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Resumo  

O crescimento exponencial nas publicações e aplicações das células fotovoltaicas de perovskita 

destaca sua relevância na conversão de energia e na mitigação das emissões de carbono. No período 

de 2009 a 2023, a eficiência dessas células evoluiu significativamente, passando de 3,9% para 

25,7%. A capacidade adaptativa das estruturas perovskitas para a absorção do espectro solar e o 

deslocamento de corrente é fortemente influenciada pela energia da banda de gap, idealmente 

situada entre 1,3 e 1,7 eV. Embora diversas composições de perovskita possam atingir essa faixa de 

energia, as sínteses continuam sendo empíricas, apresentando desafios para a viabilidade 

experimental. Nesse contexto, a utilização de bancos de dados experimentais, fornecidos por 

pesquisadores globais, emerge como uma abordagem eficaz para acelerar e viabilizar a pesquisa das 

estruturas perovskitas destinadas a células fotovoltaicas. Este estudo empregou o banco de dados da 

plataforma MaterialsZone para alimentar algoritmos de aprendizado de máquina, concentrando-se 

nas técnicas de Máquina de Vetores de Suporte (SVM) e Floresta Aleatória (RF) para a predição de 

energia da banda de gap em uma composição específica de perovskita. Ao direcionar os 

experimentos de síntese para composições particulares, orientadas pelas predições dos modelos, é 

possível alcançar a energia da banda de gap desejada de maneira eficiente. Esse enfoque resulta em 

avanços mais rápidos na pesquisa, reduzindo os custos associados à síntese de perovskitas. O 

modelo RF apresentou um erro percentual médio de 5,13%, desvio padrão do erro percentual de 
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6,99%, e Erro Quadrático Médio (RMSE) de 0,119. Por outro lado, o SVM registrou um erro 

percentual médio de 4,05%, desvio padrão do erro percentual de 6,45%, e RMSE de 0,881. Os 

modelos desenvolvidos não apenas demonstram uma alta capacidade preditiva, mas também 

fundamentam o entendimento da relação entre a composição química e os valores de energia da 

banda de gap das perovskitas. Ao empregar algoritmos de aprendizado de máquina, este trabalho 

abre caminho para otimizações direcionadas, e ainda, impulsiona avanços substanciais na fabricação 

de células fotovoltaicas baseadas em perovskita. 
Palavras-chave: Perovskita. Células fotovoltaicas. Bandgap. Máquinas de Vetores de 

Suporte (SVM). Floresta Aleatória (RF) 

 

Abstract  

The exponential growth in publications and applications of perovskite photovoltaic cells highlights 

their significance in energy conversion and carbon emissions mitigation. From 2009 to 2023, the 

efficiency of these cells has significantly increased from 3.9% to 25.7%. The adaptive capacity of 

perovskite structures for solar spectrum absorption and current displacement is strongly influenced 

by the bandgap energy, ideally situated between 1.3 and 1.7 eV. Although various perovskite 

compositions can potentially attain this energy range, the synthesis methodologies remain 

empirically driven, presenting challenges to experimental viability. In this context, leveraging 

experimental databases provided by global researchers emerges as an effective approach to expedite 

and enable research on perovskite structures for photovoltaic cells. This study utilized the 

comprehensive MaterialsZone database to feed machine learning algorithms, focusing on Support 

Vector Machine (SVM) and Random Forest (RF) methodologies to predict the bandgap energy in a 

targeted perovskite composition. By conducting synthesis experiments towards specific 

compositions guided by model predictions, it becomes feasible to efficiently achieve the desired 

bandgap energy. Such a strategy not only accelerates research progress but also serves to curtail 

costs associated with the synthesis of perovskite materials. The RF model exhibited an average 

percentage error of 5.13%, a standard deviation of the percentage error of 6.99%, and a Root Mean 

Square Error (RMSE) of 0.119. In contrast, the SVM model recorded an average percentage error 

of 4.05%, a standard deviation of the percentage error of 6.45%, and RMSE of 0.881. These 

developed models not only demonstrate high predictive capacity but also contribute substantively 

to the comprehension of the intricate relationship between the chemical composition and bandgap 

energy values of perovskites. By deploying machine learning algorithms, this work paves the way 

for targeted optimizations and considerable strides in the manufacturing of perovskite-based 

photovoltaic cells. 

Keywords: Perovskite. Photovoltaic cells. Bandgap. Support Vector Machines (SVM). Random 

Forest (RF) 

 

1. Introduction 

Organic-inorganic halide-based solar cells, known as Perovskite Solar Cells (PSCs), have 

shown significant progress in energy conversion. This advancement is partially due to their ability 

to tune their bandgap energy, which ideally ranges between 1.3 and 1.7 eV (Park et al., 2016; Hui et 

al., 2023). With low-cost constituent materials and simplified fabrication processes for deposition 

and thin-film production, there is a challenge in surpassing already well-established technologies in 

terms of longevity (Fu et al., 2022). The interest around organic-inorganic halide-based perovskites, 

with the general formula ABX3, lies not only in their intrinsic properties but also in the diversity of 

their compositions, offering a broad spectrum of possibilities (Prochowicz et al., 2019). However, 

the search for the optimized composition, resulting in an ideal bandgap energy, is challenging given 

the countless possible combinations. Given the scale of this task, conventional experimentation 

approaches have their limits, along with associated high costs. Computational intelligence, with an 

emphasis on machine learning, has gained considerable attention in the discovery of new materials. 

Advanced algorithms can make fast and accurate predictions, allowing the identification of material 

compositions with desired properties more efficiently and economically (Schmidt et al., 2019; 
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Butler et al., 2018; Shi et al., 2018; Da Silveira et al., 2023; Hui et al., 2023; Li et al., 2023). While 

the use of machine learning in predicting material properties is not novel, its application specifically 

in predicting the bandgap energy of perovskites remains emergent and holds great potential for 

optimizing the performance of photovoltaic devices. In this study, predictive models utilizing 

machine learning approaches were implemented to determine the bandgap energy of perovskites 

based on their chemical composition. Grounded in data from the MaterialsZone platform (Jacobsson 

et al., 2022), this work aims not only to prevent the synthesis of nonviable materials or those with 

low response for photovoltaic applications but also to identify and prioritize the synthesis of 

perovskites that computational modeling suggests as ideal. For this, the Random Forest (RF) and 

Support Vector Machine (SVM) algorithms were employed, and a comparative analysis of their 

effectiveness was conducted. Additionally, all explored compositions underwent rigorous 

screening, preprocessing, and extraction of pertinent attributes. 

 

2. Methodology 

To offer practical insights into the design of perovskite materials, this research follows a 

comprehensive workflow. It encompasses initial screening and data preparation, followed by feature 

extraction, which involves the extraction of elementary properties. Subsequently, the process 

includes model implementation and optimization. 

 

2.1 Database 

The database from the MaterialsZone platform was employed. A consolidated database 

available to the scientific community, focusing on perovskites used in solar cells (Jacobsson et 

al., 2022), provides comprehensive insights into the current state of these materials. The dataset 

explored in this study includes information about 43,239 perovskites. 

 

2.1 Screening and Data Preprocessing 

A screening and preprocessing procedure was conducted on the initial dataset derived from 

MaterialsZone to ensure the quality and relevance of the data used in this investigation. Initially, the 

dataset encompassed 43,239 perovskites. The screening process is illustrated in Figure 1. In the 

initial data screening phase, the removal of duplicates resulted in a reduction in the total number of 

perovskites to 43,098. The following step was characterized by the removal of perovskites with 

identical composition and bandgap energy, which differed only in specific characteristics of solar 

cell fabrication and characterization. These differences included the deposition method, total solar 

cell area, additive concentration, surface roughness, and thickness of the solar cell's perovskite layer. 

This refinement resulted in a set of 2,237 uniquely composed perovskites. In the next step, 

perovskites not adhering to the ABX3 general configuration were discarded, updating the total 

dataset to 2,004 perovskites. The fourth step involved excluding perovskites lacking bandgap 

energy, bringing the count down to 865. The penultimate phase of preprocessing aimed to restrict 

the dataset solely to inorganic and organic perovskites containing simple organic cations extensively 

recognized in the photovoltaic materials literature (Fu et al., 2022; Park, 2015). Only 

formamidinium and methylammonium-based organic perovskites were retained. This step resulted 

in 672 perovskites. In the final stage, the dataset was narrowed down to include only the composition 

and respective bandgap energies of the perovskites, ensuring direct alignment with the specific 

objectives of this study. This procedure is crucial to ensure that the implemented models are trained 

with perovskites relevant to the study's proposal, which involves determining the bandgap energy 

based on their chemical composition. 
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Figure 1 – Graphical representation of screening stages and the remaining number of 

perovskites after each step. 

 

2.3 Feature Extraction 

After refinement, the database now encompasses 672 perovskites, distinguished by two 

principal attributes: composition and bandgap energy. Subsequently, a meticulous analysis of these 

compositions is undertaken to unveil intrinsic attributes linked to each chemical composition. The 

feature extraction step plays a central role in the data preprocessing for machine learning, converting 

specific properties of each perovskite's composition into quantitative values interpretable by the 

algorithms. Consequently, the selected attributes are based on the fundamental characteristics of the 

elements and the composition of the perovskites. Figure 2 provides a succinct representation of these 

attributes and their correlations. A detailed description of the extraction of the 149 attributes would 

exceed the scope of a concise visualization. 
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Figure 2 – Diagram illustrating intrinsic properties extraction from perovskite compositions. 

 

Elementary property - Magpie method: A comprehensive examination of perovskite attributes 

is essential for a nuanced understanding of their chemical and physical characteristics. Leveraging 

the Materials-Agnostic Platform for Informatics and Exploration (Magpie), a method well-

established and validated within the scientific community (Ward et al., 2016; Zhang et al., 2018), 

was applied to extract attributes associated with perovskite compositions in the designated database. 

Utilizing computational tools, specifically MatMiner and Pymatgen in the Python programming 

language, Magpie systematically conducts a thorough analysis of the chemical compositions of 

perovskites, resulting in the extraction of a comprehensive collection of attributes that capture the 

intrinsic properties of these materials. The implementation of this methodology facilitates the 

transformation of chemical compositions into an extensive numerical dataset, thereby enabling a 

more insightful analysis through the application of machine learning algorithms.  Consequently, this 

method delineates 22 distinct attributes for each composition, covering essential physical and 

chemical properties, covering atomic mass, atomic radius, electronegativity, and melting point. 

Statistical parameters, including minimum, maximum, mean, mode, standard deviation, and range 

were determined.  

 

Extraction of valence orbital characteristics: Characteristics related to valence electrons were 

extracted to gather insights into the electronic properties of perovskites. These data include the 

average and fraction of electrons in the s, p, d, and f orbitals. Such indicators have been extensively 

employed in the literature to elucidate the chemical and electronic properties of compounds (Jain et 

al., 2013). 

 

Characteristics of atomic orbitals: This investigation delves into the characteristics of atomic 

orbitals, focusing on the energetic attributes of the highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO), which provides a comprehension of the 

electronic properties inherent to perovskites. These parameters are extracted to unveil insights into 

the electronic structure of perovskite materials. The energy difference between these orbitals has a 

significant interest, as it plays a crucial role in determining the electronic and optical behavior of 

materials (Ward et al., 2018).  
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Ionic properties: Attributes representing the specific ionic properties of perovskites were 

extracted, addressing both maximum and average ionic character values. The term "ionic character" 

delineates the extent to which an atom tends to donate or accept electrons, serving as a fundamental 

indicator for evaluating the physical and chemical properties of perovskites. A higher ionic character 

suggests a pronounced tendency towards the formation of ionic-character chemical bonds, while 

lower values indicate more pronounced covalent characteristics. The importance of these 

characteristics in material properties has been extensively discussed in the literature, emphasizing 

their relevance in the context of perovskite studies (Meng et al., 2016). 

 

Stoichiometry metrics: In this phase, a set of attributes was extracted on established metrics 

defining the stoichiometry of the composition, with a specific focus on Norm-0, Norm-2, Norm-3, 

Norm-5, Norm-7, and Norm-10. These metrics aim to provide an in-depth understanding of the 

relative proportions of different elements comprising the perovskite. These stoichiometry patterns 

are essential for decoding the inherent complexity of the compositions and have demonstrated their 

significance in prior studies in the field of material science (Jha et al., 2018). 

With the completion of this attribute extraction stage, a comprehensive representation of the 

perovskite compositions was achieved. The combination of these attributes provides a broad 

panorama of the fundamental characteristics of these materials, paving the way for more precise 

modeling of their properties. 

 

2.4 Implementation of Models 

Random Forest (RF) and Support Vector Machine (SVM): For predicting the bandgap energy 

of perovskites, two machine learning algorithms were selected, taking into consideration the 

complexity and the extensive number of attributes present in the database, which comprises 672 

perovskites and 149 extracted attributes for each composition. The chosen algorithms were Random 

Forest (RF) and Support Vector Machine (SVM). The models were implemented using the scikit-

learn library, a common choice for regression problems (Pedregosa et al., 2011). The Random 

Forest algorithm is particularly suited for handling high-dimensional data and can model complex 

non-linear relationships (Keller et al., 2019). Moreover, Random Forest is known for its robustness 

and flexibility, being less susceptible to overfitting compared to other algorithms (Shah et al., 2020; 

Da Silveira et al., 2023; Santos et al., 2023). Support Vector Machine, in turn, has been recognized 

as a robust tool in machine learning due to its ability to handle large dimensional spaces and its 

effectiveness in finding optimized separation margins. This characteristic aligns with the present 

study involving a substantial dimensionality (149 attributes). The effectiveness of SVM has been 

extensively documented across applications ranging from pattern recognition to complex regression 

problems, making it a pertinent choice for modeling bandgap energy in perovskites. 

 

Data splitting: The dataset was separated into inputs, comprising the extracted attributes, and 

output, represented by the bandgap energy of the materials - a central variable targeted for estimation 

by the model. To ensure a meticulous and robust evaluation of the model's performance, the 4-fold 

cross-validation technique, a form of k-fold cross-validation, was employed for both training and 

validation. Cross-validation is a well-established and extensively used technique in machine 

learning, recommended in several studies for complex analyses involving multiple attributes 

(James et al., 2013; Arlot & Celisse, 2010). This technique provides a more reliable estimate of the 

model's ability to generalize to new data, as it employs different data splits for training and testing, 

thereby mitigating the risk of overfitting to the training data (Hastie, Tibshirani & Friedman, 2009). 

 

Hyperparameter optimization: To optimize the hyperparameters of the models employing 

Random Forest and Support Vector Machine for the regression problem, a random search strategy 

was adopted. Unlike a comprehensive grid search, this technique assesses random values within a 

predefined sample of hyperparameter combinations, offering significant computational resource 
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savings. For both algorithms under evaluation, 100 iterations were conducted, and each set of 

hyperparameters underwent evaluation using 4-fold cross-validation to ensure robustness in the 

selections made. 

In the case of the Random Forest, the range of considered trees spanned from 50 to 5000, with 

increments of 20. The number of attributes randomly selected for each tree in the forest was 

determined by the square root of the total number of available attributes. The maximum depth of 

the trees ranged from 10 to 40, in intervals of 10, including the option of no depth limit as well. The 

minimum samples for splitting were explored from 2 to 10, while the minimum samples in a leaf 

node varied between 1 and 4. 

For the Support Vector Machine model, the investigated hyperparameters included the 

regularization parameter, with values ranging from 0.01 to 1000; the tolerance margin parameter, 

varying from 0.001 to 1; and different kernel functions, such as linear, polynomial, radial basis 

function, and sigmoid. In the case of the polynomial function, the degrees considered were 2, 3, 

and 4. Additionally, the coefficient for the polynomial, radial basis function, and sigmoid kernels 

were analyzed, with both categorized and automatic values. The evaluation metric adopted for the 

models was the mean absolute percentage error. 

 

3. Discussion of results 

This study explores the optimization of hyperparameters and assesses the performance of 

Random Forest and Support Vector Machine models in predicting perovskite bandgap energy. 

Optimal hyperparameters for both models were systematically determined using a random search 

strategy, allowing for a thorough exploration of the parameter space. Afterwards, utilizing statistical 

metrics, a comparative analysis is presented to evaluate their predictive capabilities. In this section, 

the information has been systematically categorized to improve clarity and understanding of the 

results. 

 

3.1 Hyperparameter Optimization Results of the Models 

For the optimization process, the random search strategy was employed. Specifically 

concerning the Random Forest, the optimized hyperparameters were a total of 1890 estimator trees, 

a maximum depth of 20, combined with a minimum of 3 samples to perform a split and requiring at 

least one sample in each leaf node. This information was obtained after evaluation within the 

predefined hyperparameter range. Regarding the SVM model, the optimization search delineated 

the subsequent hyperparameters: the radial basis function kernel paired with a categorized 

coefficient. Additionally, the established tolerance margin was 0.01, with a degree of 4 for the kernel 

function, and a regularization parameter set at 10. 

 

3.2 Distribution of Bandgap Prediction Errors in Perovskites by the Random Forest Model 

The application of the Random Forest model to predict the bandgap of 672 perovskites 

involved the utilization of the cross-validation technique. This approach ensures that the prediction 

for each perovskite is conducted without the model having access to its experimental bandgap value, 

thereby providing an authentic assessment of the model's predictive capacity. 

The model's performance was initially assessed using the Root Mean Square Error (RMSE), 

yielding a value of 0.120. This metric expresses the model's precision in estimating the bandgap of 

perovskites, indicating favorable predictive accuracy. Additionally, the Mean Absolute Percentage 

Error exhibited a rate of 3.92%. This outcome, coupled with a standard deviation of 5.65%, 

demonstrates the model's stable and reliable performance across various samples. 

Illustrated in Figure 3, a histogram elucidates the distribution of prediction errors. It shows 

that 252 perovskites had errors ranging from 0 to 1.5%, 365 displayed errors between 1.5 to 10%, 

33 manifested errors between 10 to 20%, and 20 perovskites were characterized by errors 

exceeding 20%. 
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Figure 3 – Distribution of bandgap prediction errors in perovskites using Random Forest 

algorithm. 

To comprehensively illustrate the predictions across all 672 perovskites, a scatter plot was 

constructed, as shown in Figure 4. This graphical representation displays the relationship between 

the experimental bandgap values of the perovskites (X-axis) and the corresponding values predicted 

by the Random Forest model (Y-axis). The visual presentation facilitates the examination of the 

alignment between the model's predictions and the actual experimental data for all analyzed 

samples. 

In the chart, in an ideal scenario where the model exhibits complete accuracy, each point 

representing an individual perovskite would perfectly align along the dotted line. This line serves 

as a symbolic representation of a perfect correlation, where the predicted values precisely match the 

experimental data. While the overall trend of the predictions follows this ideal line, indicative of the 

model's commendable performance, certain discrepancies are discernible, suggesting variations in 

predictions for specific samples. 
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Figure 4 – Comparison of experimental and predicted bandgap values in perovskites: 

scatter plot generated by Random Forest model. 

 

3.3 Analysis of the SVM Model's Efficiency in Predicting the Bandgap of Perovskites 

The application of the Support Vector Machine (SVM) model to predict the bandgap of 672 

perovskites involved the implementation of the cross-validation method, similar to the Random 

Forest model. This approach ensures impartiality and accuracy in the model's predictive outcomes. 

Following the optimization of hyperparameters, the SVM model attained a Root Mean Square 

Error (RMSE) of 0.131. While this result is marginally higher than the RMSE of 0.120 observed in 

the Random Forest approach, it still signifies commendable precision in bandgap estimation. As 

illustrated in the histogram in Figure 5, the SVM model exhibited significant performance, 

especially in the lowest error range. Remarkably, the model accurately categorized 301 out of 672 

perovskites with errors ranging from 0 to 1.5%, showcasing heightened precision within this specific 

range and surpassing the Random Forest model in this regard. Additionally, the histogram reveals 

that 304 perovskites manifested errors between 1.5 to 10%, 42 perovskites registered errors in the 

range of 10 to 20%, and 25 perovskites exhibited errors surpassing 20%. This error distribution 

underscores the SVM model's ability to generate highly accurate predictions, although revealing a 

substantial number of predictions with larger errors. 
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Figure 5 – Distribution of bandgap prediction errors in perovskites using Support 

Vector Machine algorithm. 

 

The Mean Absolute Percentage Error (MAPE) for the SVM model registered at 3.93%, with 

a standard deviation of 6.24%. In contrast, the Random Forest exhibited a MAPE of 3.92% with a 

standard deviation of 5.65%. This comparison implies that while the SVM demonstrates comparable 

accuracy, it tends to display greater variability in its errors. This attribute is illustrated in Figure 5, 

presenting a histogram of the error distribution. The histogram highlights that the SVM, despite 

having more outliers compared to the Random Forest, succeeded in producing a higher number of 

predictions with elevated precision. This suggests that when the SVM is accurate, its prediction 

tends to be more precise, but in cases of error, the deviations are more pronounced. 

Moreover, Figure 6 presents the scatter plot of the SVM model. Analogous to the one utilized 

in the Random Forest analysis, this chart provides a clear and visual representation of the 

relationships between experimental data (X-axis) and model-predicted values (Y-axis) for the entire 

sample set. Without delving into a reiterated explanation of the chart's concept, it is crucial to 

emphasize its role as a succinct and efficacious illustration of the SVM's prediction outcomes. This 

underscores the overall efficacy of the model, notwithstanding some variations and the presence of 

outliers. 
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Figure 6 – Comparison of experimental and predicted bandgap values in perovskites: 

scatter plot generated by Support Vector Machine model. 

 

Scatter plots and histograms were concurrently plotted on a shared scale, presented side by 

side in Figure 7, to conduct a comprehensive and visual comparative analysis of the Random Forest 

and Support Vector Machine models. This arrangement allows an instant visual appraisal of the 

distinctions and similarities between the two methodologies in predicting the bandgap of 

perovskites. The side-by-side histograms emphasize the distribution of prediction errors, while the 

scatter plots demonstrate the correlation between the experimental values and those predicted by 

each model. This visual representation facilitates the understanding of the specific nuances of each 

approach, offering a direct and intuitive comparative analysis of their efficacies. 
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Figure 7 – Comparative visual analysis of Random Forest and Support Vector machine 

models for bandgap prediction in perovskites: histograms and scatter plots. 

 

4. Conclusions 

This investigation successfully predicted the bandgap energy of perovskites using machine 

learning algorithms, specifically Random Forest and Support Vector Machine. The Random Forest 

algorithm demonstrated superiority based on the Root Mean Square Error metric, while the Support 

Vector Machine showed notable accuracy in most predictions, with some significant deviations in 

specific situations. Challenges were observed for certain perovskites with unique attributes and 

limited representation in the dataset, emphasizing the need for further studies to understand these 

cases and refine predictive models. The anticipation of perovskite bandgap energy through machine 

learning in this work introduces a robust computational approach with significant promise for 

guiding chemical composition selection, enhancing synthesis efficiency, and advancing 

photovoltaic cell research. 
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