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Abstract  

This study focuses on developing ceramic ultrafiltration membranes using locally sourced kaolin 

clay and feldspar. An active layer composed of graphene and alkoxide is added to enhance the 

performance of these clay supports. This layer is thin, porous, and can vary in thickness. The support 

and filter layer's porous properties are characterized using SEM, DRX, ATG/ATD, XPS, and FTIR 

techniques. Filtration tests are conducted on modified porous tubular supports using cationic and 

anionic dye solutions. The filtration is performed tangentially at a pressure of 3.5 bar and a 

processing time of 120 minutes. The retention rates of the colored solutions are measured using a 

UV-visible spectrophotometer. The results show a 100% retention rate for supranol yellow and 

orange II at a concentration of 10-4 M, while for crystal violet and malachite green, the retention 

rates are 92.03% and 95.30%, respectively.   

Keywords: Ceramic membranes. Filtration. Dye removal. Efficiencies. Sol-gel. 

 

1. Introduction 

Environmental pollution is an acute problem on a global scale, caused by the increase in 

industrial discharges into the environment. Among these discharges, those from the textile dye 

industry are responsible for nuisances since most are toxic and non-biodegradable. Treatment of 

these discharges by conventional methods is often ineffective. For this reason, other low-cost 

methods are used for their elimination, such as membrane filtration, which is the subject of 

numerous studies (Y. Gan et al., 2023; Hafani et al., 2021; Men et al., 2023; Sutariya et al., 2023; 

Zaiter et al., 2020). Membrane processes are viable methods for removing a wide range of pollutants 

from water (Abbasi & Habibi, 2016). Membrane technology has made great strides in the separation 
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of dyes and heavy metals thanks to ultrafiltration, nanofiltration and reverse osmosis (Kammakakam 

& Lai, 2023; Mahmoud & Mostafa, 2023; Pezeshki et al., 2023; Ramutshatsha-Makhwedzha & 

Nomngongo, 2022; Shoshaa et al., 2023). Membrane separation processes are a constantly evolving 

technology due to the wide range of applications and the development of numerous filter materials 

(G. Gan et al., 2023; Li et al., 2023; Puertas et al., 2023; Rezende Moreira et al., 2022). Filtration 

processes are used in fields such as the chemical industry, food processing, water and effluent 

treatment, biotechnology and electronics (Chougui et al., 2014; Johnson & Singer, 2004). The 

industrial application of porous ceramic membranes with various advantages such as mechanical, 

thermal and chemical resistance, controlled microstructure and low pollution of our environment 

has attracted a lot of attention in the scientific community (Asli, Chougui, et al., 2022; Zaiter et al., 

2015). This study focuses on developing and characterizing a porous ceramic membrane where we 

have deposited an alkoxide and graphene-based filter layer using the sol-gel technique to remove 

cationic and anionic dyes. 

 

2. Materials and methods 

2.1 Chemicals 

The natural elements native to Algeria, such as feldspar and kaolin, were the source of the 

materials used in this study. Alkoxide (molecular weight: 162.165 g/mol) and graphene (Cn) were 

purchased from Acros Organics and Sigma-Aldrich, respectively. The feed solutions were prepared 

using analytical grade chemical components (SY, OII, CV, and MG) acquired from Biochemical 

Technology Co Ltd. Additionally, only milli-Q grade water was used to make these solutions.  

 

2.2 Preparation of membranes 

The tubular support was formulated using a slip of local clay, Kaolin, with particle diameters 

below 80 micrometers, feldspar, a deflocculant, and water. A deflocculant prevents undesirable 

agglomerates within the suspension, producing a high-quality membrane pre- and post-sintering 

(Belouatek et al., 2005; Obada et al., 2017). The resulting slip was poured into a plaster mould, 

yielding tubular supports measuring 19cm long with an internal/external diameter of 1.4mm. These 

supports are intended to provide mechanical support for the filtration layer. Drying was conducted 

at room temperature for 48 hours to facilitate uniform water evaporation from the mixture and 

prevent potential cracking. Following drying, a filtration layer was applied to the internal surface of 

the tubular support using the engobing technique. Subsequently, the support/membrane underwent 

thermal treatment at 1150°C, ramping up at a heating rate of 5°C/min for 7 hours under an air 

atmosphere. The selection of 1150°C stemmed from previous studies demonstrating optimal 

mechanical properties achieved at this temperature (Zhao et al., 2013). The sol-gel technique 

prepared the filter layer from alkoxide (aluminium triethoxide) and graphene (Cn). The filter layer 

was prepared by the sol-gel method (Zanurin et al., 2022)by adding 30 ml of methanol solution, 20 

ml of 0.1N HCl solution and 0.2 g of aluminium triethoxide to 5 g of graphene. The sol-graphene 

suspension was stirred for three hours and maintained at a temperature of 80°C. The acid catalyzed 

the aluminium triethoxide hydrolysis reaction, and the sol-graphene break was transformed into a 

gel-graphene. The rest is prepared by adding a solution of acetone and distilled water to graphite 

powder (chalk lead). The ultrasonic treatment lasts 5 hours; the sheets are separated by mass and 

surface area, the lighter sheets are found at the top of the suspension (supernatant), and the solution 

is filtered and dried at 60°C for 24 hours.  We obtained two ceramic membranes, CM and GCM, 

before and after alkoxide and graphene filter layer deposition. 

 

2.3 Characterization of  membrane 

At room temperature, infrared (IR) spectroscopy investigations were performed in the 400–

4000 cm-1 wavenumber range using a Perkin Elmer Spectrum Two FT-IR instrument fitted with 

ATR (Attenuated Total Reflection) sampling accessories, yielding a 2 cm-1 spectral resolution. 

A simultaneous TGA-DSC instrument, the STA 449 F5 Jupiter1, was used to perform 

thermogravimetric analysis (TGA), which was used to assess the membranes' thermal stability. In 
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an oxygen-rich atmosphere, 10 mg of samples were heated gradually at a rate of 5 °C per minute 

until they reached 1000 °C for analysis. This analytical method monitors the weight at 5°C per 

minute in an oxygen-rich atmosphere until it comes to 1000°C. It fluctuates during controlled 

heating of the specimen. This allows for assessing a material's volatile component content and 

thermal stability. 

The crystallographic phase composition of the microporous membranes was meticulously 

investigated employing X-ray diffraction (XRD) analysis facilitated by an XPert MPD instrument. 

A copper (Cu) radiation source, operating at 40 kV, emitting Cu K-alpha radiation with a 

wavelength (λ) of 1.54 A, was utilized to comprehensively examine the membrane's crystalline 

structure and phase identification. By applying this specific instrumentation and radiation source, 

XRD analysis facilitated the detailed characterization and determination of the crystallographic 

phases within the microporous membranes. 

The analysis of scanning electron microscope (SEM) micrographs was conducted employing 

a ULTRA PLUS scanning electron microscope (JEOL, JMC-6000) operating at an elevated voltage 

of 15 kilovolts (kV). This instrument was integrated with X-ray photoelectron spectroscopy (XPS), 

facilitating complementary examination and elemental characterization of the surface morphology 

and composition of the samples. The SEM analysis, conducted at an increased voltage combined 

with XPS, allowed for a comprehensive investigation, offering insights into the specimens' 

topographical features and elemental constituents. 

 

2.4 Ultrafiltration tests 

Cross-flow filtration studies were conducted at a TMP of 3.5 bar using tubular membranes 

(length: 30 cm; inner diameter: 12 mm; outer diameter: 13.4 mm) (a schematic of the filtration unit 

is depicted in Figure 1). 

The dye rejection of three concentrations (10−5, 10−4, 10−3 M) of crystal violet (MW= 407,99 

g/mol, λmax = 590 g/mol), malachite green (MW= 927,02 g/mol, λmax = 616 nm), supranol yellow 

(MW= 452 g/mol, λmax = 402 nm), and orange II (MW = 350 g/mol, λmax = 484 nm) solutions was 

filtered tangentially for two hours at a TMP of 3.5 bar was determined according to (Chougui et al., 

2019): 

 

𝑅 (%) = 100 (1 −
𝐶𝑝

𝐶𝐹
)             (1) 

 

where R is the dye rejection, [%], Cp is the permeate concentrations, [M], and CF is the feed 

concentrations, [M]. 

The rejection findings presented here are the average of three separate experiments. 

 
Figure 1 - Cross-flow ultrafiltration unit. 
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3. Results and discussion 

3.1 Membrane characterization 
FTIR spectroscopy analysis: Figure 2 shows the FTIR spectra of graphite, graphene and gel-

graphene (GCM). 

In the GCM spectrum, broadband appears around 3425 cm-1, attributed to the hydroxyl group 

(Santra et al., 2020) present on the surface.  

A small peak is observed at 2925 cm-1, which is linked to the (C-H) vibration of CH3 and CH2, 

and another peak at around 1634 cm-1 is attributed to the (C = C) bond of graphene. Another band 

at 1036 cm-1 is associated with the stretching of (C-O) (Aouadja et al., 2022) and (Al -O-C) or Al-

O-Al at around 870 cm-1. 

For both graphene and graphite spectra, a single band appeared at 1036 cm-1, attributed to the 

stretching vibration of C-O cm-1. 
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Figure 1 - FTIR spectra of graphite, graphene and gel-graphene (filter layer). 

 

Thermal analysis: Thermal analysis of the filter layer powder (GCM) showed a total weight 

loss of around 0.6% (Figure 3). 

The first weight loss is linked to the departure of physically adsorbed water at around 100°C; 

a slight weight loss at 200°C is due to the decomposition of oxygen-containing groups; a weight 

loss at 600°C is attributed to the pyrolysis of the filter layer's alumina groups. 

The second weight loss is due to material decomposition between 600°C and 800°C. 

An endothermic peak is observed around, accompanied by a loss of mass caused by the 

elimination of residual water physically adsorbed in the sample. 

An exothermic peak is observed at around 700°C due to the decomposition of the material. 
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Figure 3 - Thermogravimetric analysis curve of the filter layer. 

 

XRD analysis: XRD spectra of CM and GCM membranes obtained before and after treatment 

at 1150°C are shown in Figures 4 (a), (b), (c) and (d), respectively.  
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Figure 4 - XRD spectra of (a, b): CM powder before and after 1150°C treatment, (c, d): 

GCM powder back and after 1150°C treatment. 
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Determination of the structural phases of raw kaolin by XRD reveals that our clay is made up 

of a majority phase of kaolinite and quartz, with a fine muscovite fraction. The peaks characteristic 

of kaolinite (2Ɵ =12.3° and 24.8°), the peaks that characterize muscovite (2Ɵ = 8.9 ° and 17.8 °), 

and quartz (2Ɵ = 26.5°) are mainly observed. For kaolin treated at 1150°C, the intensity of the peaks 

becomes increasingly essential, and a literature search has shown that treatment at 1150°C results 

in the appearance of the characteristic mullite peak (Alsubei et al., 2024; Rafya et al., 2023), the 

kaolinite phase has disappeared and the mullite phase [3Al2O3, 2SiO2] is the main mineral present 

in the powder, meaning that porosity is independent of the phase formed, these identified phases are 

of great importance due to their promising physical and mechanical properties. 

The VRD spectrum of the raw gel-graphene powder (GCM) shows a peak at (2Ɵ = 28°), which 

corresponds to the Aluminum peak; we can conclude that the graphene sheets have been covered 

by the Aluminum particles in the gel-graphene (GCM). 

 

SEM analysis: Figure 5 shows the images of SEM images of the two ceramic membranes 

before and after coating with the filter layer. The photos show a heterogeneous roughened structure 

with pores of different sizes and small cavities. On the surface of the support, distinct grains of 

varying sizes can be observed, corresponding to the presence of mullite and an amorphous mass. 

 

 
Figure 5 - SEM of the CM membrane (a) and GCM membrane (b). 

 

XPS analysis: Figure 6 shows the XPS spectra of the GCM membrane as can be seen from 

the survey spectrum; the GCM indicated the scope with peaks Al 2p, C1s, Ca 2p, Na 2p, C1s, Fe 2p 

and Si 2p. Examination of this spectrum shows two prominent peaks at energies 284.459 and 

531.759 eV corresponding to carbon and oxygen, another peak at around 74.159 eV representing 

aluminium and another for silica at about 102.459 eV. The C 1s mounts can be integrated into two 

independent sub-bands attributed to the carbon in the (C-C) 284.45 eV and (C-O) 288 eV bonds. In 

addition, the O 1s peaks at 531.75eV and 532eV could be due to the presence of (C-O) and (AL-O) 

bond states in the samples. The peak area is proportional to the number of atoms of the element 

studied (Asli, Mokhtar, et al., 2022), and by calculating the respective share of each area, we obtain 

the atomic composition of the sample. We can see that the percentage of oxygen is 75% and carbon 

25%. 
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Figure 6 - XPS spectrum of GCM membrane. 

 

3.2 Water flux and permeability 
Figure 7 shows the water flows for the CM and GCM membranes. In both cases, water flow 

varied linearly with TMP, as predicted by Darcy's law (Masturi et al., 2018; Oliveira Neto et al., 

2021). The flux values for the CM membrane vary between 130 L/hm2 and 490 L/hm2 for a 

transmembrane pressure applied between 2 and 4 bar. For the GCM membrane, the flux values of 

the permeate are 40.019 L/hm2 at 2 bars and 78.431 L/hm2 at 4 bars. The difference in fluxes 

obtained is due to the surface morphology of the two membranes. Therefore, the pore radius and the 

porosity thickness ratio are more significant for the CM membrane than the GCM membrane. 
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Figure 7- Water flux vs. transmembrane pressure (TMP) 

 

Figure 8 shows the evolution of flow values over time for the same water conditions and 

operating pressure. A decrease in flow was observed for both membranes during the first 30 minutes 

of operation before the steady state. The reduction in flow through the CM membrane is more 

significant than that through the GCM membrane due to the trapping of fine particles on the 

membrane surface. The clogging effect defines this phenomenon, and the pore size of the GCM 

membrane is smaller than that of the CM. 

 

 
Figure 8- Changes in permeation flux over time for various feed solutions over CM and 

GCM membranes (TMP = 3.5 bar). 

 

3.2 Dye rejection 
Figure 9 illustrates the temporal progression of dye rejection, specifically (a) supranol yellow, 

(b) orange II, (c) malachite green, and (d) crystal violet. This examination pertains to the diverse 

concentrations (10−5, 10−4, 10−3 M) within the feed solutions administered to CM and GCM 

membranes. 

The activated membrane (GCM) achieves a maximum retention rate of 100% for supranol 

yellow over 2-hour treatments at concentrations CF=10-4 M and CF= 10-5 M. This heightened 

removal efficacy stems from charge interactions between the dye ion and the negatively charged 

membrane. Conversely, the non-activated membrane (MC) exhibits lower retention rates, ranging 

between 80.67% and 86.9%. This disparity is attributed to the comparatively small size of the dyes 

relative to the pores within the ceramic membrane. 
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Figure 9 - The temporal evolution of dye rejection ((a) supranol yellow, (b) orange II, (c) 

malachite green, (d) crystal violet) is examined concerning varying concentrations (10−5, 

10−4, 10−3 M) of feed solutions applied to CM and GCM membranes. 

 

 

The retention efficacy of orange II dye through the activated membrane (GCM) achieves 

complete removal, reaching 100% within a 2-hour treatment duration for a concentration (CF) of 10-

5 M while demonstrating an 80% retention rate at CF= 10-4 M. This substantial retention is ascribed 

to the selective adsorption of the dye, both on the membrane's surface and within its porous structure. 

Conversely, the orange II retention rate for the non-activated CM membrane varies between 20.29% 

and 18.55% for the concentrations 10-5 M and 10-4 M, rising to 31.51% and 26.03%. This variation 

is due to adsorption by clogging or blocking. 

The activated GCM membrane exhibits maximal retention rates of 98.82% and 95.30% for 

crystal violet at concentrations of 10-5 M and 10-4 M within the initial 20-minute treatment period. 

However, this retention subsequently diminishes to stabilize at 46.74% and 50.49%, respectively. 

Conversely, the non-activated CM membrane initially retains 90.02% at 10-5 M, reducing to 54.63% 

at 10-4 M. Over a 120-minute treatment duration, an elimination rate of 92.26% is observed, owing 

to the selective adsorption of crystal violet dye on the membrane's surface and within its pores. 

Applying the activated membrane (GCM) initially results in a retention rate of 99.81% in the 

initial treatment phase, progressively declining to 85.02% at the 10-5 M concentration and 92.03% 

at the 10-4 M concentration. In contrast, the non-activated MC membrane exhibits comparatively 

lower initial retention of 91.86% after 10 minutes of treatment, stabilizing at a consistent value of 

95.52% for a 10-5 M concentration. 

 

  

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 50 100

R
e

te
n

ti
o

n
 (

%
)

Temps (min)

(a) SY 10-5M (MCG) SY 10-4M (MCG)

SY 10-3M (MCG) SY 10-5M (MC)

SY 10-4M (MC) SY 10-3M (MC)

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 50 100

R
e

te
n

ti
o

n
 (

%
)

Temps(min)

(b) OR II 10-5M (GCM) OR II 10-4 M (GCM)

ORII 10-3M (GCM) ORII 10-5M (CM)

ORII 10-4 M (CM) OR II 10-3M (CM)

0,00

50,00

100,00

150,00

0 50 100

R
e

te
n

ti
o

n
 (

%
)

Temps (min)

(c) MG 10-5M (GCM) MG 10-4M (GCM)

MG 10-3M (GCM) MG 10-5M (CM)

MG 10-4M (CM)

0,00

25,00

50,00

75,00

100,00

0 50 100

R
e

te
n

ti
o

n
 (

%
)

Temps (min)

(d)
CV 10-4M (GCM) CV 10-3M (GCM)

CV 10-5M (CM) CV 10-5 (GCM)

CV 10-4M (CM) CV 10-3M (CM)



The Journal of Engineering and Exact Sciences – jCEC 

10 

4. Conclusion 

Implementing ceramic membranes derived from locally obtained kaolin signifies a substantial 

advancement in dye removal within the industrial domain. Their distinctive adsorption 

characteristics, complemented by their sustainability and cost-effectiveness, establish them as a 

crucial asset in alleviating the environmental repercussions of industrial dyeing processes. 

The present study encompasses the creation of a ceramic substrate and a microfiltration 

membrane utilizing indigenous clay, namely kaolin and feldspar, readily available within our 

geographical scope. The active membrane was applied onto the substrate employing the slip casting 

technique, complemented by adding an active layer comprising graphene and alkoxide.  

The retention properties of the substrate exhibit significance in dye filtration, where retention 

efficiency correlates significantly with the molecular weight of the species within the filtered dye 

solutions. The evolution of retention depicts the interactions between dye species and material 

surface. Notably, the retention rates achieved 100% for Supranol Yellow and Orange II at a 

concentration of 10-4 M, while for Crystal Violet and Malachite Green, the retention rates attained 

92.03% and 95.50%, respectively. The membrane demonstrated commendable efficacy in dye 

removal, indicating its potential utility for treating industrial effluents, particularly in addressing 

discharges from textile and tanning industries. 
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