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Abstract  

In the medical imaging field, images are obtained using various modalities, including the computed 

tomography procedure and the magnetic resonance imaging procedure. In which every image 

contains different information from the other image. For better treatment and diagnosis of a patient, 

a single composite image must be created by fusing all the pertinent data. This process is known as 

image fusion. We present an innovative and effective image fusion technique utilizing ILWT and 

DCT for combining brain-related medical images acquired through there are two steps to this 

strategy. First, the variance is employed as a contrast evaluation in the DCT domain to combine the 

approximation coefficients generated by the ILWT decomposition. Second, the coefficients 

representing the fine details are combined by finding the ideal weighted average based on the 

importance of the pixels in the ILWT domain. Our method is straightforward, making it simple and 

suitable for deployment in real-time applications. The experimental results demonstrate our 

method's outstanding performance with regard to both result quality and in contrast to a number of 

picture fusion techniques. 
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Nomenclature 

CT:           Computed Tomography 

MRI:         Magnetic Resonance Imaging 

ILWT:      Integer Lifting Wavelet transform 

DCT:        Discrete Cosine Transform  

HIS:          Intensity Hue Saturation  

PCA:         Principal Component Analysis 

BT:           Brovey Transform 

DWT:       Discrete Wavelet Transform 

LAP:         Laplacian Pyramid 

2-D:          Two Dimensional  

AC:           Alternating Current 

DC:           Direct Current 

LL:            Low-Low 

LH:           Low-Hight 

HL:           Hight-Low 

HH:           Hight-Hight 

CV:           Consistency Verification 

SB:            Sub Band 

WT:          Weight factor 

about:blank
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SIDWT:   Shift Invariant Discrete Wavelet Transform 

Max:         Maximum 

AV:           Average 

STD:         Standard deviation 

He:            Entropy 

AG:           Average Gradient 

SF:            Spectral Frequency 

𝑸
𝑨𝑩

𝑭 :           Edge-based similarity metric  

𝑳
𝑨𝑩

𝑭 :           Total loss of information 

 

1. Introduction 

Images in the field of medical imaging contain a wealth of unique information on human 

tissues and organs. They also contain visual data regarding structural images, such as those produced 

by MRI and CT scans (Azam et al., 2022). In general, the CT picture can clearly communicate 

information about human bones but is unable to discern the intricacies of soft tissue (Starmans et 

al., 2022). In contrast, the MRI can express soft tissue information clearly but cannot be sensitive 

to human bones (Singh et al., 2018). To get a more accurate diagnosis, doctors can merge the MRI 

and CT scans of the same patient who has a tumor (Ursuleanu et al., 2021), but stopping this process 

would be improper and tedious. Most importantly, people with various levels of knowledge reach 

disparate conclusions when faced with similar images. Consequently, the development of an image 

fusion system is imperative to ameliorate diagnostic consistency and mitigate the physician's 

workload burden. (Wan et al., 2021). 

The operation of integrating many images into a smaller set is known as image fusion (Bhalla 

et al., 2022). A single merged image is typical. Compared to each of the initial source images, the 

composite image offers a more precise representation of the scene (Latreche et al., 2018). From the 

1970s of the 20th century to today, various medical imaging fusion techniques have been developed 

(Alseelawi et al., 2022; Ganasala et al., 2020; Hou et al., 2019; Li et al., 2021; Na et al., 2018). The 

easier technique of image fusion is done in the spatial domain by taking the maximum, minimum 

or averaging of each comparable pixel of the input images (Liu et al., 2020). However, this 

technique frequently results in unwanted outcomes, such as diminished contrast. 

Other spatial domain techniques in accordance with the intensity hue saturation (IHS) model 

(Choi, 2006), principal component analysis (PCA) (Metwalli et al., 2009) and Brovey transform 

(BT) (Gharbia et al., 2014) are quick, straightforward, and simple to use. They do, however, result 

in spectral deterioration and blurring, which lower the contrast of the final image.  

So far, in the fusion of medical images, several methods in the transform domain have been 

used, like pyramids (Sahu et al., 2014), discrete cosine transform (DCT) (Phamila et al., 2014), and 

discrete wavelet transform (DWT) (Singh et al., 2014; Vijayarajan et al., 2015). In the transform 

domain, source images undergo conversion into various domains (from spatial to frequential), where 

the fused coefficients are received by combining the representations of source images employing a 

particular fusion criterion (Diwakar et al., 2021). Ultimately, the resulting fused image is generated 

by applying the drawback transform to the combined coefficients. 

A well-known multi-resolution tool, the Laplacian pyramid (LAP) method, is commonly 

employed in the domain of medical image fusion, but this approach lacks information direction. The 

DCT image fusion methods suffer from blurring and blocking artifacts in the fused images because 

each start image is partitioned into non-overlapping 8×8 blocks. Unfortunately, the DWT is not 

shift-invariant because of the reduction of sampling used in its computation. Also, there is a shortage 
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of information direction. This results in moving artifacts in interframe, ringing artifacts in intraframe 

and pseudo-Gibbs phenomena (Li et al., 2017).  

In this research, we suggest an effective image fusion approach for the CT and the MRI 

medical images to generate a complete image that includes both clear soft tissue and bone tissue 

information in order to help the doctors in the careful diagnosis of the illness and to decide the 

needed therapy in harmony with the patient's state. This method involves two fusion steps. The first 

fusion step is performed in the DCT domain, and the second step is performed in the integer to 

integer lifting scheme of the wavelet domain. The suggested technique has been examined on MRI 

and CT medical image modalities and further compared with some other approaches in both 

quantitative and qualitative terms. The outcomes and comparative analyses unequivocally 

demonstrate the superior efficacy of our innovative introduced algorithm relative to the comparative 

algorithms. 

The subsequent sections of this manuscript are structured as follows: Section 2 presents 

methods used in this paper, such as DCT and ILWT. Section 3 explains the suggested fusion scheme, 

this approach is grounded on both ILWT and DCT. Section 4 details the experiments results. Section 

5 will finally wrap up this paper. 

2. Methods 

2.1 Discrete Cosine Transform 

A mathematical transformation known as the 2D-DCT converts a two-dimensional array of 

data into a collection of coefficients that represent the frequency components of the data. The 2D-

DCT is often used in the JPEG image compression, it can be used for various image processing 

purposes and multimedia applications, including image fusion. DCT comes in essentially two 

varieties. The 2-D DCT is used because an image is thought of as a 2-D matrix. 

The 2-D DCT of an 𝑁 × 𝑁 image block 𝑏(𝑖, 𝑗)  is denoted by Equation 1: 

𝐹(𝑘, 𝑙) =
2𝑐(𝑘)𝑐(𝑙)

𝑁
∑ ∑ 𝑏(𝑖, 𝑗) × cos [

(2𝑖+1)𝑘𝜋

2𝑁
] × cos [

(2𝑗+1)𝑙𝜋

2𝑁
]𝑁−1

𝑗=0
𝑁−1
𝑖=0         (1) 

With 𝑘, 𝑙 = 0,1, … , 𝑁 − 1 and 

𝑐(𝑘) = {
1

√2
, 𝑘 = 0,

1, 𝑘 ≠ 0.
               (2) 

The drawback 2-D DCT transformer can be used to recreate the original image from its DCT 

coefficients as follows in Equation 3: 

𝑏(𝑖, 𝑗) = ∑ ∑
2𝑐(𝑘)𝑐(𝑙)

𝑁
× 𝐹(𝑘, 𝑙) × cos [

(2𝑘+1)𝑖𝜋

2𝑁
]𝑁−1

𝑙=0
𝑁−1
𝑘=0 × cos [

(2𝑙+1)𝑗𝜋

2𝑁
]       (3) 

With 𝑖, 𝑗 = 0,1, … , 𝑁 − 1. In (1), all coefficients 𝐹(𝑘, 𝑙) represent the alternating current 

components (AC), whereas the 𝐹(0,0) value corresponds to the direct current component (DC). 

2.2 Integer Lifting scheme of Wavelet Transform 

As is common knowledge, the Fourier transform underlies the classical wavelet transform, which 

filters the original signal using high-pass and low-pass filters. The result is then sub-sampled to 

provide sub-bands for detail and approximation, respectively. This operation requires more time for 

processing and large amounts of memory due to its computational complexity. To overcome these 

problems, the lifting scheme of the wavelet transform is recommended in (Sweldens et al., 1998).  
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LWT is referred to as the next stage in the evolution of wavelet transforms. It can directly 

compute the wavelet transform without relying on the Fourier transform. Unfortunately, the 

resulting signal of the lifting scheme is coded in floating-point numbers format, which usually 

obstructs strictly reconstructing the original signal. The authors in (Calderbank et al., 1998) resolve 

this problem by proposing an integer-to-integer implementation of the wavelet transform lifting 

scheme. The implementation of the lifting wavelet involves three stages, as demonstrated below 

(Latreche et al., 2018): 

Split: This process creates a basic wavelet known as "the lazy wavelet", which splits the initial 

signal into odd and even patterns. 

𝑠𝑝𝑙𝑖𝑡(𝑥𝑖) = (𝑠𝑖
0, 𝑑𝑖

0)                  (4) 

Predict: here, using the correlation in the original signal, the even sequence is utilized to forecast 

the odd sequence. This process yields a result resembling the convolution wavelet output high-pass 

filter. 

𝑑𝑖
𝑛 = 𝑑𝑖

𝑛−1 − 𝑃(𝑠𝑖
𝑛−1)                (5) 

 Update: In this step, the updated event sequence can be computed by adding the even sequence 

and the modified odd sequence. This step produces a result that is similar to the low-pass filter 

output of coevolution wavelets. 

𝑠𝑖
𝑛 = 𝑠𝑖

𝑛−1 − 𝑈(𝑑𝑖
𝑛)                 (6) 

The lifting scheme's ability to quickly perform the inverse (drawback) transform and to give the 

right context for developing the integer-to-integer implementation are both significant benefits. 

Quantizers are positioned for this immediately following the updating and prediction processes, as 

well as before the modification of the odd and even sequence values. These processes are broken 

down for easier comprehension in Figure 1. 

 

Figure 1 - The general flowchart of a forward ILWT. 

 

3. The suggested Image fusion scheme 

In this part, we suggest an innovative image fusion technique based on the ILWT and the DCT 

for CT and MRI medical imaging. There are two stages to the fusion process. Using the two-

dimensional ILWT, the input images decompose into sub-bands for both detail and approximation. 

First, by selecting variance as an appropriate contrast measure, the approximation sub-bands from 

each source image are merged within the domain of the discrete cosine transform. Then, their fusion 

replaces these approximation sub-bands. Second, for the purpose of combining the detail sub-bands, 

the best weights are determined adaptively by determining the importance of each pixel based on 

the correlation between the overall coefficient levels. 
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Here, consider that we have two source images: CT and MRI. With the objective of generating 

the output fused image, denoted as 𝐹, we initiate the process by subjecting the source images (CT 

or MRI) to ILWT. As a result, we have, for each source image, four bands (𝐿𝐿1, 𝐻𝐿1, 𝐿𝐻1, 𝐻𝐻1)  

during the initial-level decomposition. Which the 𝐿𝐻1,  𝐻𝐿1 and 𝐻𝐻1 sub-bands refer to the detail 

information (high frequencies) in the vertical, horizontal, and diagonal orientations. while 𝐿𝐿1 

represents a reduced-size rendition of the original input image (low frequencies) itself.  

Constantly, the 𝐿𝐿 approximation sub-band is employed in the decomposition process. In the 3rd 

level, for any source image, we obtain ten sub-bands. Where (𝐿𝐻1, 𝐿𝐻2, 𝐿𝐻3), (𝐻𝐿1, 𝐻𝐿2, 𝐻𝐿3) and 
(𝐻𝐻1, 𝐻𝐻2, 𝐻𝐻3) represent the vertical, the horizontal, and the diagonal sub-bands, respectively. 

𝐿𝐿3 indicates the approximation sub-band (approximate image), which contains identical visual data 

to the source image.  

3.1 Fusion using blocks in the DCT domain 

In any image, regions of interest (focused) are rich in information, so that will provide further 

clarity. Generally, variance is mostly adopted as a prevalent choice for characterizing contrast in 

images (Abdipour et al.,2016). Likewise, to verify the focused regions, we might utilize the variance 

as a criterion for assessing activity levels (Haghighat et al., 2011). 

Firstly, the approximation sub-bands of the input images  (𝐿𝐿3
𝐶𝑇 , 𝐿𝐿3

𝑀𝑅𝐼) are decomposed into 8×8 

nonoverlapping blocks. Then we calculate the two-dimensional DCT coefficients for each 

individual block. Based onEquation 8, it is very simple to measure the variance in identical blocks. 

𝜎2 =
1

𝑁2  ∑ ∑ [𝑏2(𝑖, 𝑗) − 𝜇2]𝑁−1
𝑗=0

𝑁−1
𝑖=0              (7) 

𝜎2 = ∑ ∑
𝐹2(𝑘,𝑙)

𝑁2 − 𝐹̂2(0,0)𝑁−1
𝑙=0

𝑁−1
𝑘=0               (8) 

As a result, the variance value of an 𝑁 × 𝑁 block can be calculated as the sum of squared 

normalized AC coefficients in the DCT domain. 

The blocks that have the highest variance value are then chosen as the appropriate blocks in the 

combined approximation sub-band (𝐿𝐿3
𝐹). The goal of consistency verification (CV) (Manjunath et 

al., 1995) with 3 × 3 neighborhood window, for the combined approximation sub-band is that if the 

majority of the surrounding blocks are selected from an MRI image and the center block is selected 

from a CT image, the center block is switched by the same block from the MRI image, and vice 

versa. 

 3.2 Fusion using pixel significance in the ILWT domain 

In the majority of image fusion techniques employing weight averaging as a fusion rule (Shah et 

al., 2011; Shah et al., 2013; Kumar, 2013), all pixels of the input images will participate in 

calculating weights, it has negative consequences for the final image quality. Avoiding this issue, 

we change the approximate sub-bands of the CT and MRI images using their fused. After that, we 

compute the optimal weighted average.  

As a result of the down-sampling operation inherent in the DWT multiresolution decompositions, 

each coefficient located in the third level of the hierarchy exhibits a heightened degree of correlation 

with local neighborhoods, encompassing 2×2 windows of coefficients in the second level and 4×4 

windows of coefficients in the first level. Also, every coefficient located in the second level exhibits 

a heightened degree of correlation with local neighborhoods, encompassing 2×2 windows of 

coefficients in the first level. On the third level, weights can be computed by taking the mean energy 

of 3×3 neighborhood windows. 
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Figure 2 - The general framework of the proposed fusion method. 

For simplification, we will denote the detail sub-bands as 𝑆𝐵𝐿, where  𝑆𝐵 means the detail 

sub-bands (𝐻𝐿, 𝐿𝐻, 𝐻𝐻) and 𝐿 reflects the decomposition level. The weighting coefficient 

associated with any detail sub-band coefficient, denoted as (𝑊𝑇𝑆𝐵𝐿
) can be meticulously computed 

via the following expression: 

𝑊𝑇𝑆𝐵3(𝑖, 𝑗) = |𝑆𝐵3(𝑖, 𝑗)| + ∑ ∑ |𝑆𝐵2(2𝑖 − 𝑘, 2𝑗 − 𝑙)|1
𝑙=0

1
𝑘=0 +  

                        ∑ ∑ |𝑆𝐵1(4𝑖 − 𝑚, 4𝑗 − 𝑛)|3
𝑛=0

3
𝑚=0            (9) 

𝑊𝑇𝑆𝐵2(𝑖, 𝑗) = |𝑆𝐵2(𝑖, 𝑗)| + ∑ ∑ |𝑆𝐵1(2𝑖 − 𝑘, 2𝑗 − 𝑙)|1
𝑙=0

1
𝑘=0        (10) 
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𝑊𝑇𝑆𝐵1(𝑖, 𝑗) =
1

32
× ∑ ∑ [𝑆𝐵1(𝑖 − 𝑚, 𝑗 − 𝑛)]21

𝑛=−1
1
𝑚=−1         (11) 

Now, every coefficient in the approximation sub-band (𝐿𝐿3) is correlated with the comparable 

coefficients in the detail sub-bands (𝐻𝐿3, 𝐿𝐻3, 𝐻𝐻3). The weight factor is given below: 

𝑊𝑇𝐿𝐿3(𝑖, 𝑗) = 𝑊𝑇𝐻𝐿3(𝑖, 𝑗) + 𝑊𝑇𝐿𝐻3(𝑖, 𝑗) + 𝑊𝑇𝐻𝐻3(𝑖, 𝑗)       (12) 

These weighting coefficients are systematically computed across all sub-bands for both CT 

and MRI images. Denoting the weights of the respective pixels in 𝐶𝑇(𝑖, 𝑗) and 𝑀𝑅𝐼(𝑖, 𝑗) as 

 𝑊𝑇𝐶𝑇 and 𝑊𝑇𝑀𝑅𝐼 are the weights of the corresponding pixels The fused coefficient 𝑓(𝑖, 𝑗) can be 

meticulously derived as the optimal weighted mean of the weight pairs (𝑊𝑇𝐶𝑇, 𝑊𝑇𝑀𝑅𝐼) ,as 

elucidated by Equation 13: 

𝑓(𝑖, 𝑗) =
𝑊𝑇𝐶𝑇×𝐶𝑇(𝑖,𝑗)+𝑊𝑇𝑀𝑅𝐼×𝑀𝑅𝐼(𝑖,𝑗)

𝑊𝑇𝐶𝑇+𝑊𝑇𝑀𝑅𝐼
           (13) 

 Finally, the resulting image may be generated by applying the backward ILWT to the fused 

(combined) coefficients 𝑓(𝑖, 𝑗). 

4. Experimental results and analysis 

In this part, considerable experiments are implemented in order to evaluate the performance of 

our approach. We use a medical image dataset that is available on the website 

http://www.med.harvard.edu. Our suggested medical image fusion technique is compared with 

other methods, like the DWT described in (Manjunath et al., 1995), SIDWT cited in (Rockinger, 

1997), PCA approach in (Kwarteng et al., 1989), Laplacian pyramids technique presented in (Burt 

et al., 1983), DCT+Ac_Max (Phamila et al.,2014) and DWT+Pca_av (Vijayarajan et al.,2015). We 

consider the Standard deviation (STD), entropy (He), average gradient (AG) and spectral frequency 

(SF) as objective fusion metrics. Also, the edge-based similarity metric (𝑄
𝐴𝐵

𝐹 )  and the total loss of 

information  (𝐿
𝐴𝐵

𝐹 ) are objective fusion metrics.  

4.1 Qualitative analysis 

In this part, we empirically demonstrate the superior perceptual visual quality and diagnostic 

efficacy inherent in the resulting fused medical images generated by our innovative method in 

contrast to the previously mentioned techniques. 

 

http://www.med.harvard.edul/
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Figure 3 - Visual quality of the fused images of: (a) CT (b) MRI (c) DWT (d) SIDWT (e) 

PCA (f) LAP (g) DCT_Acmax (h) DWT_Pca (i) Proposed. 

As shown in Figure 3, a and b represent brain images taken through CT and MRI modalities, 

respectively. CT is highly effective for imaging and characterizing hard tissues and dense structures 

like bones. While MRI is able to describe the brain, it excels at delivering exceptional contrast 

between various soft tissues within the brain. This capability extends to the discernment of fine 

structural intricacies within these soft tissues. Nevertheless, for better treatment and diagnosis of an 

illness, it is imperative to combine all pertinent information from both images into a unified 

representation through the fusion procedure. Fig.3c represents the fused image of the DWT method. 

Fused images of SIDWT, PCA, LAP, DCT_Acmax and DWT_Pca methods are displayed in Figure 

3 d-h, respectively. The fused image resulting from the application of the introduced method is 

shown in Figure 3i.   

Form these outcomes; it is clearly evident that the visual quality of the resulting image of the 

DWT suffers from some distortion due to the Gibbs phenomenon (see Figure 3c). Also, the resulting 

image of the DCT_Acmax method suffers from blocking artefacts because images in the DCT 

domain are divided into blocks (see Figure 3g). SIDWT, LAP and DWT_Pca methods introduce 

some reduction in contrast (especially in soft tissue) into the fused image. Whereas the PCA method 

cannot carry out the fusion process. Quite the contrary, the proposed method gives fused results by 

making full use of the two input images and can also clearly express the soft tissue and bone 

information simultaneously. The resulting image shows superior visual quality compared to the 

results achieved by other methods. 

4.2 Quantitative analysis 

The quantitative evaluation of our introduced approach in comparison with some fusion 

approaches (cited above) is performed through the utilization of a suite of fusion quality metrics 

such as STD, AG, He, SF, 𝑄
𝐴𝐵

𝐹  and 𝐿
𝐴𝐵

𝐹 .  
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The contrast level inherent in an image is measured by the STD metric. The AG metric serves as 

an evaluative parameter for assessing the sharpness, clarity, and acuity characteristics of an image. 

The He measure serves as a quantitative metric, showing the extent to which data from the two 

source images has been transferred and incorporated into the amalgamated image. The SF metric 

functions as an assessment tool for measuring the overall activity level within the resulting fused 

image. It is used to evaluate and quantify the variations in pixel intensities across different spatial 

frequencies within an image. It helps in understanding the image's patterns, texture, and overall 

structure. 𝑄
𝐴𝐵

𝐹  and 𝐿
𝐴𝐵

𝐹  metrics provide quantitative insights into the edge information dynamics 

during image fusion. The 𝑄
𝐴𝐵

𝐹  quantifies the amount of edge information effectively transferred 

from the source images to the fused image, while the 𝐿
𝐴𝐵

𝐹   measures the extent of edge information 

loss in the fusion process. To achieve superior performance, any method should exhibit high values 

for most metrics, with the notable exception of the 𝐿
𝐴𝐵

𝐹  metric. 

In Table I, a comprehensive performance evaluation of various image fusion methods is 

presented, including the introduced approach designed for CT and MRI medical images. This 

assessment includes a thorough examination and analysis of their respective capabilities and results. 

It has been noted that the DWT_Pca method exhibits the most minimal values for SD, AG and 𝑄
𝐴𝐵

𝐹  

metrics, and a higher value for 𝐿
𝐴𝐵

𝐹  metrics. The DCT_Acmax method has the lowest He value. The 

SF metric value is low for the SIDWT method. In most metrics, our proposed method has maximum 

performance; this observation indicates that the fused image possesses a heightened level of 

contrast, is clearer, is sharper and has with more visual information. Furthermore, it is noteworthy 

that the proposed algorithm excels at preserving information from the source images. 

Table 1 – Quantitative evaluation of the fused images. 

Measures 

Methods SD AG He SF 𝑸𝑨𝑩/𝑭 𝐿𝑨𝑩/𝑭 

DWT 38.02 7.906 6.169 14.74 0.638 0.346 

SIDWT 35.33 6.174 6.070 11.46 0.561 0.434 

PCA 54.24 7.647 6.549 13.75 0.634 0.365 

LAP 51.22 7.539 6.546 14.08 0.768 0.227 

DCT_Acmax 39.92 5.789 3.660 17.98 0.549 0.442 

DWT_Pca 31.92 4.870 5.340 11.60 0.524 0.475 

Proposed 57.63 10.02 6.770 17.02 0.777 0.206 

5. Conclusion 

A novel image fusion method is proposed, designed to combine the multifaceted datasets 

derived from computed tomography (CT) and magnetic resonance imaging (MRI) modalities, 

culminating in the creation of a singular composite image containing all significant visual 

information to provide doctors and radiologists with heightened diagnostic significance and 

informational content. This method hinges on leveraging the variance within the DCT domain as a 

discerning metric for contrast assessment. Furthermore, it exploits pixel significance within the 

ILWT domain as an additional crucial determinant in the fusion process. 

This approach exhibits exceptional simplicity and efficiency, rendering it exceptionally well-

suited for real-time applications demanding rapid processing and responsiveness because of the 

integer-to-integer implementation of LWT. Comprehensive experiments have been meticulously 

executed to empirically establish the superior efficacy of the introduced approach in comparison 

with several extant image fusion techniques. This assessment encompasses both qualitative and 

quantitative evaluations, thereby affirming the method's heightened performance and capabilities. 
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Our approach is exceptionally well-suited for the integration and enhancement of both CT and MRI 

medical imagery, affirming its aptitude for applications in this domain. 
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