
The Journal of Engineering and Exact Sciences – jCEC, Vol. 09 N. 12 (2023) 
journal homepage: https://periodicos.ufv.br/jcec 

eISSN: 2527-1075 
ISSN: 2446-9416 

1 

A comparative approach for the optimal design of steel structures using 

biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) 

Un enfoque comparativo para el diseño óptimo de estructuras de acero 

utilizando el algoritmo de optimización basado en la biogeografía (BBO) y el 

algoritmo genético (GA)  

Article Info: 

Article history: Received 2023-11-02 / Accepted 2023-12-03 / Available online 2023-12-24 

doi:  10.18540/jcecvl9iss12pp17792 

 
   Laid Amamra 

ORCID: https://orcid.org/0000-0001-8932-3575  

LMPC Laboratory, Department of Civil Engineering, Faculty of Science and Technology, 

University of Mostaganem, P.O Box 227, Mostaganem 27000 (Algeria) 

E-mail: laid.amamra@univ-mosta.dz 

 Mohamed Bensoula 

 ORCID: https://orcid.org/0000-0002-4785-3591 

LCTPE Laboratory, Department of Civil Engineering, Faculty of Science and Technology, 

University of Mostaganem, P.O Box 227, Mostaganem 27000 (Algeria), 

E-mail: mohamed.bensoula@univ-mosta.dz 

Sadek Bahar  

 ORCID: https://orcid.org/0009-0003-1355-474X 

LMPC Laboratory, Department of Civil Engineering, Faculty of Science and Technology, 

University of Mostaganem, P.O Box 227, Mostaganem 27000 (Algeria) 

E-mail: sadek.bahar@univ-mosta.dz  

 
 

Resumo  

La optimización estructural es una de las principales preocupaciones de los diseñadores de 

ingeniería civil, pero desde un punto de vista matemático, este problema de optimización es muy 

complejo y complicado debido a un gran número de restricciones de diseño no lineales y al 

procedimiento iterativo del análisis estructural. La introducción de algoritmos de optimización 

como la optimización basada en la biogeografía (BBO) y los algoritmos genéticos (GA) en las 

aplicaciones puede ayudar al usuario a optimizar el coste de la estructura a adoptar más rápidamente 

y con menos errores en la fase preliminar del estudio de diseño. El objetivo de esta investigación es 

realizar una aproximación comparativa a la minimización del peso de la estructura utilizando el 

algoritmo de Optimización Basada en Biogeografía (BBO) y algoritmos genéticos (GA), 

examinando la influencia del número de poblaciones y el número de iteraciones en los resultados 

finales. En este estudio, ambos algoritmos arrojaron resultados fiables, pero la comparación de los 

resultados obtenidos por los dos métodos revela que el algoritmo de Optimización Basada en la 

Biogeografía (BBO) puede utilizarse con éxito para la optimización de estructuras de acero, 

garantizando al mismo tiempo la verificación de los criterios de resistencia, capacidad de servicio y 

estabilidad definidos por el Eurocódigo 3 (Unión, 2006), ya que presenta ciertas ventajas en la 

detección del mínimo global con respecto a los algoritmos genéticos (AG). Es capaz de encontrar 

soluciones más ligeras, más rígidas y con menor deflexión que los diseños originales. 

Palavras-chave: Estructuras de acero. Optimización. Algoritmo BBO. Algoritmo GA. Sistemas 

expertos. Optimización multicriterio. Eurocódigo 3. 
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Abstract  

Structural optimization is one of the key concerns of civil engineering designers, but from a 

mathematical point of view, this optimization problem is highly complex and complicated due to a 

large number of non-linear design constraints and the iterative procedure of structural analysis. 

Introducing optimization algorithms such as biogeography-Based Optimization (BBO) and genetic 

algorithms (GA) into applications can help the user to optimize the cost of the structure to be adopted 

more quickly and with fewer errors in the preliminary phase of the design study. The aim of this 

research is to carry out a comparative approach to structure weight minimization using 

biogeography-Based Optimization (BBO) algorithm and genetic algorithms (GA), examining the 

influence of the number of populations and the number of iterations in the final results. In this study, 

both algorithms gave reliable results, but a comparison of the results obtained by the two methods 

reveals that the biogeography-Based Optimization algorithm (BBO) can be successfully used for 

the optimization of steel structures while ensuring verification of the strength, serviceability and 

stability criteria defined by Eurocode 3 (Union, 2006), as it has certain advantages in detecting the 

global minimum over genetic algorithms (GA). It is capable of finding solutions that are lighter, 

stiffer and have lower deflection than the original designs. 

Keywords: Steel structures. Optimization. BBO algorithm. GA algorithm. Expert systems. 

Multicriteria optimization. Eurocode 3. 

1. Introduction 

The problem of the overall design of steel structures can be posed as an optimization problem 

which consists in minimizing the overall cost of the structure while respecting the constraints of 

time, resources and dimensioning, thus forcing designers to limit the number of configurations to 

be considered in the early design phase. Most structural optimization methods use mathematical 

algorithms that require a large amount of data, where the choice of initial values is important for the 

convergence of the algorithm toward an optimal solution by Schmit (1960).  

Optimizing a structure is complex, complicated and time-consuming due to the large number 

of non-linear design constraints and the iterative procedure of structural analysis. It must guarantee 

minimum cost with maximum safety, based on the search for the most admissible dimensioning, 

while ensuring verification of the resistance, serviceability and stability criteria defined by Eurocode 

3 (Union, 2006). Optimization algorithms can be used in several ways to improve the design of steel 

structures according to Eurocode 3 (Union, 2006), such as topology, form, dimensions, loading and 

multi-objective optimization. Methods such as genetic algorithms (GA), biogeography-based 

optimization (BBO), simulated annealing, particle swarm optimization and ant colony optimization 

are particularly useful for problems with large and complex design space, multiple objectives and 

non-linear relationships. They can also address problems for which traditional optimization methods 

fail to find an optimal solution. 

In general, the evaluation of the minimum price takes into account several factors such as the 

weight of the structure, the manufacture of the constituent parts and assembly etc., and given current 

steel prices, the weight of the frame is a very important factor among those mentioned and therefore 

its impact on the price of the structure is considerable. In this article, the optimization approach for 

steel structures formed of beams and columns is essentially based on minimizing the weight of the 

structure, and consequently, the optimal structure is the one whose weight is minimal while ensuring 

the structure's stable and economical configuration whatever its complexity.  

This optimization approach is based on the application of Biogeography-Based Optimization 

(BBO) and Genetic Algorithms (GA), which consists in minimizing an objective function 

representing the weight of the structure and whose design variables are the beam and column cross-

sections selected from a database. The design constraints include the mechanical strength of sections 

and elements, the exploitation of the elasto-plastic behavior of steel (discovery of the plastic 

optimum of elements), the limitation of displacements at nodes, and the limitation of the structure's 

first natural frequency. 
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The use of structural optimization algorithms in Eurocode 3 (Union, 2006) is likely to have a 

significant impact on the design of steel structures, as it considerably helps engineers to explore 

quickly and efficiently a wide range of design options and identify the optimum solution that meets 

performance criteria by automating many calculation and analysis steps. 

 

2. State of art 

A review of the literature shows that there are many techniques used to optimize structure 

design. They fall into two categories: classical mathematical programming techniques and 

stochastic search with heuristic algorithms.  

Early research used mathematical programming techniques to obtain the optimal solution 

(Arora, 1997; Belegundu et al., 2011; Doan et al., 2012; Perez et al., 2007; Schmit, 1960). They 

found that, mathematical programming techniques such as linear and nonlinear programming are 

not easy to apply to real structures and can only be used for steel structures with limited design 

variables.  

To overcome these limitations, other new computational techniques have been developed 

using stochastic search and algorithms based on the reproduction of the hypotheses found in nature, 

called metaheuristic optimization. They are inspired by analogies with physics, biology or ethology 

(Camp et al., 2004; Kaveh et al., 2007; Kaveh et al., 2010) and these optimization methods based 

on stochastic search have proved their effectiveness in obtaining the solution to problems in such a 

short time because they use probability rules instead of deterministic rules. Engineering fields have 

benefited the most from these methods based on metaheuristic techniques, which have become 

popular topics these days. 

The best-known and most widely used heuristic method for solving structural optimization is 

the genetic algorithm GA (Amamra et al., 2021; Camp et al., 1998; Erbatur et al., 2000; Kaveh et 

al., 2006;  Pezeshk et al., 2000; Rahami et al., 2008; Rajeev et al., 1992; Saka et al., 1998; Shook et 

al., 2008; ). These researchers used and developed a method based on a genetic algorithm to solve 

complex calculation problems in the design and find the optimal structure to minimize the weight, 

size, shape or all of these parameters of the steel or reinforced concrete frame. Some researchers 

have proposed a modified GA algorithm to improve this performance, and others have compared 

the GA algorithm with other approaches to find the optimal design and the best algorithm to apply. 

Rajasekaran et al. (2004 a) used this technique for the optimal design of large spatial steel 

structures. Ebenau et al. (2005) combined the ES method with an adaptive penalty function by 

applying an algorithm to find the optimal design of geometrically nonlinear three-dimensional steel 

structures. Hasançebi (2007 a) used different reformulations of evolution strategies to solve a 

discrete optimal design for steel frames, on the other hand, Hasançebi (2007 b) used the evolution 

strategy (ES) method and applied it to truss bridges to obtain an optimal structural design. 

Particle Swarm Optimization (PSO) was developed by mimicking the social behavior of 

entities such as flocks of birds, swarms of insects, or schools of fish. The algorithm summarizes the 

clustering behavior of social forces that depend on experience sharing from both the local memory 

of individuals as well as the knowledge acquired by the swarm (Doan et al., 2012; Fourie et al., 

2002; Kennedy et al., 1995; Li et al., 2007; Perez et al., 2007) applied the PSO algorithm on different 

civil construction structures to find optimal size and shape variables. 

One other recent addition to metaheuristic algorithms is the Ant Colony Optimization (ACO) 

algorithm. Dorigo et al. (2006) developed this method in the early 1990s. This method summarizes 

the behavior of ant colonies in search of food. Articles have been written based on the ant colony 

optimization technique to optimize space farms and steel frames like the work of (Camp et al., 2004; 

Kaveh et al., 2007; Kaveh et al., 2010) and many others. (Hasançebi et al., 2010; Lee et al., 2004; 

Saka, 2009; Saka et al., 2009 ; Saka et al., 2011) have used the harmony search method to address 

continuous engineering optimization problems.  

Biogeography-based optimization (BBO) is metaheuristic algorithm. The main idea is similar 

to a biology-based approach such as Genetic Algorithms (Ma et al., 2015; Reeves et al., 2002) 

created by Simon (2008). BBO algorithm is an evolutionary optimization algorithm inspired by the 
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geographical distribution of biological organisms (Simon, 2008). Which are based on the behavior 

of biological species and their distribution between habitats. Therefore, the BBO algorithm is used 

to solve many practical optimization problems cited by Malik et al. (2016). As any other 

evolutionary algorithms, the BBO algorithm deals with a population of candidate solutions, each 

solution is characterized by a number of features as in the work of Ma et al. (2015). In this paper, 

BBO and GA algorithms were used to optimize the weights of metallic structure.  

 

3. Methodology and operating principles of the BBO and GA algorithms 

3.1 BBO algorithm operating principle 

The BBO algorithm is created based on the study of the distribution of species over space and 

time (biogeography) and is a subdivision of biology. This algorithm is based on the principle of the 

geographical distribution of biological species on islands (Kaveh et al., 2004). BBO algorithm uses 

migration and mutation operations to get a global minimum solution. Migration is the movement of 

species between different habitats. Migration is a probabilistic operator that adjusts each solution 

by sharing features between solutions. On an island or habitat, if the living conditions are 

appropriate for the species, then that habitat has a high suitability index (HSI), because this habitat 

has better features than other habitats. The variables that characterize the habitability of an island 

are called suitability index variables (SIVs) (Kaveh et al., 2004) for that reason, the species in the 

high HSI habitats can emigrate to other habitats and have low species immigration rates as they are 

already full with species. Likewise, the low HSI habitats have a high immigration rate of species 

because of their low population. 

The working principle of the BBO algorithm is motivated by the natural events of 

biogeography. The basic concepts of the BBO algorithm are analogous to the traits of biogeography. 

A general framework of the BBO algorithm is shown in Figure 1. Further detailed explanation about 

the BBO algorithm can be found in (Kaveh et al.  2004; Rajasekaran et al. 2004 b). 

 

 
Figure 1 - A general framework of the BBO algorithm. 

 

This section demonstrates how the BBO algorithm can be used to develop an efficient 

approach for structural optimization. As it has been mentioned before, A BBO algorithm operates 

to get the or a global minimum solution in a search space defined by an objective function. To get 

a good result from our approach, we use these steps: 

The initialization phase: in this phase, the elements of the population are generated randomly 

and coded in the search space. A data structure must be linked to each point of the search space. The 

choice of the initial population and the coding of the data are conditions for the success of the BBO 

algorithms for finding a good result. The population should be non-homogeneous individuals which 

makes the convergence of the approach more rapid.  

Fitness evaluation: for each individual in the population, the fitness function is evaluated and 

the rate is assigned based on their fitness value. This is used to select and reproduce the best 

individuals in the population. 
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Calculation of immigration, emigration and mutation rates: migration operators, emigration 

operators and mutation operators make it possible to diversify the population over generations and 

explore the search space. 

Stopping criteria: The immigration and emigration operations are repeated until the stop criterion 

is reached and the optimal solution is obtained. Optimization based on the biogeography BBO 

algorithm is given by the following algorithm: 

1. Initialize the BBO algorithm parameters 

2. Set iteration=1 

3. Randomly initialize populations 

4. Evaluate the HSI of every habitat with minimized tardiness objective function. 

5. Calculate λi and µi 

6. Modify the non-elite members of the population probabilistically with the migration operator  

7. Mutate the non-elite members of the population with the mutation operator 

8. Evaluate new habitats. 

9. Replace the old habitats with new ones. 

10. Iteration = iteration + 1 

11. Go to the step (4) until reaching the maximum iteration. 

 

3.2 GA algorithm operating principle 

One of the most known metaheuristic algorithms is the Genetic algorithm (GA), proposed by 

Holland (1992). Holland inspired his algorithm from the Darwinian theory of biological evolution. 

The survival process and the fittest in nature are the main ideas of the GA algorithm. Operations of 

the GA algorithm are selection, mutation, and crossover inspired directly by nature. One element of 

the population is a candidate as a point in the solution space. This element represents the 

chromosome in nature. Each element of the population is handled iteratively using genetic operators 

and replacing it in the population after assigning a value by the fitness function. The procedure of 

the GA algorithm presented in Figure 2 and detailed  as follows: 

First the selection operation, based on fitness value, chromosomes are selected for further 

treatment. In the cross operator, two selected elements are chosen at random and modify the 

subsequences between them to create descendants. In mutating, some parts of the element will be 

reversed randomly based on the probability given. 

 

 
Figure 2 - A general framework of the GA algorithm 

 

Optimization based on the GA algorithm is given by the following algorithm: 

1) Initialize the GA algorithm parameters 

2) Randomly initialize populations 

3) Set iteration = 1 

4) Evaluate the fitness of the population 

Until (convergence or iteration = max) repeat: 

      a) Select parents from the population 

      b) Crossover and generate a new population 

      c) Perform mutation on new population 
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      d) Calculate fitness for the new population 

3.3 Methodology 
To show the efficiency of the developed optimization methods to optimize the design of a 

three-dimension metallic structure with a beam, the weight of the structure is the variable to 

optimize, and to minimize the elements of the structure that guaranteed accepted construction costs. 

In order to optimize the structure, we create our own calculation engine to perform the structural 

modeling, analysis and design.  

The BBO algorithm and GA algorithm are implemented and developed with NetBeans IDE 

8.0.2 powered by JAVA and are used to optimize the design of a three-dimension metallic structure 

with a beam. The structure is made of steel and is subjected to a uniformly distributed load. The 

objective function of the optimization problem is to minimize the weight of the structure while 

satisfying all of the constraints. The design variables are the cross-sectional area of beams, the 

thickness of plates, and the shape of the structure. 

The BBO algorithm and GA algorithm are initialized with a population of 50 solutions. The 

two algorithms then start working iteratively to update the population of solutions by migrating 

solutions from one island to another in the BBO algorithm and by using selection and cross in the 

GA algorithm. The operations used on solutions are based on the fitness of the solutions. Solutions 

with higher fitness are more likely to be migrated or to be crossed. 

The two algorithms continue to iterate until a termination criterion is met. The termination 

criterion is set to be 100 iterations. 

 

4. Results and analysis 

In this section, the performance of the BBO and GA algorithms for optimizing steel structures 

is evaluated, taking into account two criteria: the number of populations and the number of 

iterations. The portal frame shown in Figure 3 is the object of our optimization. 

 

 

Figure 3 - Typical gantry for optimization 

The user can select his profile from a database containing all metal profiles in accordance with 

Eurocode 3 (Union, 2006), then enter the other parameters of the portal frame design according to 

the user's preferences listed in Table 1. 
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Table 1 - Parameters used in gantry optimization 

 Num Parameters 

Structure 

Parameters 

 

 

 

 

 

1 Length 

2 Height 

3 Loadings 

4 Maximum horizontal displacement 

5 Permissible wane 

6 Steel yield strength fy 

7 Ratio of moments  

8 Young's modulus E 

Algorithm 

Parameters 

9 Populations number 

10 Iterations number 

11 Probability of migration 

12 Probability of immigration 

13 Probability of mutation 

14 Probability of selection 

15 Probability of crossover 

 

On the other hand, the user must enter all the parameters of the algorithms listed in table 1 

used to run the programs.  Once these parameters have been entered, the user can vary them 

according to the criteria of his choice. 

Once the structure has been created, the program runs a series of checks in accordance with 

Eurocode 3 (Union, 2006), Eurocode 3 such as compressive strength, tensile strength, shear strength, 

flexural strength and the various structural instabilities of the structure's columns and beams. 

Once the structure has been checked and validated, the chosen algorithm starts the calculation 

part, minimizing the weight of the structure, which has a direct influence on the economic cost. At 

the end of the run, the program produces a set of optimal structures for the user to explore, and 

choose which structure to adopt. 

To determine the optimal structure, the optimization problem can be formulated as follows: 

Minimizer : 𝑤(𝑥) = ∑ 𝑝𝑖𝐴𝑖
𝑛
𝑖=1 ∑ 𝐿𝑗

𝑚
𝑗=1  

Subject to : gi (X) ≤ 0, i= 1, 2, . . . , n 

X = {x1 x2 . . . xi . . . xn }T 

Where: 

w: The weight of the structure; 

x: An integer to express the sequence of steel cross-sections for the ith group;  

𝐴𝑖 , 𝑝𝑖 : The area and weight of the ith section of the element, respectively;   

Lj: Element length;  

gi: Loading stress. 

The set of optimal structures generated by the two algorithms allows the user to make a 

comparison between the two algorithms using several criteria listed previously in Table 1. 

A case study is proposed to illustrate how well the two proposed algorithms work. The chosen 

structure is a single-story embedded metal gantry, the characteristics of which are shown in Figure 
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4. A comparison between these two programs will be carried out using only two criteria: the number 

of populations and the number of iterations. 
 

 

 

 

 

 
 

 

Figure 4 - Typical gantry for optimization 

 

4.1 Criterion No. 01: Population size 

To test the influence of this criterion on the result given by the program, the number of 

iterations is fixed with the variation of the population number, which varies between 20 and 200.  

During the execution of the algorithms, the results obtained by setting the population number to 20 

are summarized in Table 2 for the BBO algorithm and Table 3 for the GA algorithm. 

 

Table 2 - Results of program execution for the BBO algorithm with population number = 20 

Num 001 002 003 

Global 

weight 

(t) 

F  
calculated 

Arrow 

max ( L/2) 
MA=MD MB=MC 

Sigma  
Column 

Sigma  
Beam 

1 
HEB 

260 

HEB 

260 

IPE 

180 
3.69.10+3 2.50.10-7 -2.21.10-4 3.23.10+4 -6.46.10+4 1.93.10-3 -2.21.10-4 

2 
HEB 

200 

HEB 

200 

IPE 

360 
3.23.10+3 8.13.10-8 -1.54.10-5 1.39.10+4 -2.78.10+4 2.91.10-3 -1.54.10-5 

3 
HEB 
200 

HEB 
200 

IPE 
360 

3.23.10+3 8.13.10-8 -1.54.10-5 1.39.10+4 -2.78.10+4 2.91.10-3 -1.54.10-5 

4 
HEA 

260 

HEA 

260 

IPE 

240 
3.01.10+3 1.37.10-7 -8.77.10-5 2.85.10+4 -5.69.10+4 2.63.10-3 -8.77.10-5 

5 
HEA 

220 

HEA 

220 

IPE 

240 
2.37.10+3 1.59.10-7 -7.65.10-5 2.48.10+4 -4.96.10+4 3.55.10-3 -7.65.10-5 

6 
HEA 
220 

HEA 
220 

IPE 
200 

2.22.10+3 2.27.10-7 -1.47.10-4 2.86.10+4 -5.72.10+4 3.55.10-3 -1.47.10-4 

7 
HEA 

200 

HEA 

200 

IPE 

240 
2.08.10+3 1.76.10-7 -6.81.10-5 2.21.10+4 -4.42.10+4 4.24.10-3 -6.81.10-5 

8 
HEA 

200 

HEA 

200 

IPE 

240 
2.08.10+3 1.76.10-7 -6.81.10-5 2.21.10+4 -4.42.10+4 4.24.10-3 -6.81.10-5 

9 
HEA 
160 

HEA 
260 

IPE 
80 

1.88.10+3 1.76.10-6 -0.0016459 3.30.10+4 -6.59.10+4 5.95.10-3 -1.65.10-3 

10 
HEA 

120 

HEA 

120 

IPE 

360 
1.74.10+3 1.07.10-7 -2.59.10-6 2.34.10+4 -4.68.10+3 8.92.10-3 -2.59.10-6 

11 
HEA 

120 

HEA 

120 

IPE 

360 
1.74.10+2 1.07.10-7 -2.59.10-6 2.34.10+3 -4.68.10+3 8.92.10-3 -2.59.10-6 

12 
HEB 
140 

HEB 
140 

IPE 
180 

1.55.10+3 3.71.10-7 -1.61.10-4 2.35.10+4 -4.70.10+4 5.34.10-3 -1.61.10-4 

13 
HEB 

140 

HEB 

140 

IPE 

180 
1.55.10+3 3.71.10-7 -1.61.10-4 2.35.10+4 -4.70.10+4 5.34.10-3 -1.61.10-4 

Distributed loading q = 30 KN/m 
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Table 3 - Results of program execution for the GA algorithm with population number = 20 
 

 

  

14 
HEB 

140 

HEB 

140 

IPE 

180 
1.55.10+3 3.71.10-7 -1.61.10-4 2.35.10+4 -4.70.10+4 5.34.10-3 -1.61.10-4 

15 
HEA 

180 

HEA 

180 

IPE 

80 
1.39.10+3 1.74.10-6 -1.66.10-3 3.32.10+4 -6.64.10+4 5.08.10-3 -1.66.10-3 

16 
HEB 
100 

HEB 
100 

IPE 
220 

1.21.10+3 3.36.10-7 -3.28.10-5 8.27.10+3 -1.65.10+4 8.75.10-3 -3.28.10-5 

17 
HEA 

100 

HEA 

100 

IPE 

240 
1.15.10+3 2.81.10-7 -1.58.10-5 5.13.10+3 -1.03.10+4 1.07.10-2 -1.58.10-5 

18 
HEA 

100 

HEA 

100 

IPE 

240 
1.15.10+3 2.81.10-7 -1.58.10-5 5.13.10+3 -1.03.10+4 1.07.10-2 -1.58.10-5 

19 
HEB 
100 

HEB 
100 

IPE 
200 

1.14.10+3 4.11.10-7 -5.50.10-5 1.07.10+4 -2.14.10+4 8.77.10-3 -5.50.10-5 

20 
HEB 

100 

HEB 

100 

IPE 

200 
1.14.10+3 4.11.10-7 -5.50.10-5 1.07.10+4 -2.14.10+4 8.77.10-3 -5.50.10-5 

Num 001 002 003 

Global 

weight 

(t) 

F  
calculated 

Arrow 

max ( L/2) 
MA=MD MB=MC 

Sigma  
Column 

Sigma  
Beam 

1 
HEB 

260 

HEB 

260 

IPE 

180 
3.69.10+3 2.50.10-7 -2.21.10-4 3.23.10+4 -6.46.10+4 1.93.10-3 -2.21.10-4 

2 
HEA 

260 

HEB 

260 

IPE 

200 
3.30.10+3 2.03.10-7 -1.59.10-4 3.09.10+4 -6.18.10+4 2.63.10-3 -1.59.10-4 

3 
HEB 

200 

HEB 

200 

IPE 

360 
3.23.10+3 8.13.10-8 -1.54.10-5 1.39.10+4 -2.78.10+4 2.91.10-3 -1.54.10-5 

4 
HEA 

160 

HEA 

450 

IPE 

80 
3.18.10+3 1.76.10-6 -1.65.10-3 3.30.10+4 -6.59.10+4 5.95.10-3 -1.65.10-3 

5 
HEB 

220 

HEA 

240 

IPE 

240 
2.93.10+3 1.44.10-7 -8.39.10-5 2.72.10+4 -5.44.10+4 2.51.10-3 -8.39.10-5 

6 
HEB 

220 

HEA 

240 

IPE 

220 
2.84.10+3 1.73.10-7 -1.14.10-4 2.88.10+4 -5.76.10+4 2.51.10-3 -1.14.10-4 

7 
HEB 

200 

HEB 

200 

IPE 

240 
2.76.10+3 1.57.10-7 -7.76.10-5 2.52.10+4 -5.03.10+4 2.93.10-3 -7.76.10-5 

8 
HEB 

200 

HEB 

200 

IPE 

240 
2.76.10+3 1.57.10-7 -7.76.10-5 2.52.10+4 -5.03.10+4 2.93.10-3 -7.76.10-5 

9 
HEA 

240 

HEA 

240 

IPE 

200 
2.57.10+3 2.12.10-7 -1.54.10-4 3.00.10+4 -6.00.10+4 2.97.10-3 -1.54.10-4 

10 
HEA 

240 

HEA 

240 

IPE 

200 
2.57.10+3 2.12.10-7 -1.54.10-4 3.00.10+4 -6.00.10+4 2.97.10-3 -1.54.10-4 

11 
HEB 

200 

HEB 

200 

IPE 

180 
2.55.10+3 2.78.10-7 -2.07.10-4 3.03.10+4 -6.05.10+4 2.93.10-3 -2.07.10-4 

12 
HEB 

220 

HEB 

220 

IPE 

80 
2.68.10+3 1.70.10-6 -1.68.10-3 3.36.10+4 -6.72.10+4 2.52.10-3 -1.68.10-3 

13 
HEB 

200 

HEB 

200 

IPE 

180 
2.55.10+3 2.78.10-7 -2.07.10-4 3.03.10+4 -6.05.10+4 2.93.10-3 -2.07.10-4 

14 
HEA 

200 

HEA 

200 

IPE 

330 
2.41.10+3 1.05.10-7 -1.82.10-5 1.30.10+4 -2.60.10+4 4.22.10-3 -1.82.10-5 

15 
HEA 

200 

HEA 

200 

IPE 

330 
2.41.10+3 1.05.10-7 -1.82.10-5 1.30.10+4 -2.60.10+4 4.22.10-3 -1.82.10-5 

16 
HEA 

220 

HEA 

220 

IPE 

240 
2.37.10+3 1.59.10-7 -7.65.10-5 2.48.10+4 -4.96.10+4 3.55.10-3 -7.65.10-5 

17 
HEA 

220 

HEA 

220 

IPE 

200 
2.22.10+3 2.27.10-7 -1.47.10-4 2.86.10+4 -5.72.10+4 3.55.10-3 -1.47.10-4 

18 
HEB 

100 

HEA 

220 

IPE 

240 
1.83.10+3 2.73.10-7 -1.95.10-5 6.34.10+3 -1.27.10+4 8.72.10-3 -1.95.10-5 

19 
HEB 

100 

HEA 

220 

IPE 

240 
1.83.10+3 2.73.10-7 -1.95.10-5 6.34.10+3 -1.27.10+4 8.72.10-3 -1.95.10-5 

20 
HEB 

140 

HEB 

140 

IPE 

180 
1.55.10+3 3.71.10-7 -1.61.10-4 2.35.10+4 -4.70.10+4 5.34.10-3 -1.61.10-4 
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Population-dependent results are obtained for both algorithms, and Figure 5 illustrates the 

structure weight optimization for a population of 20. Clearly, the BBO algorithm gave a better 

optimal structure than the GA algorithm. 

 

 
Figure 5 - Comparison of structure weight optimization between BBO and GA algorithms 

for a population P = 20 

To properly validate this comparison between the two algorithms, it was necessary to take 

multiple population values ranging from 20 to 200. At the end of the algorithms' execution, Figure 

6 illustrates this comparison between the BBO and GA algorithms for structure weight optimization, 

taking population values of 20, 50, 100, 150 and 200. Despite the change in population number, the 

BBO algorithm still gives better results than the GA algorithm, and the figure clearly shows that it 

improves these results as the iterations progress. 

 

 
Figure 6. Comparison of structure weight optimization between BBO and GA algorithms for 

populations ranging from P = 20 to P = 200 
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4.2 Criterion No. 02: Iteration number 

By fixing the number of the initial population and varying the number of iterations between 

20 and 200. During the execution of the algorithms, the results obtained by setting the iteration 

number to 20 are summarized in Table 4 for the BBO algorithm and Table 5 for the GA algorithm. 

 

 

Table 4 - Results of program execution for the BBO algorithm with iteration number = 20 

 

  

Num 001 002 003 

Global 

weight 

(t) 

F  
calculated 

Arrow 

max ( L/2) 
MA=MD MB=MC 

Sigma  
Column 

Sigma  
Beam 

1 
HEA 

360 

HEA 

360 

IPE 

180 
4.37.10+3 2.40.10-7 -2.26.10-4 3.31.10+4 -6.62.10+4 1.59.10-3 -2.26.10-4 

2 
HEA 

340 

HEA 

340 

IPE 

180 
4.12.10+3 2.41.10-7 -2.25.10-4 3.30.10+4 -6.59.10+4 1.71.10-3 -2.25.10-4 

3 
HEB 

260 

HEB 

260 

IPE 

180 
3.69.10+3 2.50.10-7 -2.21.10-4 3.23.10+4 -6.46.10+4 1.93.10-3 -2.21.10-4 

4 
HEA 

260 

HEB 

260 

IPE 

200 
3.30.10+3 2.03.10-7 -1.59.10-4 3.09.10+4 -6.18.10+4 2.63.10-3 -1.59.10-4 

5 
HEB 

200 

HEB 

200 

IPE 

360 
3.23.10+3 8.13.10-8 -1.54.10-5 1.39.10+4 -2.78.10+4 2.91.10-3 -1.54.10-5 

6 
HEA 

260 

HEA 

260 

IPE 

240 
3.01.10+3 1.37.10-7 -8.77.10-5 2.85.10+4 -5.69.10+4 2.63.10-3 -8.77.10-5 

7 
HEB 

220 

HEB 

220 

IPE 

180 
2.91.10+3 2.65.10-7 -2.13.10-4 3.12.10+4 -6.24.10+4 2.51.10-3 -2.13.10-4 

8 
HEA 

260 

HEA 

220 

IPE 

300 
2.90.10+3 9.52.10-8 -4.33.10-5 2.41.10+4 -4.82.10+4 2.62.10-3 -4.33.10-5 

9 
HEA 

240 

HEA 

240 

IPE 

270 
2.82.10+3 1.21.10-7 -5.73.10-5 2.46.10+4 -4.92.10+4 2.97.10-3 -5.73.10-5 

10 
HEB 

200 

HEA 

280 

IPE 

180 
2.82.10+3 2.78.10-7 -2.07.10-4 3.03.10+4 -6.05.10+4 2.93.10-3 -2.07.10-4 

11 
HEA 

220 

HEB 

200 

IPE 

300 
2.77.10+3 1.13.10-7 -3.42.10-5 1.90.10+4 -3.81.10+4 3.54.10-3 -3.42.10-5 

12 
HEA 

220 

HEA 

280 

IPE 

180 
2.62.10+3 2.81.10-7 -2.06.10-4 3.01.10+4 -6.02.10+4 3.56.10-3 -2.06.10-4 

13 
HEB 

200 

HEB 

200 

IPE 

180 
2.55.10+3 2.78.10-7 -2.07.10-4 3.03.10+4 -6.05.10+4 2.93.10-3 -2.07.10-4 

14 
HEA 

220 

HEA 

220 

IPE 

240 
2.37.10+3 1.59.10-7 -7.65.10-5 2.48.10+4 -4.96.10+4 3.55.10-3 -7.65.10-5 

15 
HEA 

220 

HEA 

220 

IPE 

200 
2.22.10+3 2.27.10-7 -1.47.10-4 2.86.10+4 -5.72.10+4 3.55.10-3 -1.47.10-4 

16 
HEB 

160 

HEB 

200 

IPE 

160 
2.15.10+3 4.03.10-7 -2.65.10-4 2.87.10+4 -5.75.10+4 4.24.10-3 -2.65.10-4 

17 
HEA 

140 

HEA 

140 

IPE 

400 
2.08.10+3 8.28.10-8 -2.39.10-6 2.77.10+3 -5.53.10+3 7.18.10-3 -2.39.10-6 

18 
HEA 

200 

HEA 

200 

IPE 

240 
2.08.10+3 1.76.10-7 -6.81.10-5 2.21.10+4 -4.42.10+4 4.24.10-3 -6.81.10-5 

19 
HEA 

140 

HEB 

160 

IPE 

300 
1.97.10+3 1.58.10-7 -1.20.10-5 6.69.10+3 -1.34.10+4 7.21.10-3 -1.20.10-5 

20 
HEA 

120 

HEA 

120 

IPE 

360 
1.74.10+3 1.07.10-7 -2.59.10-6 2.34.10+3 -4.68.10+3 8.92.10-3 -2.59.10-6 
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Table 5 - Results of program execution for the GA algorithm with iteration number = 20 
 

 

 

The results depend on the number of iterations for both algorithms, and Figure 7 illustrates 

the structure weight optimization for a population of 20 iterations. Clearly, the BBO algorithm 

produced a better optimal structure than the GA algorithm. 

 

Num 001 002 003 

Global 

weight 

(t) 

F  
calculated 

Arrow 

max ( L/2) 
MA=MD MB=MC 

Sigma  
Column 

Sigma  
Beam 

1 
HEA 

360 

HEA 

360 

IPE 

180 
4.37.10+3 2.40.10-7 -2.26.10-4 3.31.10+4 -6.62.10+4 1.59.10-3 -2.26.10-4 

2 
HEA 

340 

HEA 

340 

IPE 

180 
4.12.10+3 2.41.10-7 -2.25.10-4 3.30.10+4 -6.59.10+4 1.71.10-3 -2.25.10-4 

3 
HEB 

260 

HEB 

260 

IPE 

200 
3.75.10+3 1.95.10-7 -1.63.10-4 3.17.10+4 -6.34.10+4 1.93.10-3 -1.63.10-4 

4 
HEB 

260 

HEB 

260 

IPE 

180 
3.69.10+3 2.50.10-7 -2.21.10-4 3.23.10+4 -6.46.10+4 1.93.10-3 -2.21.10-4 

5 
HEA 

260 

HEB 

260 

IPE 

200 
3.30.10+3 2.03.10-7 -1.59.10-4 3.09.10+4 -6.18.10+4 2.63.10-3 -1.59.10-4 

6 
HEB 

200 

HEB 

200 

IPE 

360 
3.23.10+3 8.13.10-8 -1.54.10-5 1.39.10+4 -2.78.10+4 2.91.10-3 -1.54.10-5 

7 
HEB 

200 

HEB 

200 

IPE 

360 
3.23.10+3 8.13.10-8 -1.54.10-5 1.39.10+4 -2.78.10+4 2.91.10-3 -1.54.10-5 

8 
HEA 

160 

HEA 

450 

IPE 

80 
3.17.10+3 1.76.10-6 -1.65.10-3 3.30.10+4 -6.59.10+4 5.95.10-3 -1.65.10-3 

9 
HEB 

220 

HEA 

240 

IPE 

240 
2.92.10+3 1.44.10-7 -8.39.10-5 2.72.10+4 -5.44.10+4 2.51.10-3 -8.39.10-5 

10 
HEB 

220 

HEA 

240 

IPE 

240 
2.92.10+3 1.44.10-7 -8.39.10-5 2.72.10+4 -5.44.10+4 2.51.10-3 -8.39.10-5 

11 
HEB 

220 

HEA 

240 

IPE 

220 
2.84.10+3 1.73.10-7 -1.14.10-4 2.88.10+4 -5.76.10+4 2.51.10-3 -1.14.10-4 

12 
HEB 

200 

HEB 

200 

IPE 

240 
2.76.10+3 1.57.10-7 -7.76.10-5 2.52.10+4 -5.03.10+4 2.93.10-3 -7.76.10-5 

13 
HEB 

220 

HEB 

220 

IPE 

80 
2.68.10+3 1.70.10-6 -1.68.10-3 3.36.10+4 -6.72.10+4 2.52.10-3 -1.68.10-3 

14 
HEB 

220 

HEB 

220 

IPE 

80 
2.68.10+3 1.70.10-6 -1.68.10-3 3.36.10+4 -6.72.10+4 2.52.10-3 -1.68.10-3 

15 
HEB 

200 

HEB 

200 

IPE 

180 
2.55.10+3 2.78.10-7 -2.07.10-4 3.03.10+4 -6.05.10+4 2.93.10-3 -2.07.10-4 

16 
HEA 

200 

HEA 

200 

IPE 

330 
2.41.10+3 1.05.10-7 -1.82.10-5 1.30.10+4 -2.60.10+4 4.22.10-3 -1.82.10-5 

17 
HEA 

220 

HEA 

220 

IPE 

240 
2.37.10+3 1.59.10-7 -7.65.10-5 2.48.10+4 -4.96.10+4 3.55.10-3 -7.65.10-5 

18 
HEA 

240 

HEA 

240 

IPE 

100 
2.32.10+3 1.01.10-6 -9.76.10-4 3.34.10+4 -6.68.10+4 2.98.10-3 -9.76.10-4 

19 
HEA 

220 

HEA 

220 

IPE 

200 
2.22.10+3 2.27.10-7 -1.47.10-4 2.86.10+4 -5.72.10+4 3.55.10-3 -1.47.10-4 

20 
HEB 

180 

HEB 

180 

IPE 

180 
2.18.10+3 2.98.10-7 -1.97.10-4 2.88.10+4 -5.76.10+4 3.51.10-3 -1.97.10-4 
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Figure 7 - Comparison of structure weight optimization between BBO and GA algorithms for 

iteration I = 20 

As with the first criterion, to validate this comparison between the two algorithms correctly, 

it was necessary to take several iteration values ranging from 20 to 200. At the end of the algorithms' 

execution, Figure 8 illustrates this comparison between the BBO and GA algorithms for structure 

weight optimization, taking iteration values of 20, 50, 100, 150 and 200. Despite the change in the 

number of iterations and similar to the first criterion, the BBO algorithm still gives better results 

than the GA algorithm, and the figure clearly shows that it improves these results with each iteration. 

 

 
Figure 8 - Comparison of structure weight optimization between BBO and GA algorithms for 

iteration ranging from I = 20 to I = 200 
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The GA algorithm is the fastest, but the BBO algorithm gives better optimal structures, and 

the problem with the GA algorithm is often to loop in the local minimum, unlike the BBO algorithm, 

which seeks the optimal structure without looping in the local minimum. Clearly, the initial 

population has a key impact on determining the optimal structure, but increasing the number of 

iterations has no influence on the final result, especially when the number of populations is high. 

 

5. Conclusions 

It is clear that the applications proposed in this study offer optimal solutions for the pre-

dimensioning of steel structures while complying with Eurocode 3 standards (Union, 2006), making 

them a valuable decision-making tool for future users. The idea of introducing optimization 

algorithms such as BBO and GA algorithms into applications designed to solve civil engineering 

problems is essential to help the user optimize the cost of the structure to be adopted, and 

consequently reduce time and errors in the preliminary phase of the design study.  

This study investigated the influence of the number of populations and the number of 

iterations on the final results. The number of iterations parameter gave a more refined result than 

the population number parameter, because changing the initial population causes the program to 

retrograde to zero each time it starts execution, whereas changing the number of iterations allows 

continuity in execution, using the population found in the previous iteration. In this study, both 

algorithms gave reliable results, but the BBO algorithm converges faster than the GA algorithm, 

because its execution procedure is continuous and the search for the global minimum by the BBO 

algorithm is executed without blocking, unlike the GA algorithm, where blocking is sometimes 

possible. The results of this study show that the BBO algorithm is an effective tool for the 

optimization of civil engineering structures. The BBO algorithm is able to find solutions that are 

lighter, stiffer, and have a lower deflection than the original designs. 

The BBO algorithm is a promising new tool for the optimization of civil engineering 

structures. The BBO algorithm is able to find solutions that are more efficient and effective than the 

traditional trial-and-error approach. 
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