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Resumo  

A análise matemática empregada neste estudo constitui um fundamento essencial para uma 

investigação mais ampla sobre a regularidade das Equações de Navier-Stokes. Dentro desse 

contexto, este trabalho representa um avanço significativo junto ao modelo de Smagorinsky 

integrado à metodologia LES. Utilizando os espaços funcionais de Banach e Sobolev, 

desenvolvemos um novo teorema que aponta uma trajetória para a criação de um modelo de 

viscosidade anisotrópica, formulado no presente trabalho. Inicialmente, nosso esforço se concentra 

em fornecer uma análise matemática abrangente, com o objetivo de promover uma compreensão 

mais profunda do desafio inerente à regularidade das equações de Navier-Stokes. 

Palavras-chave: Modelo Smagorinsky. Espaços funcionais. Viscosidade anisotrópica. 

 

Abstract  

The mathematical analysis employed in this study constitutes an essential foundation for a broader 

investigation into the regularity of the Navier-Stokes Equations. Within this context, this work 

represents a significant advance with the Smagorinsky model integrated into the LES methodology. 

Using the Banach and Sobolev functional spaces, we developed a new theorem that points out a 

path towards the creation of an anisotropic viscosity model, formulated in the present work. Initially, 

our effort focuses on providing a comprehensive mathematical analysis, with the aim of promoting 

a deeper understanding of the challenge inherent in the regularity of the Navier-Stokes equations. 

Keywords: Smagorinsky model. Functional spaces. Turbulent flow. Anisotropic viscosity.  
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1. Introduction 

 

Turbulent formations emerge in both natural occurrences and human endeavors, such as the flow of 

rivers or the emissions billowing from chimneys. Scrutinizing the dynamics of motion carries 

importance across domains like aeronautics, meteorology, and engineering. The quantifiable factor 

referred to as the Reynolds number 

 

𝑅𝑒 =
𝑈𝐿

𝜈
=

𝜌𝑈𝐿

𝜇
 (1) 

 

(with characteristic velocity 𝑈, characteristic length 𝐿, kinematic viscosity 𝜈, density 𝜌 and dynamic 

viscosity 𝜇) is a measure for turbulence of a flow. As demonstred by Reynolds' experiment with 

piper-flow, a fluid motion featuring a Reynolds number exceeding 4 × 103 displays turbulence, see 

more in Li Ta-tsien & Yu Wen-ci (1985), Germano (1991), Kolmogorov (1991) and Pope (2000). 

 

2. The Smagorinsky model 

 

According to the work of Santos, R.D.C. dos, & Sales, J.H.O. (2023), to conclude the 

equations and consequently determine the filtered velocity field �̅�(𝐱, 𝑡) along with the adjusted 

filtered pressure �̅�(𝐱, 𝑡), it is imperative to formulate the anisotropic residual-stress tensor 𝜏𝑖𝑗
𝑟 (𝐱, 𝑡). 

Among the available models, the Smagorinsky model stands out due to its simplicity and its 

demonstrated capability to yield satisfactory performance (more details at Pope (2000)). 

In the Smagorinsky model, the anisotropic residual-stress tensor 𝜏𝑖𝑗
𝑟 (𝐱, 𝑡) correlates with the 

filtered strain rate 

 

𝑆�̅�𝑗 = 𝑆�̅�𝑗(𝐮): = 𝑆𝑖𝑗(�̅�): = 0.5(𝜕�̅�𝑖 + 𝜕�̅�𝑗) , (2) 

as 

𝜏𝑖𝑗
𝑟 (𝐱, 𝑡) = −2𝜈𝑟𝑆�̅�𝑗 . (3) 

  

This embodies the mathematical representation of the Boussinesq conjecture, which proposes 

that turbulent fluctuations display dissipative characteristics on an average basis. The mathematical 

structure shares similarities with that of molecular diffusion, (for further information, see more at 

Sagaut (2005)). The residual subgrid-scale eddy-viscosity 𝜈𝑟 acts as an artificial viscosity (Sagaut 

(2005),) and represents the eddy-viscosity of the residual motions. It is modeled as  

 

𝜈𝑟 = ℓ𝑆
2(2 𝑆�̅�𝑗𝑆�̅�𝑗)

1
2 = (𝐶𝑆∆)2 (2 𝑆�̅�𝑗𝑆�̅�𝑗)

1
2. (4) 

 

In this context, we encounter the Smagorinsky length scale ℓ𝑆 = 𝐶𝑆∆, the Smagorinsky 

coefficient 𝐶𝑆, the filter width ∆. Lastly, we can express the filtered momentum equation as follows  

 

𝜕𝑡�̅�𝑖𝑗 + �̅�𝑖𝜕𝑖�̅�𝑗 = 2𝜕𝑖 ((𝜈 + ℓ𝑆
2(2 𝑆�̅�𝑗𝑆�̅�𝑗)

1
2) 𝑆�̅�𝑗) − 𝜕𝑗�̅� + 𝑓�̅� , 𝑗 = 1,2,3. (5) 

 

3. Mathematical analysis of the Smagorinsky model 

 

In order to conduct a mathematical analysis of the Smagorinsky model, it is essential that the 

problem is clearly and precisely defined. 
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3.1 Vector spaces 

 

The Lebesgue space 𝐿𝑝(Ω), 𝑝 ∈ [1, ∞], is the Banach space of measurable functions 𝐯 on Ω which 

satisfy 

 

‖𝐯‖𝐿𝑚,𝑝(Ω): = (∫ |𝐯(𝐱)|𝑑𝐱

Ω

)

1
𝑝

< ∞, 𝑖𝑓 𝑝 ∈ [1, ∞), 
(6) 

 
‖𝐯‖𝐿𝑚,𝑝(Ω): =  𝑒𝑠𝑠 𝑠𝑢𝑝 |𝐯(𝐱)| < ∞, 𝑖𝑓 𝑝 = ∞,  

 

For 𝑝 = 2 the Lebesgue space is also a Hilbert space with the scalar product 

 

(𝐱, 𝐯) = ∫ 𝐯(𝐱) ∙ 𝐰(𝐱)𝑑𝐱.

Ω

 (7) 

 

in the case of one-dimensional functions, the dot signifies straightforward multiplication; however, 

when dealing with vectors or matrices, it denotes the dot product for vectors or the Frobenius inner 

product for matrices. 

 

The Sobolev space 𝑊𝑚,𝑝 is the Banach space of functions for which 

 

‖𝐯‖𝑊𝑚,𝑝(Ω): = ( ∑ ‖𝐷𝛼𝐯‖
𝐿𝑝(Ω)
𝑝

0≤⌈𝛼⌉≤𝑚

)

1
𝑝

< ∞, if 𝑝 ∈ [1, ∞), 
(8) 

 

‖𝐯‖𝑊𝑚,𝑝(Ω): =  𝑚𝑎𝑥 ‖𝐷𝛼𝐯‖
𝐿𝑝(Ω)
𝑝 < ∞, if 𝑝 = ∞,  

 

remains valid, i.e., it can be defined as 

 

𝑊𝑚,𝑝(Ω) = {𝐯 ∈ 𝐿𝑝(Ω): 𝐷𝛼𝐯 ∈ 𝐿𝑝(Ω), ∀|𝛼| ≤ 𝑚}. (9) 

 

Let 

 

𝑊1,3
0,𝑑𝑖𝑣(Ω) = {𝐯 ∈ 𝑊1,3(Ω): 𝐯|Γ = 0, ∇ ∙ 𝐯 = 0 in Ω}, (10) 

 

be the divergence-free Sobolev space where functions vanish on the boundary Γ = 𝜕Ω, 

 

𝐻1(0, T; 𝐿2(Ω)): = 𝑊1,2(0, T; 𝐿2(Ω)) (11) 

 

a Sobolev space that is also a Hilbert space and 

 

𝑉 ≔ 𝐻1(0, T; 𝐿2(Ω)) ∩ 𝐿3 (0, 𝑇; 𝑊1,3
0,𝑑𝑖𝑣(Ω)), (12) 

 

a Banach space with the norm 

 
‖𝐯‖𝑉 = ‖∇𝐯‖

𝐿3(0,𝑇;𝐿3(Ω))
+ ‖𝜕𝑡𝐯‖

𝐿2(0,𝑇;𝐿2(Ω))
. (13) 
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3.2 Strong and weak formulation of Navier-Stokes Equation 

 

Consider the Navier-Stoke Equation with the conditions 

 

𝜕𝑡𝐮 + (𝐮 ∙ ∇)𝐮 = 𝜈∇ ∙ ∇𝐮 −
1

𝜌
∇P + f, in Ω × (0, 𝑇],  

(14) 
∇ ∙ 𝐮 = 0, in Ω × [0, 𝑇], 
𝐮(𝐱, 0) = 𝐮0(𝐱), in Ω 
𝐮 = 0 on Γ × [0, 𝑇], 

∫ 𝑃
𝛀

d𝐱 = 0, in Ω × (0, 𝑇], 

 

with Γ = 𝜕Ω. The first and second equations correspond to the momentum equation and continuity 

equation from above. The initial flow field 𝐮0(𝐱) is also divergence-free, i.e., ∇ ∙ 𝐮0 = 0 in Ω. The 

fourth equation is the no slip boundary condition. It relies on the supposition that the fluid does not 

permeate or slide along the wall. Without the last equation, the pressure 𝑃 would only be determined 

up to a constant, according Sagaut (2005), Hunt & Vassilicos (1991). 

 

Filtering Eqs. (14)  and using a similar condition for the modified filtered pressure, we get 

 

𝜕𝑡�̅� + (�̅� ∙ ∇)�̅� = ∇(𝜈 + 𝜈𝑟)∇�̅� − ∇�̅� + �̅�, in Ω × (0, 𝑇],  

(15) 

∇ ∙ �̅� = 0, in Ω × [0, 𝑇], 
�̅�(𝐱, 0) = �̅�0(𝐱), in Ω 
�̅� = 0 on Γ × [0, 𝑇], 

∫ �̅�
𝛀

d𝐱 = 0, in Ω × (0, 𝑇], 

 

by multiplying the first equation with 𝒗 ∈ 𝑉 and integrating over time and space, we achieve a 

weak formulation. Now, let �̅� ∈ 𝐿2(0, T; 𝐿2(Ω)). Find �̅� ∈ 𝑉 that satisfies �̅�(𝐱, 0) = �̅�0(𝐱) ∈

𝑊1,3
0,𝑑𝑖𝑣(Ω) and 

 

∫(𝜕𝑡�̅� + (�̅� ∙ ∇)�̅�, 𝐯) +

𝑇

0

((𝜈 + 𝜈𝑟)∇�̅�, ∇𝐯)𝑑𝑡 = ∫(�̅�, 𝐯)𝑑𝑡

𝑇

0

 , (16) 

 

for all 𝐯 ∈ 𝑉, with (∙,∙) denoting the 𝐿2(Ω)  scalar product.  

 

3.2 Asymptotic behavior and regularity 

 

Let us first introduce some standard notations and function spaces which will be used in the 

following analysis. We denote 𝒱 = {𝜑 ∈ 𝒟(Ω)3, ∇ ∙  𝜑 = 0}, 𝐻 = the closure of 𝒱 in 𝐿2(Ω)3, 𝑉 = 

the closurr of 𝒱 in 𝑊1,3(Ω)3, where 𝐿2(Ω)2 is the space of functions which are square integrable 

over Ω with respect to the Lebesgue measure and 𝑊1,3(Ω)3 is the 𝐿3 Sobolev space. 𝐻 is a Hilbert 

space with respect to the inner product. We will use the notation 𝑉′ for the dual space of 𝑉, ‖∙‖𝑉, 

for the induced norm and 〈∙,∙〉 for the duality product. For spaces of functions which depend on both 

time and space variables, we will frequently use the two following spaces: (i) 𝐶([0, 𝑇]; 𝑋) space of 

continuous functions 𝑢: [0, 𝑇] ⟶ 𝑋, where 𝑋 is a Banach space with the norm denoted by |∙|𝑋. (ii) 

𝐿𝑝(0, T; 𝑋) the space of strongly measurable functions 𝑢: ]0, 𝑇[ ⟶ 𝑋 with a finite norm 
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|𝑢|
𝐿𝑝(0,𝑇;𝑋)
𝑝 ≔ ∫|𝑢|𝑋

𝑝  𝑑𝑡 <  ∞.

𝑇

0

 

 

In the case 𝑝 = ∞, the norm is defined by 

 

|𝑢|
𝐿∞(0,𝑇;𝑋)
𝑝

≔ 𝑒𝑠𝑠 sup𝑡∈]0,𝑇[|𝑢(𝑡)|𝑋. 

 

Finally, we will denote by |∙|𝑝 the usual norm in 𝐿𝑝(Ω). 

 

 

Theorem. Let 𝐮0 ∈ 𝐻 and 𝒇 ∈ 𝐿
3

2(0, 𝑇; 𝑉′). Then for any 𝒯 > 0, the problem (𝒮) has a unique weak 

solution on [0, 𝑇]. Moreover, if 𝐮0 ∈ 𝑉 then the unique weak solution is in 𝐿∞(0, T; 𝑊1,3(Ω)3). 

 

Proof. To prove the existence of a weak solution we used a classical Galerkin method. We omit it, 

since it is straightforward from the proof done in Lions (2008) and Jiroveanu (2002). We only 

present here, the proof of uniqueness. Let us suppose that there exist two weak solutions 𝐮 and 𝐯 to 

problem (𝒮), with the same initial condition 𝐮0 ∈ 𝐻 and let 𝐰 = 𝐮 − 𝐯. After subtracting the weak 

formulation for 𝐯 from the one for 𝐮 and talking 𝐰 as test functions in the resulting equation, we 

get: 

 

1

2

𝑑

𝑑𝑡
𝐰2

2 + ∑ ∫[𝒯𝑖𝑗(𝑆(𝐮)) − 𝒯𝑖𝑗(𝑆(𝐯))]𝑆𝑖𝑗(𝐰)𝑑𝐱

Ω

= − ∫ (𝐰 ∙ ∇)𝐮

Ω

3

𝑖,𝑗=1

𝐰𝑑𝐱. 

 

(17) 

 

Moreover, from the definition of the tensor 𝒯 (see more in Pope (2000), Hoffman & Johnson 

(2006) and Santos, R.D.C. dos, & Sales, J.H.O. (2023)), we have: 

 

  

∑ ∫[𝒯𝑖𝑗(𝑆(𝐮)) − 𝒯𝑖𝑗(𝑆(𝐯))]𝑑𝐱

Ω

= 𝑐1 ∑ ∫|𝑆𝑖𝑗(𝐰)|
2

Ω

3

𝑖,𝑗

3

𝑖,𝑗=1

𝑑𝐱 , 

 

(18) 

 

with 𝑐1 > 0.  

 

Using Korn’s inequality 

 

(∫ |𝑆(𝐮)|𝑝

Ω

𝑑𝐱)

1
𝑝

≥ 𝐶𝑝|∇𝐮|𝑝 

 

for 𝐮 ∈ 𝑊0
1,𝑝

 with 𝐶𝑝 > 0 (1 < 𝑝 < ∞) and Hölder’s inequality we obtain from Eq. (18) 

 

 

1

2

𝑑

𝑑𝑡
|𝐰|𝟐

𝟐  + 𝑐2|∇𝐰|2
2 ≤ ∫ |𝐰|𝟐

Ω

|∇𝐮|𝑑𝐱 ≤ |∇𝐮|𝟑|𝐰|𝟑
𝟐 . (19) 
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In three dimensions we have the embedding 

 

𝐻1(Ω) ⊂ 𝐿6(Ω) 

from which we deduce 

 

|𝒘|3 ≤ |𝒘|
2

1
2|𝒘|

6

1
2 ≤ 𝑐3|𝒘|

2

1
2|∇𝒘|

2

1
2 . 

 

Moreover, it follows from Eq. (19), via Young’s inequality, that 

 
𝑑

𝑑𝑡
|𝐰|𝟐

𝟐  + 𝑐4|∇𝐰|2
2 ≤ 𝑐𝟓|∇𝐮|3

2 ≤ |𝐰|𝟑
𝟐 . 

 

(20) 

 

Since the functions 𝑔(𝑡) = |∇𝐮|3
2 is integrable on ]0, 𝑇[ and 𝒘(0) = 0, using Gronwall’s inequality 

we get 

|𝒘(𝑡)|𝟐
𝟐 

 

on [0, 𝑇] and thus uniqueness of the solution to problem (𝒮). 

 

The uniform in time regularity is related to the asymptotic behavior of the solution that we 

now consider. 

Let 𝐮0 ∈ 𝐻 and suppose now that 𝒇 ∈ 𝐿2(Ω)3 is time independent. According Theorem, the 

unique weak solution is continuous 

 

𝐮 ∈ 𝐶((0, 𝑇); 𝐻). 

 

Consequently, we can define the family of operators (𝑆(𝑡))
𝑡≥0

 by 

 

 
𝑆(𝑡): 𝐻 ⟶ 𝐻
          𝐮0 ↦ 𝑆(𝑡)𝐮0=𝐮(𝑡)

 

 

(21) 

is the solution to problem (𝒮).  

 

 

4. Smagorinsky refined model 

 

 To enhance comprehension of turbulence mechanisms, it is advantageous to examine the 

velocity-vorticity representation of the Navier–Stokes equations, as it accentuates the distinctions 

between two and three-dimensional scenarios. Computing the curl of the Navier–Stokes equations 

results in 

 

𝜕𝑡𝜔 + (𝐮 ∙ ∇)𝜔 = (𝜔 ∙ ∇)𝐮 + ν∆𝜔, 
 

(22) 

 

where 𝜔 = ∇ × 𝐮 is the vorticity. This delineates the generation and conveyance of vorticity within 

a generic three-dimensional flow. The final term on the right-hand side elucidates the impacts of 

viscous diffusion on the vorticity dispersion. In three-dimensional flows with high Reynolds 



The Journal of Engineering and Exact Sciences – jCEC 

7 

numbers, the viscous dispersion of vorticity is primarily governed by vortex elongation, represented 

in Eq. (22) by the term (𝜔 ∙ ∇)𝐮. This is posited as the predominant mechanism in turbulence 

dynamics. Through this mechanism, turbulent energy is cascaded from larger to smaller scales.  

The stretching component is accountable for both the amplification and realignment of 

vorticity, potentially playing a role in the generation of finite-time singularities. In two-dimensional 

flow, vorticity essentially assumes the role of a passive scalar, tracking fluid particle trajectories (in 

turbulent flow, the influence of viscosity is minimal). In such instances, the vorticity vector is 

confined to a plane perpendicular to the flow, and its magnitude remains consistently bounded. 

 If 𝜔 is divergenceless, it is feasible to reconstruct the velocity from the vorticity field using 

the stream function Ψ that satisfies −∇2Ψ = 𝜔, by taking 𝐮 = ∇ × Ψ. Hence, one derives the 

subsequent equation for the velocity field, recognized in literature as the Biot-Savart law (see more 

in Chorin (2013)), 

 

𝐮(𝒙) = −
1

4𝜋
∫

(𝒙 − 𝒙′) × 𝜔(𝒙′)

|𝒙 − 𝒙′|3
𝑑𝒙′.

Ω

 

 

(23) 

 

A comparable method to grid based LES in primitive variables can be achieved for the 

velocity-vorticity formulation. When filtering the vorticity transport equations (22), we obtain: 

 

 

𝜕𝑡�̅�𝑖 + (�̅�𝒋 ∙ 𝜕𝒋)�̅�𝑖 = (�̅�𝑖 ∙ 𝜕𝒋)�̅�𝒊 + ν∇2�̅�𝑖 − 𝜕𝑗𝑇𝑖𝑗, 

 

(24) 

 

where 𝑇𝑖𝑗 = (𝜔𝑖𝑢𝑗̅̅ ̅̅ ̅̅ − 𝜔𝑖̅̅ ̅𝑢�̅�) − (𝑢𝑖𝜔𝑗̅̅ ̅̅ ̅̅ − 𝑢�̅�𝜔𝑗̅̅ ̅) is the subgrid-scale vorticity stress, which 

accommodates the influence of unresolved fluctuations in velocity and vorticity. As for the filtered 

Navier-Stokes equations in primitive variables, it becomes necessary to furnish a model for the 

vorticity stress 𝑇 in order to complete the filtered vorticity transport equation (24). A suitable closure 

model for this situation is the vorticity adaptation of the Smagorinsky model, given by 𝑇 = 𝜈𝑡∇𝜔 

with 𝜈𝑡 = (𝐶𝑠∆)2|𝜔|. As previously noted, it has been highlighted that the Smagorinsky model 

exhibits excessive dissipation.  

 

To grasp the connections between the gradient model and the issue of regularity in the Navier-

Stokes equations, let's delve into the enstrophy budget stemming from the Navier-Stokes equations. 

Multiplying the Eq. (22) by 𝜔, because 𝐮 is divergence-free, one obtains 

 

𝑑

𝑑𝑡
|𝜔|2 = ∫(𝜔 ∙ ∇𝒖) ∙ 𝜔𝑑𝑥 − 𝜈 ∫|∇ω|2𝑑𝑥 .

ΩΩ

 

 

(25) 

 

The estimation of the stretching term's contribution can be conducted in the following manner. 

If we denote by 𝑺+ the positive part (symmetric) of the tensor 𝑺 (we recall that 𝑆𝑖𝑗 =

1 2⁄ (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖)), we obtain 

 

 

∫(𝜔 ∙ ∇𝒖) ∙ 𝜔𝑑𝑥 = ∫ 𝜔𝑖𝑆𝑖𝑗𝜔𝑗𝑑𝑥 ≤ ∫ 𝜔𝑖𝑆𝑖𝑗
+𝜔𝑗𝑑𝑥 .

ΩΩΩ

 (25) 
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Consequently, enstrophy could experience growth, potentially leading to vorticity 

amplification, when the vorticity aligns with directions corresponding to positive eigenvalues of 𝑺. 

If there is a desire to restrict the growth of enstrophy to preserve smooth solutions, this inequality 

indicates the need for an eddy viscosity tensor with a magnitude proportional to 𝑺+.  
 

In Vreman (1995), we initiate here with the gradient model, given by 

  

𝜏𝑖𝑗 = (𝐶𝑎∆)2𝜕𝑘𝑢𝑖𝜕𝑘𝑢𝑗, (26) 

 

we first write 

 

∆2𝜕𝑘𝑢𝑖(𝒙)𝜕𝑘𝑢𝑗(𝒙) = ∆−3 ∫ 𝜕𝑘𝑢𝑖(𝒙)𝜕𝑙𝑢𝑗(𝒙)(𝑦𝑘 − 𝑥𝑘)(𝑦𝑙 − 𝑥𝑙)𝜁 (
𝒚 − 𝒙

∆
) 𝑑𝑦 , (27) 

 

where we recall that the summation of repeated indices is implied. Taylor expansions of 𝑢𝑖 and 𝑢𝑗 , 

around 𝒙, yield 

 

∆2𝜕𝑘𝑢𝑖(𝒙)𝜕𝑘𝑢𝑗(𝒙) = ∆−3 {∫[𝑢𝑗(𝒚) − 𝑢𝑗(𝒙)][𝑢𝑖(𝒚) − 𝑢𝑖(𝒙)]𝜁 (
𝒚 − 𝒙

∆
) 𝑑𝑦 + 𝑂(∆2)}. (28) 

 

We subsequently compute the divergence of Eq. (28) to obtain 

 

𝜕𝑗[𝜕𝑘𝑢𝑖(𝑥)𝜕𝑘𝑢𝑗(𝑥)] ≃ 𝐴𝑖 + 𝐵𝑖, 

 

following the removal of the component associated with the divergence of 𝐮, where 

 

𝐴𝑖 = −∆−3 ∫[𝑢𝑗(𝒚) − 𝑢𝑗(𝒙)]𝜕𝑗𝑢𝑖(𝑥)𝜁 (
𝒚 − 𝒙

∆
) 𝑑𝑦 , 

 

 

𝐵𝑖 = −∆−4 ∫[𝑢𝑗(𝒚) − 𝑢𝑗(𝒙)][𝑢𝑖(𝒚) − 𝑢𝑖(𝒙)]𝜕𝑗𝜁 (
𝒚 − 𝒙

∆
) 𝑑𝑦 . 

 

It is easily seen that 𝐴𝑖 is a convective term: if one sets  

 

𝜆 = ∫ 𝜁(𝒚)𝑑𝒚 , 

and 

 

�̂�(𝑥) =
1

𝜆Δ3
 ∫ 𝒖(𝒚)𝜁 (

𝒚 − 𝒙

∆
) 𝑑𝑦 , 

 

then 𝐴𝑖 can be rewritten as (�̂� − 𝒖)∇𝑢𝑖. Therefore, it has no impact on the energy equilibrium. 

Because we aim to depict the energy transfer between different scales, our focus will solely be on 

𝐵𝑖. We arrive at the subsequent representation of the gradient model 

 

𝜕𝑗𝜏𝑖𝑗 ≃ 𝐶𝑎
2∆−4 ∫[𝑢𝑗(𝒚) − 𝑢𝑗(𝒙)][𝑢𝑖(𝒚) − 𝑢𝑖(𝒙)]𝜁 (

𝒚 − 𝒙

∆
) 𝑑𝑦. (29) 
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To determine the beneficial impact of this model on energy dissipation, we calculate the 

product of this quantity by 𝐮 and integrate over Ω, and using the symmetry of 𝜁, we are left with 

 
1

2
𝐶𝑎

2∆−4 ∫[𝑢𝑗(𝒚) − 𝑢𝑗(𝒙)] ∙ ∇𝜁 (
𝒚 − 𝒙

∆
) |𝒖(𝒚) − 𝒖(𝒙)|2𝑑𝒙 𝑑𝒚. (30) 

 

This equation provides a means to assess local dissipation at a specific point x, by limiting the 

integral to y alone. It also empowers us to construct a purely dissipative model. This model is 

expressed as 

 

𝜕𝑗𝜏𝑖𝑗 ≃ 𝐶𝑎
2∆−4 ∫ {[𝒖(𝒙) − 𝒖(𝒚)] ∙ ∇𝜁 (

𝒙 − 𝒚

∆
)}

+
[𝒖(𝒙) − 𝒖(𝒚)] 𝑑𝒚 , (31) 

 

where 𝑎+ = 𝑚𝑎𝑥(0, 𝑎). Generally, 𝜁 exhibits a reduction in value with increasing radius, and the 

turbulent viscosity tensor described by this model dissipates energy between locations compressed 

by the flow. In Cottet (1997), it is proved, showing correct asymptotic behavior close to the 

boundaries. 
 

 

5. Conclusion 

 

In summary, this study has undertaken a rigorous re-evaluation of the Smagorinsky model, 

providing valuable insights into the mathematical underpinnings of the subgrid-scale modeling 

within the context of asymptotic analysis applied to the LES model. The elucidation of this 

mathematical analysis not only stands as a foundational contribution but also opens avenues for an 

extensive exploration into the regularity of the Navier-Stokes Equations. We firmly believe that this 

investigation signifies a significant stride in advancing the Smagorinsky model. It culminates in the 

development of an anisotropic viscosity model for turbulent flows, rooted in the LES framework 

and featuring a robust mathematical formulation for anisotropic viscosity. This dedicated endeavor 

aims to deliver a comprehensive mathematical analysis, inspiring further inquiries and fostering a 

deeper comprehension of the intricacies surrounding the regularity of the Navier-Stokes equations. 
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