
The Journal of Engineering and Exact Sciences – jCEC, Vol. 09 N. 11 (2023) 
journal homepage: https://periodicos.ufv.br/jcec 

eISSN: 2527-1075 
ISSN: 2446-9416 

1 

 

Analysis and simulation of turbulent flow around an immersed body with 

constant temperature using the Immersed Boundary Method 

 

Análise e simulação do escoamento turbulento entorno de um corpo imerso 

com temperatura constante pelo Método da Fronteira Imersa 

 
Article Info: 

Article history: Received 2023-09-20 / Accepted 2023-10-04 / Available online 2023-10-04 

doi:  10.18540/jcecvl9iss11pp16664-01e 

 

 
Rômulo Damasclin Chaves dos Santos 

ORCID: https://orcid.org/0000-0002-9482-1998 

Department of Physics, Technological Institute of Aeronautics, São Paulo, Brazil 

E-mail: damasclin@gmail.com 

Jorge Henrique de Oliveira Sales 

ORCID: https://orcid.org/0000-0003-1992-3748 

State University of Santa Cruz – DCEX, Brazil 

E-mail: jhosales@uesc.br 

 

Resumo  

Neste estudo, apresentamos um método de fronteira imersa para analisar interações entre fluidos e 

corpos em escoamentos bidimensionais (2D) em torno de geometrias complexas, com foco na 

transferência de calor e turbulência. O método utiliza uma malha Euleriana para o fluido, e outra 

malha Lagrangiana para o corpo imerso, assegurando condições de ausência de deslizamento e 

considerando trocas de calor. Usamos equações de Navier-Stokes e da energia com modelos de 

turbulência Smagorinsky (LES) e Spalart-Allmaras (URANS). Um código computacional foi 

implementado para calcular coeficientes de sustentação, arrasto e Nusselt, comparando os resultados 

com estudos anteriores em diferentes números de Reynolds. Essa pesquisa avança na compreensão 

das interações fluido-corpo em geometrias complexas e na termofluidodinâmica. 

Palavras-chave: Método da Fronteira Imersa. Convecção Mista. Escoamento Turbulento. 

 

Abstract  

In this study, we present an immersed boundary method to analyze interactions between fluids and 

bodies in two-dimensional (2D) flows around complex geometries, focusing on heat transfer and 

turbulence. The method uses an Eulerian grid for the fluid, and another Lagrangian grid for the 

immersed body, ensuring conditions of no slip and considering heat exchanges. We use Navier-

Stokes and energy equations with Smagorinsky (LES) and Spalart-Allmaras (URANS) turbulence 

models. A computational code was implemented to calculate lift, drag and Nusselt coefficients, 

comparing the results with previous studies at different Reynolds numbers. This research advances 

the understanding of fluid-body interactions in complex geometries and thermofluid dynamics. 

Keywords: Immersed Boundary Method. Mixed Convection. Turbulent Flow.  
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1. Introduction 

 

In this study, we address the mathematical modeling of fluid mechanics phenomena using the 

conservation equations for fluid properties, specifically momentum, mass (continuity), and energy 

conservation. These equations describe the forces acting on the fluid and energy exchanges in 

different regions of the flow. We employ the finite difference method to discretize these equations 

for incompressible Newtonian fluids, relating viscous stress terms to deformation rates in the 

velocity field, enabling us to simulate flow dynamics through the Navier-Stokes equations. 

Traditional domain discretization methods pose challenges in terms of implementation and 

computational time, requiring successive remeshing for each iteration, along with the introduction 

of a new generalized coordinate system. To overcome these physical and mathematical challenges, 

we've developed a computational code for the immersed boundary methodology in thermofluid 

interaction. This study builds upon key references, such as the works of Badr & Dennis (1985) and 

Badr et al. (1990), addressing heat transfer around rotating cylinders. 

Additionally, we present the immersed boundary methodology developed by Park et al. (2017) 

for fluid-body interactions with heat transfer, utilizing Eulerian and Lagrangian grids to define fluid 

and temperature fields as well as body movement. Momentum and heat-transfer between Eulerian 

and Lagrangian variables are addressed using the Dirac delta function. 

Furthermore, Santos, R.D.C et al. (2018) introduced the immersed boundary methodology 

coupled with a virtual physical model to simulate two-dimensional flows around a heated square 

cylinder. Results demonstrate that the influence of the heated surface increases with Reynolds 

number. 

This study investigates heat-transfer and turbulence in complex geometries with surrounding 

fluids. Numerical results are consistent and align with previous findings in the literature 

 

2. Formulation for the fluid motion and temperature 

 

According to the work of Santos, R.D.C et al. (2018) and Santos, R.D.C. dos, & Sales, J.H.O. 

(2023), considering an incompressible and two-dimensional flow a Newtonian fluid, with a domain 

represented by Ω, and a boundary represented by 𝜕Ω, with the surface of the immersed body being 

heated with constant temperature, which can be modeled through discretized points, previously 

named by Lagrangian points. Since the effect of the frontier is taken into account through the 

introduction of the forcing term in the momentum and energy equation, the equations that describe 

the heat transfer by mixed convection in the immersed boundary methodology are expressed as 

follows 

 

∇ . 𝐮 = 0 , (1) 

𝜌0 [
𝜕𝐮

𝜕𝑡
+ (𝐮. ∇)𝐮] = −∇𝑝 + 𝜇∇2𝐮 + 𝐟 , (2) 

𝜌0 [
𝜕𝐮

𝜕𝑡
+ (𝐮. ∇)𝐮] = −∇𝑝 + 𝜇∇2𝐮 + ρ𝟎𝐠[1 − 𝛽(𝑇 − 𝑇∞)]𝐣 + 𝐟 , (3) 

𝜌0𝑐𝑝 [
𝜕𝑇

𝜕𝑡
+ (𝐮 . ∇)𝑇] = 𝑘∇2𝑇 + 𝑞 , (4) 

 

where Eqs. (1), (2) and (4) are forced convection, while Eqs. (1), (3) and (4) are for natural 

convection, and in Eq. (3), the Boussinesq approximation is used. The terms, 𝐮, p, 𝑇 and 𝑇∞ denote, 

velocity vector, pressure, temperature and reference temperature, respectively. The terms, 𝜌0, 𝜇, 𝛽, 

𝑘 and 𝑐𝑝 are fluid density at temperature 𝑇 = 𝑇∞, viscosity, thermal diffusivity, thermal expansion 

coefficient and specific heat at constant pressure, 𝐠 is a downward gravitational acceleration; the 

term ρ𝟎𝐠(1 − 𝛽(𝑇 − 𝑇∞)) accounts for the effects of the fluid temperature on the fluid flow, the 

term 𝐣 is the unit vector in the positive y-axis direction, respectively. 
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The term of force 𝐟 and thermal source 𝑞 in the Eqs. (2) e (3) are the Euler force fields where 

these sources model the existence of the interface immersed in the flow, visualizing the body 

immersed in the flow having non-null value in Eulerian grid near the Lagrangian grid, being 

expressed by 

 

𝐟(𝑥, 𝑡) =  ∫ 𝐹(𝐗𝑘, 𝑡)δ(𝑥 − 𝐗𝑘)𝑑𝐗𝑘 ,

𝜕Ω𝑏

 (5) 

where, 𝐹(𝐗𝑘, 𝑡) is the Lagrangian force density, calculated on the interface points 𝑥 and 𝐗𝑘 which 

are the positions of a particle of Eulerian and Lagrangian fluid on the interface, respectively. The 

term δ(𝑥 − 𝐗𝑘) is the Dirac delta function, which represents the interaction between the fluid and 

the immersed boundary. Similarly, the thermal source represented by 𝑞 is added to Eq. (4), being 

responsible for making the flow feel the presence of the heated solid interface, in other words, it is 

heating source at the Lagrangian point on the immersed border, being able to be expressed by 

 

𝑞(𝑥, 𝑡) =  ∫ 𝑄(𝐗𝑘 , 𝑡)δ(𝑥 − 𝐗𝑘)𝑑𝐗𝑘 ,

𝜕Ω𝑏

 (6) 

where, 𝑄(𝐗𝑘, 𝑡) is the heat flux at the border being the difference between the derivative of the 

approximate specific temperature. 

2.1 Calculation of forces acting on discrete points 

The methodology developed and implemented calculates the forces that act at the discrete 

points of a given boundary, as well as determining the so-called interfacial force or Lagrangian 

force. The characterization of the Lagrangian force represents the difference between the various 

immersed boundary methodologies. In this work, only the rigid boundaries were treated (no 

elasticity), but the model can be used or extended to other types of interfaces, for example, for elastic 

boundaries, boundaries between different fluids, etc. The model uses the diffusion of interfacial 

forces on the interior of the flow. Thus, the Eulerian force field is applied in the vicinity of the 

immersed boundary, and its value is minimized as the distance to the interface increases. This model 

dynamically assesses not only the force that the fluid exerts on the solid surface immersed in the 

flow, bur takes into account the thermal exchange between them. 

The Lagrangian force  𝐹(𝐗𝑘, 𝑡), and the thermal source 𝑄(𝐗𝑘, 𝑡), are evaluated separately, in 

other words, for Lagrangian force a balance of amount of movement was carried out on a fluid 

particle that in close to the fluid-solid interface, while for the thermal part, the dimensionless energy 

equation was applied, which shows the interaction between the particle fluid and the interface, which 

takes into account all the terms of the Navier-Stokes equation. Then, assuming that all particle fluid, 

including those over the interface, must satisfy the balance of amount of movement and energy. 

Thus, the density of interfacial force can be evaluated using the principle of conservation of the 

momentum and energy, applying over any participle of fluid that makes up the flow. Therefore, 

taking the particle fluid crossing an arbitrary immersed boundary interface, we obtain the following 

formulation 

 

𝐹(𝐗𝑘, 𝑡) = 𝜌
𝜕𝐔(𝐗𝑘,𝑡)

𝜕𝑡⏟    
𝐹𝑎

+ 𝜌 ∇[𝐔(𝐗𝑘, 𝑡)𝐔(𝐗𝑘, 𝑡)]⏟              
𝐹𝑖

+ ∇𝑝(𝐗𝑘, 𝑡)⏟      
𝐹𝑝

− 𝜇∇2(𝐗𝑘, 𝑡)⏟      
𝐹𝑣

 , 
(7) 

where, the portions referring to the terms of the Eq. (7), from left to right, are called acceleration 

force, inertial force, pressure force and viscous force, respectively. 

 In a manner similar to that performed in Eq. (7), for the calculation of the thermal source in 

the particle fluid in contact with the interface, an energy balance is performed as follows 
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𝑄(𝐗𝑘, 𝑡) =
∂Θ(𝐗𝑘, 𝑡)

∂t
+ ∇[𝐔(𝐗𝑘, 𝑡)Θ𝐔(𝐗𝑘, 𝑡)] −

1

𝑃𝑒
∇2Θ(𝐗𝑘, 𝑡) , (8) 

where, the portions referring to Eq. (8), from de right, are called local temperature variation rate, 

thermal dissipation rate due to convection and diffusive thermal energy transport rate. In Eq. (8), 

each term is evaluated based on the values of the variables (velocity, pressure and temperature), of 

the Eulerian grid, interpolated for the Lagrangian grid and for the auxiliary points used in obtaining 

spatial derivatives. This process is detailed in the next subsection. 

2 .2 Calculation of velocity, pressure and temperature 

2.2.1 Auxiliary point allocation process 

The first step is to arbitrate an initial Lagrangian point for calculating the interfacial force 

𝐹(𝐗𝑘, 𝑡). Then, two mutually orthogonal auxiliary lines are drawn on this point, one of which is 

parallel to one of the Eulerian axes. Two auxiliary points are marked on each of the lines, on the 

outside of the solid body, at a distance ∆𝑥 and 2∆𝑥 of the Lagrangian point considered. This 

distance is necessary in order to prevent two auxiliary points from being allocated within the same 

Eulerian cell. The grids that are more that 2∆𝑥 distance from the Lagrangian points, do not 

contribute to the interpolation. The internal and external regions of the solid body were identified 

with the aid of the normal unitary vector on the surface, which has its positive direction forcing 

outside the immersed body. The auxiliary points are always located in the regions of interest of 

the flow, that is, in the region to be simulated. Thus, the values of velocity, pressure and 

temperature at the points, in general, are not know, but can be obtained, from neighboring cells, 

with the ais of a distribution/interpolation function. 

Thus, the general equation for obtaining the velocity at Lagrangian points and auxiliary points 

is expressed in the following formula 

 

𝐔(𝐗𝑘) =∑𝐷𝑖(𝑥𝑖 − 𝐗𝑘) 𝐔(𝑥𝑖) ,

𝑖

 (9) 

where, 𝐔(𝐗𝑘) are the Lagrangian velocities, calculated at the auxiliary points and at the point 𝐗𝑘 

by the interpolation of the Eulerian velocities. Similarly, for the calculation of pressure and 

temperature derivatives at each Lagrangian point, it was necessary to obtain the pressure and 

temperature values on the interface, at point 𝐗𝑘.  

Thus, for the calculation of pressure and temperature an auxiliary point, which is in a normal 

position at a distance ∆𝑥 from the Lagrangian point.  The general equation for obtaining the pressure 

and temperature at the auxiliary points or on the interface and at the Lagrangian points in the 𝑥 and 

𝑦 directions are given, respectively, by the systems 

 

{
 
 

 
 𝑝(𝐗𝑘) =∑𝐷𝑖(𝑥𝑖 − 𝐗𝐤) 𝑝(𝑥𝑖)

𝑖

Θ(𝐗𝑘) =∑𝐷𝑖(𝑥𝑖 − 𝐗𝐤) Θ(𝑥𝑖)

𝑖

 

 

(10) 

 

{
 
 

 
 𝑝(𝐘𝑘) =∑𝐷𝑖(𝑥𝑖 − 𝐘𝐤) 𝑝(𝑦𝑖)

𝑖

Θ(𝐘𝑘) =∑𝐷𝑖(𝑥𝑖 − 𝐘𝐤) Θ(𝑦𝑖)

𝑖

 

 

(11) 

where, 𝑝(𝐗𝑘) and 𝑝(𝐘𝑘) are pressure values on the interface, and 𝑝(𝑥𝑖) and 𝑝(𝑦𝑖) are pressure value 

in the nearest Eulerian grids, in the 𝑥 and 𝑦 directions, respectively. Similarly, Θ(𝐗𝑘) and Θ(𝐘𝑘) 
are the temperatures at auxiliary points at 𝑘 points and Θ(x𝑖), the temperature at the nearest Eulerian 

points. The distribution/interpolation function 𝐷, adopted in thus work, is used for the interpolation 

of variables in the Eulerian grid. Regarding the computational cost involved, it was reduced when 
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considering non-null 𝐷 for distances less than 2∆𝑥 from the interpolation point, which is also valid 

for the 𝐹(𝐗𝑘, 𝑡) distribution. Therefore, in this work, Peskin (1977) proposal, modified by Juric 

(1996), is used, being defined by 

 

𝐷(𝑥 − 𝐗𝐤) = ∏
𝑔(𝑟𝑥)𝑔(𝑟𝑦)

ℎ2
 ,

𝑁

𝑚=1

 (12) 

where, 

𝑔(𝑟) = {
𝑔1(𝑟)

0.5 − 𝑔1(2 − ‖𝑟‖)
0

   

,
,
,
  

𝑖𝑓
𝑖𝑓
𝑖𝑓
   
        ‖𝑟‖ < 1
1 < ‖𝑟‖ < 2 
        ‖𝑟‖ > 2

 (13) 

where, 𝑔1(𝑟) =
1
8⁄ (3 − 2‖𝑟‖√1 + 4‖𝑟‖ − 4‖𝑟‖2), and 𝑟 is called the radius of influence of the 

distribution function, being represented here by [
1

ℎ
(𝑥 − 𝑥𝑘)] or [

1

ℎ
(𝑦 − 𝑦𝑘)]. The term, ℎ = ∆𝑥 =

∆𝑦, is the size of the Eulerian grid and (𝑥, 𝑦) the coordinates of a Eulerian point in the domain. To 

calculate the temperature at each time step in the iterative process over the immersed boundary, the 

following equation was used 

 

Θ(𝐗𝑘) =∑𝐷𝑖(𝑥𝑖 − 𝐗𝑘) Θ(𝑥𝑖) .

𝑖

 (14) 

 

Thus, after the interpolation of velocity, pressure and temperature at the interface and at 

auxiliary points, the derivatives that make up the terms for the calculation of Lagrangian source 

terms are determined in the 𝑥 and 𝑦 directions, with the so-called Lagrange polynomials of first and 

second order. Generically, denominated the components of velocity or pressure, defined by the 

interpolation function 𝜙, given by the linear combination of the Lagrange polynomials, in the form 

 

𝜙(𝑥) =∑𝜙𝑖  ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
 .

𝑚

𝑗=0,𝑗≠𝑖

𝑚

𝑖=0

 (15) 

  

2.2.2 Calculation of Lagrangian force distribution and thermal source 

After calculating the terms das Eqs. (7) and (8), and obtaining the values for 𝐹(𝐗𝑘, 𝑡) and 

𝑄(𝐗𝑘, 𝑡), then the Eulerian terms are calculated for 𝐟 and 𝑞. The system calculation for the terms 

𝐟 and 𝑞, in the 𝑥 and 𝑦 direction, are presented below, respectively 

 

{
 
 

 
 𝐟(𝑥𝑖) =∑𝐷𝑖 (𝑥𝑖 − 𝐗𝑘) 𝐹(𝐗𝐤) ∆𝑠 (𝐗𝑘)

𝑖

q(𝑥𝑖) =∑𝐷𝑖  (𝑥𝑖 − 𝐗𝑘) 𝑄(𝐗𝐤) ∆𝑠 (𝐗𝑘)

𝑖

 

 

(16) 

and 

{
 
 

 
 𝐟(𝑦𝑖) =∑𝐷𝑖  (𝑦𝑖 − 𝐘𝑘) 𝐹(𝐘𝐤) ∆𝑠 (𝐘𝑘)

𝑖

q(𝑦𝑖) =∑𝐷𝑖  (𝑦𝑖 − 𝐘𝑘) 𝑄(𝒀𝐤) ∆𝑠 (𝐘𝑘)

𝑖

 

 

(17) 

where, in the Eqs. (16) and (17), in the respective 𝑥 and 𝑦 directions, 𝐟(𝑥𝑖) and 𝐟(𝑦𝑖), are the forces 

at each Eulerian node, while 𝐹(𝐗𝐤) and 𝐹(𝐘𝐤), are the force in each Lagrangian node being 
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distributed to Eulerian nodes. The terms, q(𝑥𝑖) and q(𝑦𝑖), is presented are heat sources for each 

Eulerian node, due the presence of immersed heated, and 𝑄(𝐗𝐤) and 𝑄(𝐘𝐤) are the thermal source 

in each Lagrangian node being distributed to the nodes Eulerian, thus forming, a thermal field of 

Eulerian force that acts on the fluid particles near the border. 

 

3. Mathematical models 

 

3.1 The Smagorinsky model 

 

According to the work of Santos, R.D.C et al. (2018) and Santos, R.D.C. dos, & Sales, J.H.O. 

(2023), the algebraic modeling Smagorinsky (1963) is based on the local equilibrium hypothesis for 

small scales, so that the injected energy in the spectrum, defined by 

 

𝜉 = −𝑢′𝑖𝑢′𝑗𝑆𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 2𝜈𝑆𝑖𝑗̅̅̅̅  𝑆𝑖𝑗̅̅̅̅  , (18) 

 

equals the dissipated energy by the viscous effects. The terms, 𝑢′𝑖 and 𝑢′𝑗 are, respectively, the 

characteristics scales of velocity of the sub-grid. It is assumed that the turbulent viscosity sub-grid 

is proportional to these characteristics’ scales, according to the equation 

𝜈𝑡 = 𝐶𝑠ℓ(𝑢
′
𝑗𝑢
′
𝑖)
1
2 . (19) 

 

The turbulent viscosity, Eq. (19), can be expressed as a function of the strain rate tensor (𝑆𝑖𝑗), 

the characteristic length scale (ℓ), associated with the grid size and the 𝐶𝑠 constant, called the 

Smagorinsky constant, the viscosity turbulent is then represented by 

 

𝑣𝑡 = (𝐶𝑠ℓ)
2√2𝑆𝑖̅𝑗𝑆𝑖̅𝑗  , (20) 

where, the strain rate tensor 𝑆𝑖̅𝑗 is represented by 

 

𝑆𝑖̅𝑗 = 
1

2
 (
𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
), (21) 

where, the implementation related to the damping function was implemented in such a way as to 

dampen the turbulent viscosity close to the walls of the immersed boundary, regardless of the type 

of geometry to be considered. 

 

3.2 The Spalart-Allmaras model 

The Spalart-Allmaras turbulence model emerged in the 1990’s after a coherent convergence 

between ideas about an empirical model that resolved the turbulence, that is, that which only a single 

equation, the modeling would occur directly, solving the question of the main turbulent parameter: 

turbulent viscosity, without involving calculations with turbulent energy or dissipation or vorticity, 

where in other existing models, these characteristic parameters are necessary to define the 

turbulence behavior in the flow. In the Spalart-Allmaras model, a transport equation for turbulent 

viscosity is established, using empiricism and argument from dimensional analysis, invariance and 

a selective dependence on molecular viscosity, according to the works of Spalart et al. (1992). The 

equation includes a non-viscous destruction term that depends on the distance to the wall. Unlike 

algebraic models, the first models of an equation are local, in the sense that the equation at one point 

does not depend on the solution at other points. Therefore, it is compatible with grids of any nature. 

The solution close to the wall is less difficult to obtain. 

 Wall and undisturbed flow conditions are elementary. The model produces relatively smooth 

turbulent laminar transition at points specified by the user. The model was calibrated in boundary 
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layers with a pressure gradient. The turbulent viscosity (𝑣𝑡) is calculated from the Spalart-Allmaras 

working aid variable, 𝑣̃, and damped by the function 𝑓𝑣𝑖 near to the walls, 

 

𝑣𝑡 = 𝑣̃ 𝑓𝑣1 , (22) 

 

where,  

 

𝑓𝑣1 = 
𝜒3

𝜒 + 𝐶𝑣1
3  , (23) 

  

with, 

 

𝜒 =  
𝑣̃

𝑣
 . (24) 

 

Thus, the so-called auxiliary work variable of the Spalart-Allmaras model, 𝑣̃, obeys the 

following transport equation 

 
𝜕𝑣̃

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝑢𝑗𝑣̃)

= 𝑐𝑏1(1 − 𝑓𝑡2)𝑆̃𝑣̃ +
1

𝜎
[
𝜕

𝜕𝑥𝑗
((𝑣 + 𝑣̃)

𝜕𝑣̃

𝜕𝑥𝑗
) + 𝑐𝑏2

𝜕𝑣̃

𝜕𝑥𝑗

𝜕𝑣̃

𝜕𝑥𝑗
]

− [𝑐𝑤𝑓𝑤 −
𝑐𝑏1
𝑘2
𝑓𝑡2] [

𝑣̃

𝑑𝑤
]
2

+ 𝑓𝑡1∆𝑈
2 , 

(25) 

 

where the terms on the right side of Eq. (25) represent, respectively: (i) the production of turbulent 

viscosity, (ii) the molecular and turbulent diffusions of 𝑣̃, (iii) the dissipation of 𝑣̃, (iv) the 

destruction of 𝑣̃ that reduces the turbulent viscosity to the wall and, finally, (v) the terms that model 

transition effects to turbulence, indicated by the subindex 𝑡. For regions distant from the walls, the 

function 𝑓𝑣𝑖 has no influence on the calculation of turbulent viscosity, being its unit value and, 

therefore, making 𝑣𝑡 = 𝑣̃. The production term of the transport equation, Eq. (25), also needs a 

correction near to the wall, which is performed by replacing the parameter 𝑆 with a modified variable 

𝑆̃, which is also influenced by a damping function 𝑓𝑣2, defined similarly to 𝑓𝑣2. Thus, 𝑆̃ and 𝑓𝑣2 are 

presented below by following formulation 

 

𝑆̃ = 𝑆 +
𝑣̃

(𝑘𝑑𝑤)2
 𝑓𝑣2  , (26) 

𝑓𝑣2 = 1 −
𝜒

1 + 𝜒𝑓𝑣1
 , (27) 

 

where, 𝑑𝑤, Eq. (26), is the distance to the near wall, and 𝑆 is the modulus of the strain rate, calculated 

with the variables of the filtered field, being calculated by 

 

𝑆 = √2𝑆𝑖̅𝑗𝑆𝑖̅𝑗 . (28) 

 

The function 𝑓𝑤 is defined as a unit value for the region of the logarithmic boundary layer, 

intensifying the term of distribution as it approaches the wall, tending to zero for the most distant 

regions of the wall, thus being defined as being 
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𝑓𝑤 = 𝑔(
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6
) , (29) 

where,  

 

𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟) , (30) 

 

and, 

 

𝑟 ≡
𝑣̃

𝑆 ̅𝑘2𝑑𝑤2
 . (31) 

 

Others constants of the model are 𝜎 = 2 3⁄  , 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622, 𝑘 = 0.41, 𝑐𝑤1 =

 
𝑐𝑏1

𝑘2
⁄ +

(1 + 𝑐𝑏2)
𝜎⁄ , 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2 and 𝑐𝑣1 = 7.1. These constants were determined 

empirically. Regarding the average energy equation with turbulent diffusivity, applying an 

additional scale 𝑄𝑗, being represented by 

 

𝜕Θ̅

𝜕𝑡
+
𝜕(𝑢̅𝑗Θ̅)

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑗
[𝛼 (

𝜕Θ̅

𝜕𝑥𝑗
) + 𝑢𝑗Θ̅̅ ̅̅̅ − 𝑢̅𝑗Θ̅ ] , (32) 

 

where, the term Θ̅ is the resolved temperature field. 

 

5. Numerical method 

The numerical method used in this paper is the fractional steps that unites the velocity and 

pressure. With the aim to solve the Navier-Stokes equation, result new velocity and pressure fields. 

For the time discretization is used Euler’s method of the first order. The Navier-Stokes equation 

were solved explicitly. The correction of pressure results in a linear system, solved by Modified 

Strongly Implicit Procedure developed by Schneider & Zedan (1981). The Eq. (2), can be rewritten 

in the following in the following way 

 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑚

∆𝑡
+ [

𝜕

𝜕𝑥𝑗
(𝑢𝑖

𝑛𝑢𝑗
𝑛)] = −

1

𝜌

𝜕𝑝𝑛+1

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
[(𝑣 + 𝑣𝑡) (

𝜕𝑢𝑖
𝑛

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝑛

𝜕𝑥𝑖
)] + 𝑓𝑖

𝑛 . (33) 

 

In the fractional step method, the velocities, pressure and the forcing term of the predictive 

instant (𝑛) are used to calculate, in the predictive step, and estimate for the velocity in the current 

time 𝑢̅𝑖
𝑛+1, represented by the equation 

 

𝑢̅𝑖
𝑛+1 − 𝑢𝑖

𝑚

∆𝑡
+ [

𝜕

𝜕𝑥𝑗
(𝑢𝑖

𝑛𝑢𝑗
𝑛)] = −

1

𝜌

𝜕𝑝𝑛+1

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
[(𝑣 + 𝑣𝑡) (

𝜕𝑢𝑖
𝑛

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝑛

𝜕𝑥𝑖
)] + 𝑓𝑖

𝑛 , (34) 

 

the next step in the fractional step method is to subtract Eq. (34) from Eq. (33), resulting in 

 

𝑢̅𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
=
1

𝜌

𝜕

𝜕𝑥𝑖
(𝑝𝑛+1 − 𝑝𝑛) , (35) 

 

doing some algebraic manipulations, we get the pressure field calculated, we obtaining the equation 

corrected for the velocity in the current iteration (corrector step), being represented by 
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𝑢𝑖
𝑛+1 = 𝑢̅𝑖

𝑛+1 −
∆𝑡

𝜌
 
𝜕𝑝′

𝑛+1

𝜕𝑥𝑖
 .  (36) 

 

6. Results 

Using the immersed boundary method coupled virtual physical model, implemented in C++ 

code, is possible perform simulation of (2D) (two-dimensional) flows around a heated body 

immersed in the flow. In this section, the flow around a pair of heated circular cylinders in tandem 

have equal diameters and the same center-to-center distance (LCC). The fluid and the heat flow are 

characterized by Reynolds number 𝑅𝑒 =
𝜌𝑈∞𝐷

𝜇
 and Prandtl number 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, where 𝜌 is the fluid 

density, 𝑈∞ is the free stream velocity, 𝐷 is the cylinder diameter, 𝜇 is the dynamic viscosity, 𝑐𝑝 is 

heat at constant pressure and 𝑘 the thermal diffusivity. In this work, numerical simulations are 

conducted for different Reynolds numbers (𝑅𝑒 = 1 − 500), while keeping the Prandtl number fixed 

at 𝑃𝑟 = 0.7. Both heat and fluid flow characteristics like the drag 𝐶𝑑 and lift 𝐶ℓ coefficients, 

recirculation behind the cylinder, streamline and isotherm pattern, average Nusselt number on the 

cylinder surface are presented and compared with previous result in the literature. In this case, the 

angle formed by the segment joining the centers of the two cylinders and the axis of the abscissa is 

zero. 

 

6.1 Description of the problem and boundary conditions 

In the Fig. 1, the two cylinders are identical and fixed with the same diameters, maintained in 

“tandem” (cylinders in line) with downstream of the cylinder A. The cylinders are confined to a 

channel with free flow, with uniform velocity (U∞) and constant temperature (𝑇𝑐(>  𝑇∞)). The 

horizontal and vertical spacing between the cylinders are fixed in 𝐿𝑢 = 16.5 𝑑 and 𝐿𝑑 = 19.5 𝑑, 

respectively. These values are chosen to reduce the effect of boundary conditions on the inlet and 

outlet relative to the flow patter and the cylinder boundary. 

 

 
  

Figure 1: Illustration of the computational domain with two cylinders in tandem configuration. 
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The drag (𝐶𝑑) and lift (𝐶ℓ) coefficients for the calculation of each cylinder are performed as 

follows 

 

𝐶𝑑 = 𝐶𝑑𝑝 + 𝐶𝑑𝑣 =
2𝐹𝑑
𝜌𝑈∞2𝐷

 , (37) 

𝐶ℓ = 𝐶ℓ𝑝 + 𝐶ℓ𝑣 =
2𝐹ℓ
𝜌𝑈∞2𝐷

 , (38) 

 

where, 𝐶ℓ𝑝 and 𝐶ℓ𝑣 represent the lift coefficients due pressure and viscous forces, respectively. In a 

similar way, 𝐶𝑑𝑝 and 𝐶𝑑𝑣, represent the drag coefficients due to the pressure and viscous forces. The 

terms, 𝐹𝑑 and 𝐹ℓ are forces of drag and lift, respectively, acting on the surface of the cylinder. Thus, 

the drag and lift coefficients can be obtained from the expressions: 

 

{
 
 

 
 
𝐶𝑑𝑝 = 2∫(𝑝𝑓 − 𝑝𝑟) 𝑑𝑦 ,

1

0

𝐶𝑑𝑣 =
2

𝑅𝑒
 ∫ [{(

𝜕𝑢

𝜕𝑦
)
𝑠

+ (
𝜕𝑢

𝜕𝑦
)
𝑖

}  𝑑𝑥 + {(
𝜕𝑢

𝜕𝑥
)
𝑓
+ (

𝜕𝑢

𝜕𝑥
)
𝑟
}  𝑑𝑦] ,

1

0

 (39) 

 

{
 
 

 
 
𝐶𝑙𝑝 = 2∫(𝑝𝑖 − 𝑝𝑠) 𝑑𝑦 ,

1

0

𝐶ℓ𝑣 =
2

𝑅𝑒
 ∫ [{(

𝜕𝑢

𝜕𝑦
)
𝑓

+ (
𝜕𝑢

𝜕𝑦
)
𝑏

}  𝑑𝑥 + {(
𝜕𝑢

𝜕𝑥
)
𝑡
+ (

𝜕𝑢

𝜕𝑥
)
𝑖
 }  𝑑𝑦] ,

1

0

 (40) 

 

 

6.2 Flow fields for 𝑅𝑒 = 500 and 𝑅𝑖 = 0 in cylinders in tandem with forced convection 

 

The Fig. (2) present simplified fields of effective viscosity, vorticity, isothermal lines, and 

aerodynamics coefficients, 𝐶𝑑 and 𝐶ℓ, for the flow around cylinder tandem, for Reynolds and 

Richardson numbers, equals to 500 and 0, respectively. 

 

 

  
(a) (b) 
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(c) (d) 

 

 

 

 

 

 

The main results for the simulations can be summarized as follows: 

 

• A wake forms upstream of the second cylinder, but it needs to be checked whether it can be 

decreased or suppressed with the increase of the distance between the cylinders; 

• The isothermal lines reflect the same behavior of the pattern of the streamlines (current 

lines); 

• The average Nusselt number increase for 𝑅𝑒 = 500 for different value of 𝑅𝑖, even keeping 

the distance between the cylinders; 

• The thermal buoyancy is suppressed in the recirculation zones of the tandem cylinders, even 

with a mounting angle; 

• The thermal buoyancy tends to in the recirculation zones of the tandem cylinders, even with 

a mounting angle; 

• The thermal buoyancy tends to increase the coefficient of drag and the average Nusselt 

number of the cylinder more than the second. 

 

6.3 Variations of the Nusselt number 

One of the main purposes of the heat transfer calculations involving cylinders is to determine 

the local and total transfer around isothermal cylinders. The effect of the flow, especially with 

respect to the heat transfer, can be better observed by analyzing the local heat transfer coefficient, 

also known as the Nusselt local number. In the Fig. (3), for different Richardson numbers, the 

distributions of Nusselt numbers along the perimeter of the upstream and downstream cylinders are 

provided. For 𝐿𝑐𝑐 𝑑⁄ = 3, 𝑅𝑒 = 100, 𝑅𝑒 = 200 and 𝑅𝑒 = 500, for different Richardson numbers, 

the local distributions of the Nusselt numbers along the perimeter of the upstream and downstream 

cylinders are provided. For 𝐿𝑐𝑐 𝑑⁄ = 3, although the local profile of the Nusselt number of the 

upstream cylinder is similar to that of an isolated cylinder, the downstream cylinder has completely 

different characteristics, as the transfer rate is closely related to the flow, the local minimum rates 

of heat transfer appear at the front back stagnation points of the downstream cylinder, where the 

magnitude of velocities are relatively small. 

Figure 2: Spalart-Almarras model for simplified fields of effective viscosity (a) vorticity (b); isotherms 

lines (c) and Drag (𝐶𝑑) and Lift 𝐶ℓ coefficients for cylinders, for 𝑅𝑒 = 500 with 𝑅𝑖 = 0. 
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This, in Fig. (3-(a)), the maximum heat transfer from the downstream cylinder is exhibited 

with a double protuberance in 𝜃 ≈ 57° and 𝜃 ≈ 265° from the cylinder wall, where thermal layers 

(also known as thermal plumes) and hydrodynamics becomes thinner. The formation of vortices in 

the downstream region of the cylinder coincides with the oscillations of the average Nusselt number 

from large amplitude to low amplitude during a vortex release period for 𝐿𝑐𝑐 𝑑⁄ = 3 and 𝑅𝑒 = 500 

for different values of 𝑅𝑖, as see in Fig. (3-(b)). It is important to note that although the Nusselt’s 

local distribution of the downstream cylinders resembles that of the upstream cylinder, typified as 

large protuberance, its magnitude is smaller than of the upstream cylinder, indicating smaller heat-

to-cylinder conversion to downstream. 

 

  

(a) (b) 

Figure 3: Local variation of the Nusselt number to the same dimensionless instants: (a) 𝑅𝑒 =
100,   𝑅𝑒 = 200 and 𝑅𝑒 = 500 for 𝑅𝑖 = 0;  and (b) 𝑅𝑒 = 500 for 𝑅𝑖 = 1.0, 𝑅𝑖 = 2.0 and 𝑅𝑖 =

5.0. 

 

7. Conclusion 

 

In this study, we introduced an advanced boundary-condition-enforced immersed boundary 

method developed for simulating heat and mass transfer problems. The influence of thermal 

boundaries on flow and temperature fields was effectively incorporated through velocity and 

temperature corrections. The temperature correction process is handled implicitly, ensuring that the 

temperature at the immersed boundary, derived from the corrected temperature field, adheres to the 

physical boundary conditions. To account for momentum transfer between the immersed body and 

the surrounding fluid, we implemented an additional momentum forcing term within the fluid-body 

equation. However, we chose to present only the results of simulations related to the Spalart-

Allmaras Model, which is part of the Unsteady Reynolds-Averaged Navier-Stokes (URANS) 

concept, incorporating a single transport equation for turbulence viscosity, calibrated within 

pressure gradient layers. This choice allowed us to focus our analysis on the Spalart-Allmaras 

Model, providing a more detailed and specific insight into the obtained results. To facilitate our 

research, we developed a computational code to implement the mentioned methodology, enabling 

us to comprehensively analyze the interaction of heat transfer phenomena within turbulence in 

thermofluid dynamics interactions around complex isothermal geometries. The excellent agreement 

of our results with available literature data underscores the validity and reliability of our numerical 

approach. 
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