 

 

4. Conclusion 

 

In conclusion, this study has undertaken a rigorous reexamination of the Smagorinsky model, 

shedding light on the sub-grid's mathematical formulation through asymptotic analysis of the LES 

model. The elucidation of this mathematical analysis not only serves as a foundational element but 

also paves the way for a more extensive investigation into regularity of the Navier-Stokes Equations. 

It is our firm belief that this investigation marks a significant step towards advancing the 

Smagorinsky model, with the anticipation that future research will yield an anisotropic viscosity 

model for turbulent flow, ultimately addressing the elusive question of regularity within the Navier-

Stokes Equations. This dedicated effort aims to present a comprehensive mathematical analysis, 

inspiring further exploration and fostering a deeper understanding of the enduring challenge posed 

by the regularity of the Navier-Stokes equations. 
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