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Resumo  

A omnipresença e a complexidade dos fenômenos físicos impulsionam a forte procura de 

ferramentas capazes de simulá-los, visto que, muitas aplicações requerem simulações 

computacionalmente viáveis, confiáveis e, preferencialmente, com baixo custo. Assim, a priori, este 

trabalho traz dois objetivos: i) compreender os fundamentos teóricos da dinâmica de fluidos com 

um importante método computacional destinado à simulação de escoamentos incompressíveis, 

denominado SPH (do inglês, Smoothed Particle Hydrodynamic), que a posteriori, será 

implementado; e ii) auxiliar na consolidação e aplicação de conceitos-chave em análise matemática 

para simulação computacional. Nossos esforços neste trabalho, fornecem fundamentos 

matemáticos, que por sua vez, descrevem a dinâmica do movimento fluidodinâmico. 

Palavras-chave: Dinâmica dos Fluidos Computacional. Equações de Navier-Stokes. Simulação 

SPH. 

 

Abstract  

The omnipresence and complexity of physical phenomena drive the strong search for tools capable 

of simulating them, since many applications require computationally viable, reliable and, preferably, 

low-cost simulations. Thus, a priori, this work has two objectives: i) understand the theoretical 

foundations of fluid dynamics with an important computational method aimed at simulating 

incompressible flows, called SPH (Smoothed Particle Hydrodynamic), which will subsequently be 

implemented; and ii) assist in the consolidation and application of key concepts in mathematical 

analysis for computer simulation. Our efforts in this work provide mathematical foundations, which 

in turn, describe the dynamics of fluid dynamic motion. 

Keywords: Computational Fluid Dynamics. Navier-Stokes Equations. SPH Simulation.  

 

List of symbols and notations  

 

In the vast realm of communication, symbols and notations serve as powerful tools, 

transcending linguistic barriers and conveying complex ideas with succinct precision. This 

compilation aims to elucidate a diverse range of notations and symbols, providing a key to unlocking 

embedded language. May this section act as a guiding compass for the reader, navigating them 
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through the symbolic landscapes of this work and enhancing their comprehension of the adopted 

formulations. 

 

∇ Gradient operator 

𝜕 Partial derivative 
𝐷𝑓

𝐷𝑡
 Material derivative 

𝑑𝑖𝑣 Divergent 

𝒖 Vector field 

T Tensor field 

𝜆, 𝜇 Non-negative coefficients of viscosity 

 

In each section of the text, various notations and their corresponding meanings are elucidated, 

providing a comprehensive understanding of the technical nuances within the respective domains. 

 

1. Introduction 

 

The prevalence and complexity of natural phenomena contribute to both the substantial 

demand for tools capable of simulating them and the challenges associated with designing such 

tools. In the realm of computer simulations, there is a pressing need to represent phenomena 

resulting from the interactions among natural elements, such as clouds, mountains, rivers, and trees. 

Frequently, these interactions either surpass the capabilities of real cameras, as seen in scenarios 

like space station explosions, or they prove prohibitively expensive and even perilous to film on 

location, exemplified by the flooding of a densely populated city or the rapid spread of a forest fire. 

A multitude of other applications also necessitates visually realistic computer simulations of natural 

phenomena, spanning domains like computer gaming and others. 

The increase in computational power and the ready availability of ample memory have 

facilitated the simulation of a myriad of natural phenomena on standard hardware, with a particular 

emphasis on achieving visual realism. These advancements, coupled with the growing demand for 

simulations that closely mimic reality, have spurred the scientific community to focus on the 

development of methodologies and techniques for simulating physical phenomena. Consequently, 

there has been a substantial expansion in the body of literature dedicated to the simulation of natural 

elements over the past decade. It is imperative to acknowledge the necessity of crafting specialized 

algorithms and techniques for optimization in simulation, achieved through the adaptation of 

existing Computational Fluid Dynamics (CFD) methods and the creation of new techniques tailored 

to graphical requirements. This introductory work abstains from an exhaustive exploration of related 

issues, as these are effectively addressed through the application of the techniques adopted for 

simulating fluid motion across diverse applications. 

 

2. Computer simulation 

 

2.1 An overview of computer simulation  

 

The fundamental objective of natural science is to provide the most precise description of 

reality possible, facilitating a comprehensive comprehension of natural phenomena and, in turn, 

obtaining a broader understanding of the behavior of objects under specific conditions. This pursuit 

encompasses the validation of a wide array of phenomena occurring on scales spanning orders of 

magnitude, ranging from the exploration of the fundamental nature of matter in quantum mechanics 

to the investigation of the origins of the universe. Historically, two methodological approaches have 

been employed to unveil the laws governing the natural world: the empirical and the theoretical. 

The empirical approach aims to uncover physical laws through observations supported by 

experiments and a variety of measuring devices and instruments. One of the prominent figures in 
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this regard was Galileo Galilei, who played a pivotal role in the scientific revolution. His 

groundbreaking experiments, such as those conducted from the Leaning Tower of Pisa, revealed 

that bodies of differing masses fall to the ground at the same rate, a foundational observation that 

significantly influenced the advancement of scientific understanding. 

The theoretical approach, conversely, translates the laws of nature into mathematical 

expressions, utilizing the language of differential and integral calculus to elucidate how specific 

quantities evolve in relation to one another. A classic example of this theoretical insight is found in 

the well-known episode involving an apple's descent, which inspired Sir Isaac Newton to postulate 

that the same force of gravity governs the entire cosmos. This revelation led to the development of 

Newton's theory of gravitation, which also encompassed his three laws governing the motion of 

solid bodies. James Maxwell is credited with the formulation of the equations governing 

electromagnetic fields, and Albert Einstein is renowned for conceiving his groundbreaking theory 

of relativity, all through rigorous theoretical work. The mathematical foundation for describing fluid 

flow, encompassing variables such as velocity, pressure, and temperature in both spatial and 

temporal dimensions, relies on the Navier-Stokes and Euler equations. However, it is essential to 

acknowledge that both the theoretical and practical approaches have their limitations. In certain 

domains, conducting physical experiments, such as investigating the consequences of an oil spill or 

accidents in nuclear reactors, is inherently precluded due to safety concerns.  

Experiments involving measurements frequently encounter limitations due to extended 

durations, which can be exceptionally protracted, or when the quantities under investigation exhibit 

extreme scales, ranging from the minute, such as electric currents in microprocessors, to the 

colossal, as observed in the birth of stars and galaxies. Moreover, a multitude of experiments entail 

diverse configurations and necessitate measurements at a limited number of discrete points. This is 

notably evident in fields like weather forecasting and the study of atmospheric phenomena, 

including tornadoes, hurricanes, and tsunamis. Conversely, the mathematical equations that 

accurately depict the physical world often become exceedingly intricate, rendering analytical 

solutions infeasible. In many instances, exact solutions can only be achieved for highly simplified 

models. In addition to the conventional practical and theoretical methodologies, simulations have 

emerged in recent years as a third approach that amalgamates the strengths of the two previously 

mentioned traditional methods. 

At present, computational simulations find widespread utility across diverse scientific and 

industrial domains. Notably, in the field of mechanical engineering, these simulations play a pivotal 

role in the exploration of the properties of elastic solids. They are instrumental in vehicle design, 

structural stability analysis, and ongoing efforts to enhance structural integrity. In the realm of 

chemical applications, numerical simulations serve as a valuable tool for optimizing reactions 

involving various substances, as seen in processes like combustion. Additionally, their scope 

extends to the investigation of phenomena such as melting and coating processes, as well as the 

critical domain of weather forecasting. For a comprehensive overview of the numerous applications, 

one can refer to the work by Kaufmann & Smarr (1992). Those seeking a deeper understanding of 

the discretization of the differential equations involved can consult the research by Golub & Ortega 

(2014). 

With its diverse array of applications, numerical simulation undeniably stands as a cutting-

edge technological domain. In recent years, it has emerged as an invaluable tool for investigating 

environmental issues, among a myriad of others as previously mentioned. These are just a few 

tangible examples from a broader spectrum of knowledge that harnesses numerical simulation, 

prominently exemplified by Computational Fluid Dynamics (CFD). CFD, in particular, excels in 

providing highly accurate insights into the physical and physicochemical processes exhibited by 

fluid flow. This computational tool is underpinned by the Navier-Stokes equations, which, even in 

their two-dimensional formulation, incorporate non-linear terms, necessitating specific 

simplifications for problem resolution. In essence, these equations possess the capability to model 

a wide range of flow regimes, encompassing laminar, turbulent, compressible, and incompressible 

flows, both internally and externally. However, it is essential to recognize that recalibrating the flow 
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field around a body at each time step introduces an additional computational load, necessitating a 

stable and dependable numerical approximation for resolution. This exemplifies the critical 

relevance of this field of knowledge and its expanding horizons, underscoring its ever-increasing 

significance.  

It's imperative to recognize that the current landscape offers a multitude of commercial 

software solutions designed to develop and implement algorithms, providing attractive and efficient 

alternatives for specific scenarios. Nevertheless, this landscape presents a dual dynamic, as some 

commercial software entails substantial costs and necessitates periodic license renewals. 

Additionally, many of these programs operate under the “closed-source” paradigm, restricting 

access to their internal programming structure, even when such modifications are warranted. This 

investigation does not aim to critique commercial software. On the contrary, these tools are robust 

and invaluable for evaluating diverse scenarios across a range of applications. 

 

3. Equations of fluid dynamic motion 

 

This section is dedicated to elucidating fundamental concepts and outcomes in mathematical 

fluid dynamics. The governing equations for fluid motion will be deduced based on fundamental 

conservation laws and the presumptions of continuum fluid mechanics. Our derivations will 

maintain generality until it becomes necessary to tailor our outcomes to the flows predominantly 

simulated in computer simulations, namely, incompressible inviscid flows and incompressible 

Newtonian flows characterized by uniform viscosity. 

Through this theoretical exposition, we aim to acquire a robust comprehension of the 

underlying assumptions inherent in the equations of motion employed in physics-driven fluid 

simulation. We have selectively curated the prevailing concepts and findings from the existing 

literature, as well as, identified areas we perceive as ripe for further exploration in the advancement 

of simulations.  

Our advancements stem from an in-depth exploration of select topics found in five seminal 

works Batchelor (1967), Chorin et al. (1990), and dos Santos (2007). For a more comprehensive 

understanding of mathematical fluid dynamics, we highly recommend interested readers to delve 

into these references for further elucidation. 

 

Theorem 1 (Reynolds’ Transport Theorem). Let 𝑓: 𝐷̅ × Ι ⟶ ℝ as in the smoothness convection and 

Ω𝑡 ≔ 𝜑(Ω0, 𝑡) ⊆ 𝐷, for each 𝑡 ∈ 𝐼 and Ω0 ⊆ 𝐷 the (arbitrary) reference fluid region, then 

 

 

𝑑

𝑑𝑡
∫ 𝑓 𝑑𝑉

Ω𝑡

= ∫ (
𝐷𝑓

𝐷𝑡
+ 𝑓 𝑑𝑖𝑣 𝒖 ) 𝑑𝑉

Ω𝑡

 , (1) 

 

where 𝑑𝑉 denotes the volume element. 

 

Prior to furnishing a proof for this outcome, we establish the subsequent lemma regarding the 

time derivative of 𝐽(𝒙0, 𝑡) ≔ det(∇𝜑(𝒙0, 𝑡)), where the Jacobian of 𝜑 is taken with respect to 

spatial coordinates. 

 

Lemma 1.  
𝜕

𝜕𝑡
𝐽(𝒙0, 𝑡) = 𝐽(𝒙0, 𝑡)[𝑑𝑖𝑣 𝒖(𝒙0, 𝑡), 𝑡] 
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Proof of Lemma 1. Primarily, observe that 

 
𝜕

𝜕𝑡
∇𝜑𝑖(𝒙0, 𝑡) = ∇

𝜕𝜑𝑖

𝜕𝑡
(𝒙0, 𝑡) = ∇[𝒖𝑖(𝜑(𝒙0, 𝑡), 𝑡)] = ∇𝒖𝑖(𝜑(𝒙0, 𝑡), 𝑡) ∙ ∇𝜑(𝒙0, 𝑡)

= ∑
𝜕𝒖𝑖

𝜕𝑥𝑗
 

𝑛

𝑗=1

(𝜑(𝒙0, 𝑡), 𝑡)∇𝜑𝑗(𝒙0, 𝑡). 

 

 

From this equality, the n-linearity and the antisymmetry of 𝑑𝑒𝑡(∙), we have 

 

𝜕

𝜕𝑡
J(𝒙0, 𝑡) =

𝜕

𝜕𝑡
det(∇φ (𝒙0, 𝑡)) =

𝜕

𝜕𝑡
det(∇φ1 (𝒙0, 𝑡), … , ∇φ𝑛 (𝒙0, 𝑡))

= ∑ 𝑑𝑒𝑡(∇φ1 (𝒙0, 𝑡), … , ∇φ𝑖 (𝒙0, 𝑡), … , ∇φ𝑛 (𝒙0, 𝑡)) 

𝑛

𝑖=1

= ∑ 𝑑𝑒𝑡 (… , ∑
𝜕𝒖𝑖

𝜕𝑥𝑗
 

𝑛

𝑖=1

(𝜑(𝒙0, 𝑡), 𝑡) ∇𝜑𝑗(𝒙0, 𝑡), … ) = 

𝑛

𝑖=1

 

 

 

= ∑

𝑛

𝑖=1

∑
𝜕𝒖𝑖

𝜕𝑥𝑗

(𝜑(𝒙0, 𝑡), 𝑡) 𝑑𝑒𝑡(… , ∇φ𝑗 (𝒙0, 𝑡), … )

𝑛

𝑗=1

= ∑
𝜕𝒖𝑖

𝜕𝑥𝑗

(𝜑(𝒙0, 𝑡), 𝑡) 𝑑𝑒𝑡(∇φ1 (𝒙0, 𝑡), … , ∇φ𝑛 (𝒙0, 𝑡))

𝑛

𝑖=1

= 𝑑𝑒𝑡(∇𝜑(𝒙0, 𝑡)) ∑
𝜕𝒖𝑖

𝜕𝑥𝑗
 

𝑛

𝑖=1

(𝜑(𝒙0, 𝑡), 𝑡) = 𝐽(𝒙0, 𝑡)[𝑑𝑖𝑣 𝒖 𝜑(𝒙0, 𝑡), 𝑡].  ∎  

 

 

 

Proof of Reynolds’ Transport Theorem. From the smoothness of 𝜑𝑡|Ω0
(and its inverse’s), the 

continuity of 𝜑(𝒙0, ∙) and that 𝜑(∙, 𝑡0) ≡ 𝑖𝑑(∙), we have the positivity of  𝐽(𝒙0, 𝑡) for each  𝑥0 ∈
 Ω0 and each 𝑡 ∈ 𝐼. From this, the preceding lemma and the change of variables theorem: 
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𝑑

𝑑𝑡
∫ 𝑓(𝒙, 𝑡) 𝑑𝑉 =

𝑑

𝑑𝑡
Ω𝑡

∫ 𝑓(𝒙, 𝑡) 𝑑𝑉

𝜑(Ω0,𝑡)

=
𝑑

𝑑𝑡
∫ 𝑓(𝜑(𝒙0, 𝑡), 𝑡)𝐽(𝒙0, 𝑡)𝑑𝑉

Ω0

= ∫ (
𝜕𝑓

𝜕𝑡
+ ∇𝑓 ∙

𝜕𝜑

𝜕𝑡
) (𝜑(𝒙0, 𝑡), 𝑡) 𝐽(𝒙0, 𝑡) 𝑑𝑉

Ω0

+ ∫ 𝑓(𝜑(𝒙0, 𝑡), 𝑡)
𝜕

𝜕𝑡
 𝐽(𝒙0, 𝑡) 𝑑𝑉

Ω0

= ∫ (
𝜕𝑓

𝜕𝑡
+ ∇𝑓 ∙ 𝒖) (𝜑(𝒙0, 𝑡), 𝑡) 𝐽(𝒙0, 𝑡) 𝑑𝑉

Ω0

+  ∫ 𝑓(𝜑(𝒙0, 𝑡), 𝑡) 𝐽(𝒙0, 𝑡) [𝑑𝑖𝑣 𝒖 (𝜑(𝒙0, 𝑡), 𝑡)] 𝑑𝑉

Ω0

  

 

= ∫
𝐷𝑓

𝐷𝑡
(𝜑(𝒙0, 𝑡), 𝑡) 𝐽(𝒙0, 𝑡) 𝑑𝑉 +

Ω0

∫ (𝑓 𝑑𝑖𝑣 𝒖)(𝜑(𝒙0, 𝑡), 𝑡) 𝐽(𝒙0, 𝑡) 𝑑𝑉

Ω0

=  ∫ (
𝐷𝑓

𝐷𝑡
+ 𝑓𝑑𝑖𝑣 𝒖) (𝜑(𝒙0, 𝑡), 𝑡) 𝐽(𝒙0, 𝑡) 𝑑𝑉

Ω0

=  ∫ (
𝐷𝑓

𝐷𝑡
+ 𝑓𝑑𝑖𝑣 𝒖)

𝜑(Ω0,𝑡)

(𝒙, 𝑡) 𝑑𝑉

=  ∫ (
𝐷𝑓

𝐷𝑡
+ 𝑓𝑑𝑖𝑣 𝒖) (𝒙, 𝑡) 𝑑𝑉

Ω𝑡

.    ∎ 

 

The ensuing corollary of the transport theorem establishes a link between the Lagrangian and 

Eulerian perspectives (in integral form). 

 

Corollary 1. With Ω𝑡 and 𝑓 as in the transport theorem, let Ω1 be the fixed set in ℝ𝑛 which coincides 

with Ω𝑡 at 𝑡 = 𝑡1. Then at the (arbitrary) time 𝑡1,  

 

𝑑

𝑑𝑡
∫ 𝑓 𝑑𝑉 =  

𝜕

𝜕𝑡
∫ 𝑓 𝑑𝑉 +  ∫ 𝑓 𝒖 ∙ 𝒏 𝑑𝐴

𝜕Ω1Ω1Ω𝑡

 , 

 

where 𝒏 is the unit outward normal, and 𝑑𝐴 the surface element, on 𝜕Ω1. 

 

Proof. From the identity 𝑑𝑖𝑣(𝑓𝒖) = ∇𝑓 ∙ 𝒖 + 𝑓 𝑑𝑖𝑣 𝒖, it suffices to note that 
𝐷𝑓

𝐷𝑡
+ 𝑓 𝑑𝑖𝑣 𝒖 =  

𝜕𝑓

𝜕𝑡
+

𝑑𝑖𝑣 (𝑓𝒖). From the transport and divergence theorems, 
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𝑑

𝑑𝑡
∫ 𝑓 𝑑𝑉 =  ∫ (

𝐷𝑓

𝐷𝑡
+ 𝑓 𝑑𝑖𝑣 𝒖)

Ω1Ω𝑡

𝑑𝑉 = ∫ (
𝜕𝑓

𝜕𝑡
+ 𝑑𝑖𝑣(𝑓𝒖))  𝑑𝑉

Ω1

=  ∫
𝜕𝑓

𝜕𝑡
 𝑑𝑉 +  ∫ 𝑑𝑖𝑣(𝑓𝒖) 𝑑𝑉 =

𝜕

𝜕𝑡
∫ 𝑓 𝑑𝑉 +  ∫ 𝑓 𝒖 ∙ 𝒏 𝑑𝐴

𝜕Ω1Ω1Ω1Ω1

. ∎ 

(2) 

 

The left-hand side of this expression denotes the rate of change of the “𝑓 - content” of the 

fixed body of fluid occupying the region Ω1 ⊆ 𝐷 at time 𝑡1. The first term on the right-hand side is 

the rate of change of the 𝑓 - content of this fixed spatial domain. And the last term is the rate of 

outflow of 𝑓 through the fixed boundary of Ω1 (flux of 𝑓 through 𝜕Ω1) - see more in Meyer (1982). 

While real fluids undergo volume changes, a vast majority of fluid flows deemed 'significant' 

can be effectively modeled as incompressible flows with a high degree of precision. This implies 

that, for numerous practical applications, such as computation simulations of everyday fluids, we 

can confidently consider the incompressibility of the fluid flows in question. 

 

Definition 1 (Incompressible flow). We say that 𝜑 denotes an incompressible flow when, for any 

fluid region 𝑊 ⊆ Ω0 and every 𝑡 ∈ 𝐼 

 

𝑣𝑜𝑙𝑢𝑚𝑒 (𝑊) = 𝑣𝑜𝑙𝑢𝑚𝑒(𝜑, (𝑊, 𝑡)) ⟺ ∫ 𝑑𝑉 = ∫ 𝑑𝑉 ⟺  
𝑑

𝑑𝑡
 ∫ 𝑑𝑉 = 0.

𝜑,(𝑊,𝑡)𝜑(𝑊,𝑡)𝑊

 

 

 

From this definition and the transport theorem, for incompressible flows, 

 

0 =
𝑑

𝑑𝑡
∫ 𝑑𝑉 =  ∫ 𝑑𝑖𝑣 𝒖 𝑑𝑣 ⟺ 𝑑𝑖𝑣 𝒖 = 0,

𝜑(𝑊,𝑡)𝜑(𝑊,𝑡)

 

 

where the right-hand side is often known as the incompressibility condition. 

 

The incompressibility condition and Lemma 1 also result that a flow is incompressible if and 

only if 𝐽 ≡ 1, since 𝐽(∙, 𝑡0) = 1. From the equation of continuity (the reader can check in Chorin et 

al. (1990)), and the fact that 𝜌 > 0, a fluid is incompressible if and only if  
𝐷𝜌

𝐷𝑡
= 0, that is, the mass 

density is constant following the fluid. If the fluid is homogeneous (i.e., 𝜌 = constant in space), it 

also follows that the flow is incompressible if and only if 𝜌 is constant in time. So, for a 

homogeneous incompressible fluid, 𝜌(𝒙, 𝑡) = 𝜌0 > 0. 
 

4. Smoothed Particle Hydrodynamics – SPH 

 

This section is dedicated to providing an explanation of the Smoothed Particle Hydrodynamics 

(SPH) approach for simulating fluid flows. Our exposition is largely influenced by the contributions 

of Neto (2007), who expanded Smoothed Particle Hydrodynamics (SPH) in his PhD thesis, to model 

non-Newtonian viscoplastic and multiphase flows, particularly for applications in computer 

graphics. 

We prioritize clarity and simplicity in our presentation. While our discussions are confined to 

a straightforward flow regime, we offer supplementary references for those interested in more 

comprehensive descriptions of the Smoothed Particle Hydrodynamics (SPH) structure and its 

computational implementation issues (refer to Gingold & Monaghan, 1977). 
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4.1 Flow regime and governing equations 

 

Our explanation of the Smoothed Particle Hydrodynamics method for flow simulation is 

grounded in a scenario where the fluid exhibits uniform viscosity, and the pressure adheres to an 

equation of state of the following form 𝑝(𝒙, 𝑡) = 𝑓(𝜌(𝒙, 𝑡)). Given these assumptions, the 

governing equations for this fluid flow are: 

 

 
𝐷𝜌

𝐷𝑡
= −𝜌(∇ ∙ 𝒖) 

 

(3) 

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑝 + (𝜆 + 𝜇)∇(∇ ∙ 𝒖) + 𝜇∆𝒖 + 𝜌𝒃 

 
(4) 

 

known, respectively, as continuity and momentum. The Lagrangian formulation employed to 

articulate the governing equations stems from the discretization strategy embraced by Smoothed 

Particle Hydrodynamics (SPH), which also makes use of the identity 𝒂 =
𝐷𝒖

𝐷𝑡
 (where 𝒂 stands for 

acceleration). 

 

4.2 Representation of the field and discretization of the fluid 

 

Instead of expressing field quantities through regularly sampled values and their differentials 

through difference equations (as done in stable fluids), SPH relies on scattered data approximation 

schemes and analytical differentiation of its approximations. This is achieved by leveraging the 

integral representation of a function 𝑓: Ω ⊆ ℝ𝑛 ⟶ ℝ as a convolution with Dirac’s delta 

distribution 𝛿 and that this distribution can be characterized as a generalized limit of specific smooth 

functions 𝑊ℎ, i.e., ℎ ⟶ 0 ⟹ 𝑊ℎ ⟶  𝛿: 

 

 

𝑓(𝒙) = ∫ 𝑓(𝒙′) 𝛿 (𝒙 − 𝒙′)

Ω

𝑑𝒙′ = lim
ℎ⟶0

{∫ 𝑓(𝒙′) 𝑊ℎ (𝒙 − 𝒙′)

Ω

𝑑𝒙′} . 
(5) 

 

Motivated by Eq. (4), the SPH approximation 〈𝑓〉 to the field 𝑓 is defined by a given family 

𝑊ℎ of smooth kernel functions and a fixed ℎ > 0 as  

 

 

〈𝑓(𝑥)〉 ∶= ∫ 𝑓(𝒙′) 𝑊ℎ (𝒙 − 𝒙′)

Ω

𝑑𝒙′ , 
(6) 

 

which is numerically discretized by the quadrature formula 

 

 

〈𝑓(𝑥)〉 ≈  ∑ 𝑓(𝒙𝑗) 𝑊ℎ (𝑥 − 𝑥𝑗) ∆𝑉𝑗 =  ∑ 𝑓𝑗

𝑚𝑗

𝜌𝑗
𝑗

 𝑊ℎ(𝑥 − 𝑥𝑗)

𝑗

 , (7) 
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where the weight ∆𝑉𝑗 =
𝑚𝑗

𝜌𝑗
 corresponds to the volume associated to the 𝑗 − 𝑡ℎ fluid particle (located 

at the quadrature point 𝒙𝑗 ∈  Ω), 𝑚𝑗 to its mass and 𝜌𝑗 to its associated specific mass. This quadrature 

formulation for the integral SPH approximation is construed as discretizing the fluid mass into a 

finite number of particles that evolve based on the governing equations. These equations describe 

the system dynamics through a coupled set of nonlinear ordinary differential equations (ODEs), a 

topic addressed in the subsequent subsection. 

Inspecting Eq. (6), we notice that whenever the family 𝑊ℎ is composed by compactly 

supported kernels, with influence radius say 𝜅ℎ, i.e., ∃𝜅 > 0 such that ‖𝒙 − 𝒙𝑗‖ ≥ 𝜅ℎ ⟹

𝑊ℎ(𝒙 − 𝒙𝑗) = 0, the sum in Eq. (6) effectively only takes place for those particles which are less 

than 𝜅ℎ away from 𝒙. Defining the neighboring particles of a point 𝒙 ∈ 𝑊 as 𝑁(𝒙) ∶=

 {𝑗 ∈ ℕ | ‖𝒙 − 𝒙𝑗‖ < 𝜅ℎ}, we can rewrite the discrete SPH approximation Eq. (6) as 

 

 

〈𝑓(𝑥)〉 ≈  ∑ 𝑓𝑗

𝑚𝑗

𝜌𝑗
𝑗

 𝑊ℎ(𝑥 − 𝑥𝑗) =  ∑ 𝑓𝑗

𝑚𝑗

𝜌𝑗
𝑗∈𝑁(𝒙)

 𝑊ℎ(𝑥 − 𝑥𝑗) . (8) 

 

4.3 The discretized equations that govern the system 

 

The method utilized by SPH to discretize the governing equations relies on the Lagrangian 

formulation of the fluid flow's governing equations. While Müller et al. (2003) deviates from the 

mentioned equations, we embrace the differential expression of momentum along with the tensor 

field, namely: 

 

𝜌
𝐷𝒖

𝐷𝑡
= 𝑑𝑖𝑣 𝑻 + 𝜌𝒃, 

(9) 

 

where 𝑻 = −𝑝𝐼 + 𝝈, and 𝝈 = 𝜆 𝑡𝑟(𝑫)𝑰 + 2𝜇𝑫; yet 𝐷 = 1
2⁄ (∇𝒖 + ∇𝒖𝑻), we have the following 

set of equations: 

 
𝐷𝒖

𝐷𝑡
=  −

1

𝜌
 ∇𝑝 +  

1

𝜌
 𝑑𝑖𝑣 [𝜆 𝑡𝑟(𝐷)𝐼 + 2𝜇𝐷] + 𝒃 . 

(10) 

 

As we have discretized the fluid mass into a finite number of particles, the behavior of this 

particle system is determined by the temporal changes in the position, velocity, and density of each 

particle. Hence, the behaviour of our system is described by how 
𝑑𝒙

𝑑𝑡
 , 

𝐷𝜌

𝐷𝑡
 and 

𝐷𝒖

𝐷𝑡
 are determined for 

each particle along this particle’s trajectory 𝒙(𝑡). Thus, for particle 𝑖, we have: 

 
𝑑𝒙𝒊

𝑑𝑡
= 𝒖𝑖 , 

 

(11) 

𝑑𝜌𝑖

𝑑𝑡
= −𝜌𝑖〈∇ ∙ 𝒖𝑖〉 , 

 

(12) 

𝑫𝑖 =
1

2
(〈∇𝒖𝑖〉 + 〈∇𝒖𝑖〉

𝑻) , 

 
(13) 

𝑝𝑖 = 𝑓(𝜌𝑖) , 
 

(14) 

𝝈𝑖 = 𝜆 𝑡𝑟(𝑫𝑖)𝑰 + 2𝜇𝑫𝑖 , (15) 
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𝑑𝒖𝑖

𝑑𝑡
= − 〈

1

𝜌𝑖
∇𝑝𝑖〉 + 〈

1

𝜌𝑖
𝑑𝑖𝑣 𝝈𝑖〉 + 〈𝒃𝑖〉 . (16) 

 

Observe the transition in notation from 
𝐷

𝐷𝑡
 to 

𝑑

𝑑𝑡
, as we are addressing the variations in a 

particle's attributes rather than derivatives of field quantities along trajectories in this context. Where 

each spatial derivative is approximated by the symmetric rules we derived before (to ensure 

conformance with Newton’s third law). 

 

5. Conclusion 

 

Thinking in the computational context, challenges often arise when dealing with boundaries. 

Although in principle no specific computational implementation was carried out in this study, it is 

recognized that extremely small-time steps are imperative for numerical simulations in order to 

avoid what are commonly known as 'numerical explosions', or, in other words, numerical 

inconsistencies. Consequently, a subsequent study will be presented, based on the works of               

dos Santos & de Oliveira Sales (2023), which will present a new numerical approach that aims to 

treat these numerical inconsistencies, and how they can be overcome with the objective of 

optimizing the calculation process, as well as, its computational cost. In principle, this work employs 

a numerical scheme for responding to readings and collisions between fluid dynamic particles, 

which are similar to what occurs in rigid body simulations. The initial exploration facilitated the 

adoption of mathematical procedures that prove to be effective in improving the stability of particles 

in the flow acceleration field during their evolution. Each particle operates independently, using 

interpolated accelerations. This mathematical approach demonstrates adaptability in both temporal 

and spatial domains. Initial studies, exemplified by Hernquist & Katz (1989), report the first 

advances in relation to the computational process (simulation) and the complexity in advancing 

simulation time. 
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