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Resumo  
A crescente demanda por energia no setor industrial gera desafios significativos, necessitando da 

exploração de soluções inovadoras. Em resposta, há uma inclinação crescente para aproveitar o 

potencial transformador das tecnologias da Indústria 4.0 para melhorar a eficiência energética nestes 

espaços. A integração de tecnologias inteligentes surge como uma alternativa promissora, suscitando 

um exame crítico de como os recursos, equipamentos e componentes computacionais podem ser 

estrategicamente organizados nesses ambientes. Com base nesta necessidade, o presente estudo 

procura contribuir, propondo uma solução abrangente para a concepção e planeamento de espaços 

inteligentes, alicerçada nas tecnologias da Indústria 4.0, com um foco específico na obtenção de 

eficiência energética. O trabalho não apenas conceitua o modelo proposto, mas também fornece 

resultados preliminares sobre sua implementação, preenchendo assim a lacuna entre as 

considerações teóricas e as aplicações práticas na busca de espaços industriais sustentáveis e 

inteligentes. 

Palavras-chave: Eficiência Energética. Planejamento. Indústria 4.0. 

 

Abstract  

The escalating demand for energy in the industrial sector poses significant challenges, necessitating 

the exploration of innovative solutions. In response, there is a growing inclination towards 

leveraging the transformative potential of Industry 4.0 technologies to enhance energy efficiency in 

these spaces. The integration of smart technologies emerges as a promising alternative, prompting 

a critical examination of how computing resources, equipment, and components can be strategically 

arranged within these environments. Addressing this imperative, the present study endeavors to 

contribute to the discourse by proposing a comprehensive solution for the design and planning of 

smart spaces, grounded in Industry 4.0 technologies, with a specific focus on achieving energy 

efficiency. The research not only conceptualizes the proposed model but also provides insights into 
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its preliminary implementation, thereby bridging the gap between theoretical considerations and 

practical applications in the pursuit of sustainable and intelligent industrial spaces. 

Keywords: Energy Efficiency. Planning. Industry 4.0. 

 

1. Introduction 

The increasingly complex energy production, distribution, and consumption challenges have 

established energy efficiency as a fundamental principle (Liu et al., 2023). In the industrial context, 

optimizing energy consumption is crucial for competitiveness and cost reduction, considering that 

the industrial sector is Brazil's leading energy consumer (Empresa de Pesquisa Energética, 2023). 
According to data from the Energy Research Company (2023), national electricity 

consumption increased by 11.7% in May 2023, compared to the same period in 2020, in the 

industrial and commercial categories. These categories showed significant growth rates that 

continue to rise. Although factors such as population growth and the proliferation of electronic 

equipment have contributed to this increase, inadequate management of these devices and the lack 

of measures to promote energy efficiency can be considered the main problems. 

Given this scenario, the growing energy demand requires the exploration of new energy 

sources and the development of technologies that optimize the use of existing sources (Chatterjee, 

Keyhani & Kapoor, 2011; Barman et al., 2023). Renewable energy sources have gained prominence 

globally due to their positive impact on sustainability. 

In this context, the fourth industrial revolution, known as Industry 4.0 (Lasi et al., 2014), was 

characterized by the convergence between digital technologies and industrial processes. This 

paradigm reconfigures the design and implementation of industrial operations, extensively using 

artificial intelligence, the Internet of Things (IoT), cloud computing, and other technologies. The 

integration of these technologies enables highly interconnected and intelligent operating 

environments, creating an environment conducive to applying innovative solutions aimed at energy 

efficiency (Chen et al., 2021). 

These solutions must be implemented in a way that guarantees satisfactory performance while 

seeking to reduce costs, for example, through sharing resources. Therefore, it is necessary to develop 

solutions that facilitate this complex task. Additionally, Industry 4.0 and the IoT encounter 

numerous hurdles, ranging from the development of skills to IT integration to the immaturity of 

some technologies (Saravanan et al., 2022). Moreover, the impact of energy efficiency in Industry 

4.0 has a dual nature. Firstly, considering the devices, which are limited in computational and 

communication resources, increased energy consumption may reduce the IoT's operational lifespan 

(Albreem et al., 2017). Secondly, the sensing, computing, and communication processes executed 

by IoT devices can contribute to an expanding carbon footprint from a holistic system perspective 

(Wang et al., 2016). 
Among the approaches aimed at IoT planning, Wang (2011) addresses the problem of 

positioning canonical sensors to maximize the coverage area in wireless sensor networks. Similarly, 

Qiu (2004) presents algorithmic approaches to solving gateway placement problems to maximize 

throughput in wireless mesh networks. Jia (2021) explores in-depth analysis and research on the 

planning and design of smart gardens using Agricultural IoT technology, encompassing concepts, 

characteristics, related theories, and guidance methods. Furthermore, the QuIC-IoT platform (Chang 

et al., 2023) proposes model-driven planning to temporarily deploy a customized IoT infrastructure 

to monitor short-term events, using physics-based models to predict the propagation of phenomena. 

Despite these efforts, existing solutions have limitations in selecting and implementing 

applications that meet energy efficiency demands. Therefore, this work introduces an integrated 

approach that covers the sensing, communication, computing, and application layers, using 

heterogeneous devices and considering the structure and needs of applications. The paper details 

the model of this solution and describes the implementation project. Through the planning provided 

by the software, it is expected that the implementation resulting from the project will enable the 

reduction of energy consumption by controlling restrictions on connectivity, resources, and 
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equipment, among others. Furthermore, the software has the potential to assist in strategic planning 

and decision-making related to modeled spaces, aiming to save expenses and promote sustainability.  
The remainder of the paper is organized as follows: Section 2 presents the modeling proposal, 

while the implementation project is discussed in Section 3; conclusions are addressed in Section 4. 
 

2. Problem Modeling 
The proposed modeling is based on the proposal for the SmartParcels tool (Chang, 2021a; 

Chang, 2021b), a framework that generates the plan to instrument designated regions of smart 

communities. The problem is decomposed into four layers: application, information, infrastructure, 

and geophysics, as illustrated in Figure 1. 
 

 

The scenario is treated as an optimization problem that aims to maximize the overall utility of 

the required applications after deploying IoT devices, edge servers, and network switches in the 

generated planning. The service's usefulness is defined based on (i) coverage, which represents the 

geographic area where application events can be detected, and (ii) accuracy, which represents the 

probability of an event being detected correctly. Deployment plans must satisfy severe constraints, 

including deployment and operational budgets, detection ranges, computing power, network 

bandwidth, and application QoS requirements. Solving the resulting application planning problem 

is challenging due to the complex interaction between the four layers: application, information, 

infrastructure, and geophysics. 

The premise for the solution to be developed is that it is a differentiator compared to other 

solutions for promoting energy efficiency, mainly because it is an alternative that seeks to optimize 

the quantity of equipment and components needed, considering aspects of functionality and 

coverage. 
The proposed model considers a single industry with a set of rooms , where  is the  

-th room.  demands for a set of applications , where  is the -th application. 

The industry is represented by a tuple , which indicates its rooms and 

corresponding applications. A room is represented by the center point within its boundary for 

simplicity. The industry has a set of candidate locations , such as light bulbs, air conditioning, and 

computers, including IoT devices such as sensors, edge servers, and network devices. Different 

Figure 1: Overview of the proposed modeling. 
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applications may have different levels of importance. Each room  is assigned a weight  for 

each required application, representing its importance. Without loss of generality, it is assumed 

, . 

Modeling must be carried out for an industry, taking into account all its rooms. Assuming that 

an industry has 15 rooms, in the model developed  and . Suppose it 

is an administrative room requiring two applications, such as temperature control and consumption 

monitoring. In this case,  and , so  and  are the applications required 

for this room. 
The other components of the modeling are described below. 

 

2.1. Information flows for an application 

 Each required application can be realized through different combinations of sensor data from 

IoT devices and analytical algorithms on computing devices (edge servers) connected by directed 

graphs called information flows. Different information flows from the same application, allowing 

planning to balance the application's QoS and cost (deployment and operational), selecting the most 

appropriate one to meet industry requirements. 

 To implement the application , a set of information flows  can be adopted, where 

 is the -th information flow. More precisely,  is a weighted 

directed graph, where  represents a unit of information (raw data or components of 

communication middleware) and  represents the data flow between two information 

units. Both vertices and edges are associated with weights. The weight of a vertex  represents 

the computing resources consumed by the information unit, while the weight of an edge  

is the bandwidth consumption. Furthermore, each information stream specifies the number of 

sensors; for example, three microphones are required for sound source detection using triangulation. 

Figure 2 represents how each application can be implemented by a set of information flows. 
 

 

 Figure 8 presents possible information flows for a temperature control application. As can be 

seen, a flow is distinguished from others considering the following aspects: modeled information 

unit: raw data (consumption measurement), middleware services such as broker or virtual sensor; 

QoS requirements of each information unit, such as bandwidth, measurement accuracy, minimum 

computing resources, and others; accuracy of each flow of information. 
 

Figure 2: Representation of information flows for an application. 
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2.2. Infrastructure flows implementing an information flow 

 Each information flow can be installed on different combinations of sensors, edge servers, and 

network switches, called infrastructure flows. Different infrastructure flows from multiple 

information flows can lead to different resource (or device) sharing degrees, allowing planning to 

explore reuse for greater efficiency. 

 Each information flow  can be implemented by a set of infrastructure flows  where 

 is the -th infrastructure flow.  is a weighted directed 

graph, where  represents a device and  represents the data flow between two 

devices. Here, general devices are considered, which can be sensors such as power meters or 

cameras, computing devices such as edge servers, and network switches such as LTE cells or 

Ethernet switches. The weights of a vertex  and an edge  represent the computing 

resource and network bandwidth they offer, respectively. 

 A tuple  summarizes all information flows and 

corresponding infrastructure flows for each application . 

 Given a  and a , each processing unit  is assigned to a device  

by a function . Furthermore, for an edge ,  denotes the 

shortest path in  consisting of the involved devices, i.e., the actual data flow in the 

infrastructure layer. Without loss of generality, it is assumed  contains at least one 

network switch unless  and  are the same device. If  and  run on the same device, the 

network bandwidth between them is exceptionally high, so it is assumed that 

. 
 Figure 4 shows how infrastructure flows can carry out each information flow. 
 
 

Figure 3: Set of information flows for a temperature control application 
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 Figure 4 shows different infrastructure flows for the same information flow. An infrastructure 

flow is distinguished from others considering the following aspects: number of devices; computing 

resource (CPU power) of a device; network resource (bandwidth) of a device; transmission range 

of a device; detection range of a device; cost of implementing each device; operating cost of each 

device. 

 

 

 

Figure 5: Set of infrastructure flows for an information flow. 

Figure 4: Representation of 

the Infrastructure flows. 
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2.3. Planning graph 

 Application deployment planning can be carried out based on information flows and 

infrastructure flows. There are two types of deployments: (i) initial, where no previous IoT 

infrastructure exists (e.g., a whole new industry), and (ii) retrofit, where some IoT devices, edge 

servers, and network switches are already integrated into place (e.g., a growing industry). 

 Based on this, an auxiliary structure called a planning graph, defined as a two-layer graph 

, is established, where the first layer  contains a set of information 

flows and the second layer  consists of a set of infrastructure flows. In both layers, 

flows can share vertices or edges. Furthermore, a set of assignment edges  is defined where each 

edge  indicates the assignment from  to  to  and 

. The planning graph can be written as  e . Figure 6 

illustrates this structure, with the edges in red representing . 

 

 

 

2.4. Infrastructure geophysical mapping function 

 To select candidate locations, a geophysical mapping function  maps a vertex  of 

the infrastructure layer of a planning graph  to a candidate location .  

 A tuple  captures each . The device's transmission and detection 

ranges are represented by  and , respectively.  indicates the type of device, which can be 

sensor, computing, or network. If  network,  is equal to the transmission range of its 

connected network device , i.e. . Additionally, multiple devices can be 

mapped to the exact candidate location. For the sake of presentation, it is defined  to denote 

the sensors of , i.e., ,  sensor. Figure 7 presents the geophysical mapping 

for an infrastructure flow. 

Figure 6: Planning graph. 
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Figure 7: Representation of Geophysical Mapping. 

 

2.5. Utility of a service in an infrastructure flow 

 The Euclidean distance between two candidate locations  is defined as . 

By definition, the Euclidean distance between two two-dimensional points  and  is 

defined according to Equation 1: 

 

               (1) 

 

 An infrastructure flow is connected if all its devices are connected after mapping, i.e., 

; otherwise, the stream is not connected. If 

 is connected, the service utility in a room  is given by Equation 2: 

 

           (2) 

 

where  and  are the detection accuracy and probability. 

 If  is not connected,  is set to 0. Each  for an application  refers 

to an accuracy model  that depends on the implemented method. For example, presence 

sensor-based detection has higher accuracy for presence detection than image-based detection. 

 As with SmartParcels, the detection probability models used here are inspired by the 

attenuated truncated model (Wang, 2011), which establishes that the coverage measure becomes 

very small when the distance between a spatial point and a sensor becomes very small. In these 

cases, the coverage measure can be neglected, and some approximations can be made by truncating 

the coverage measure for larger distance values. Initially, for a sensor , the probability 

is attenuated (decayed) with its distance  and truncated by its detection range . 

Therefore, if , the average truncated attenuated detection 

probability is given by Equation 3: 

 

             (3) 

 

where  is a parameter related to . Otherwise, . 



The Journal of Engineering and Exact Sciences – jCEC 

9 

 The detection probability is then limited by the detection range of the sensors as defined in 

Equation 4: 

 

         (4) 

 

 These definitions complete what was called the usefulness of a service. It is important to 

emphasize that the proposed algorithms do not depend on the mathematical properties of a service's 

usefulness. Thus, one has complete freedom to apply different models, for example, refining the 

analysis using detection ranges outside the line of sight (Adeyeye et al., 2022). 

 

2.6. Costs 

 Each device  in the infrastructure layer is subject to two costs: (i) deployment cost 

 due to deploying the device  at the candidate location  and (ii) operational cost 

 due to maintaining its operation. 

    The implementation cost occurs once, while the operational cost is recurring. Furthermore,  

and  defines the budgets for the deployment and operation of the devices. 
 

2.7. Problem Formulation 

 Given the industry profile, information flows, and infrastructure flows, the energy efficiency 

planning problem aims to maximize the overall quality of services under cost budgets, generating 

the optimal planning graph  and selecting the optimal geophysical mapping functions 

. More specifically, the energy efficiency planning problem is formulated 

as follows: 

 

           (5)     

            (6) 

                (7) 

             (8) 

         (9) 

         (10) 

 

 The objective function in Equation 5 finds  and  that maximizes total utility. Equations 

6 and 7 are the budget constraints for deployment cost ( ) and operational cost ( ). For each 

device , Equation 8 guarantees that  has sufficient computational resources to process all 

assigned units of information , that is, the weight  of  is not less than the sum of all the 

weights of . Furthermore, Equation 9 guarantees that ’s output bandwidth is not less than its input 

bandwidth. Equation 10 ensures that the minimum bandwidth within the assigned path  

meets its bandwidth requirement for each data stream .  

 

3. Solution Design 
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 Planning a space so that, using industry 4.0 technologies, it is possible to outline actions to 

promote energy efficiency is the main contribution of the proposed tool, whose architecture is 

presented in Figure 8.  

 

 

 The first component constitutes the user interface, through which physical spaces are modeled, 

energy consumption and generation characteristics. The input provided in models is then validated 

using a set of specifications. To this end, Smart Data Models (2023) are used, a set of standards and 

specifications developed to promote interoperability and data exchange between systems and 

devices in IoT environments. These models establish standardized, semantically understandable 

structures for representing information across multiple domains, enabling efficient integration and 

data sharing. 

 Based on the specified models, a component that uses combinatorial optimization allows 

deciding the distribution of equipment and software components to promote energy efficiency and 

improve costs. In the proposed solution, the energy efficiency planning problem is decomposed into 

two subproblems, geophysical mapping selection, and planning graph generation, aiming for reuse 

and better efficiency. 

 Let  be the optimal planning graph, where  contains a 

set of information flows and  contains a set of infrastructure flows. The main 

reason decomposition is proposed is that geophysical mappings are generated and examined 

repeatedly when searching for the optimal planning graph . However, geophysical mappings are 

mostly static and can and should be stored and reused. Further details of these two subproblems are 

discussed below. 
 

3.1. Geophysical mapping selection 

 This solution phase aims to select the optimal geophysical mapping functions  containing 

a mapping  for each device , i.e. . 

 The geophysical mapping selection has the following inputs: (i) a tuple  

indicating the set of rooms and each application required in the room, (ii) a tuple 

 representing the set of information flows and the infrastructure flows 

implementing each information flow for each application , (iii) a set of candidate locations 

 for implementing the infrastructures and (iv) a set of devices  already deployed in the industry 

(for retrofit).  

 Based on these inputs, a set of possible mappings of each infrastructure flow is selected. For 

each infrastructure flow , a geophysical mapping function  for 

each device  is selected as follows: (i) for a pair of devices  and  on the edge 

, they must be within the transmission range of each other  and  after mapping, 

i.e., ,  and (ii) if  is a sensor, the room  must be within its sensing 

range , i.e.,  . 

 An infrastructure flow  and mapping  for each device  is defined as a 

Mapped Infrastructure Flow (MIF). 

Figure 8: Proposed architecture. 
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3.2. Generation of the planning graph 

 This step aims to calculate the optimal planning graph  based on the outputs of the 

geophysical mapping selection, i.e., multiple sets of MIFs for each application . The set of 

all MIF sets  generated for  is denoted by 

. Furthermore, the set of all 

required applications in all rooms is denoted by . 
 In this phase, the optimal planning graph is generated by determining (i) which application 

 to deploy and (ii) which MIF  (i.e., mapping) of a set  (i.e., infrastructure 

flows and information flows) selected to implement .  

 While generating a planning graph, an intermediate planning graph  

is generated using MIFs, where  is the first layer and 

 is the second layer. 

 For each MIF , its infrastructure and corresponding information flow are included in  

and , respectively.  represents the actual data flow in the infrastructure layer 

for each edge , where information units  and  are assigned to the equipments 

 and , respectively.  and denote the accumulated 

implementation and operational costs, respectively, of . Finally,  represents the set of 

equipment mapped to a candidate location  for . 

 To generate the planning graph, an extra MIF  is combined with the intermediate planning 

graph , denoted as , which represents the 

resulting mapping of an infrastructure flow  implementing an 

information flow . In this process,  and  are 

configured as  and , initially. Similarly, the accumulated costs  and  

 of  are initialized as  and . The operation includes each 

equipment  and the corresponding information unit  in . When a device 

(previously included)  is identical to  in , we have the following three cases. 

1.  and  are merged into , i.e., the existing device and information unit must be reused 

if one of the following conditions occurs: (i)  has been assigned to an information unit , 

i.e.,  and  are identical to , (ii)  and  have the same internal information 

units, i.e., , such that  is identical to , , and 

(iii) identical internal information units are mapped to the same device, . 

2.  is merged into  while  is branched into , i.e., reusing an existing device while 

adding an extra information unit into  and an edge with  if: (i) all information units 

assigned to  are distinct from those of , i.e.,  is different from ,  whose 

, and (ii)  has sufficient resources, that is, satisfy Equations 8 to 10. Furthermore, 

if  has an internal information unit , that is, , an edge between  and  

is added in  after  and  are included. 

3.  and  are omitted if only condition (i) of case (2) is satisfied. So,  is deleted from  

as it has insufficient computing resources. For simplicity, a candidate location is assumed to 

host one device for each device type. 
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4. Final Remarks 

 In the complex scenario of the Internet of Things (IoT) applied to Industry 4.0, the effective 

deployment of multiple applications is a research topic of great importance. Interactions between 

physical devices and software components present significant challenges that require carefully 

crafted approaches. Factors such as satisfying QoS criteria and reducing costs through existing 

equipment make the task even more complex. Therefore, this work presented the modeling and 

initial results of implementing a solution for planning the implementation of applications in the 

context of Industry 4.0 aiming at energy efficiency. 

 The research focused on modeling these complex systems, aiming at energy optimization. The 

preliminary results presented in this study represent a significant advance. The study lays the 

foundation for future developments. The complete implementation of the proposed solution and its 

subsequent validation in real-use scenarios are crucial steps to be followed. In addition to solidifying 

the robustness of the model, practical validation will allow us to observe its applicability directly, 

generating essential indicators for subsequent refinements. 
 The research can contribute to overall energy efficiency, resource optimization, and improved 

service quality when deploying IoT applications in Industry 4.0. As research progresses, these 

efforts are expected to inspire other innovative approaches, triggering continued advances within 

the Industry 4.0 ecosystem. 
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