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Resumo  

Este artigo propõe uma abordagem baseada em Processos Gaussianos para a construção de 

metamodelos para problemas de otimização robusta que busca diminuir o esforço computacional 

requerido para quantificar incertezas. A abordagem é aplicada em dois casos: um problema de 

benchmark de baixa dimensão e um de projeto estrutural, de alta dimensão, que consiste em 

minimizar a massa de uma estrutura formada por barras de diferentes materiais e diâmetros, 

submetida a cargas pontuais em diferentes locais. Os casos são modelados como problemas de 

otimização robusta, onde a função objetivo é estimada por um Processo Gaussiano e o procedimento 

de otimização é conduzido empregando-se uma meta-heurística populacional. Os resultados 

indicam que a abordagem proposta é eficaz na redução do número de avaliações de função objetivo 

necessárias para a obtenção de uma solução robusta, não havendo diferenças estatísticas 

significativas na qualidade das soluções alcançadas 

Palavras-chave: Processos. Gaussianos. Metamodelagem. Otimização. Robusta.  

 

Abstract  

This article proposes an approach based on Gaussian Processes for building metamodels for robust 

optimization problems that seek to reduce the computational effort required to quantify 

uncertainties. The approach is applied to two cases: a low-dimensional benchmark problem and a 

high-dimensional structural design, which consists of minimizing the mass of a structure formed by 

bars of different materials and diameters, subjected to point loads in different locations. The cases 

are modeled as robust optimization problems, where the objective function is estimated by a 

Gaussian Process and the optimization procedure uses a population meta-heuristic. The results 

indicate that the proposed approach is effective in reducing the number of objective function 

evaluations required to obtain a robust solution, with no significant statistical differences in the 

quality of solutions achieved. 

Keywords: Gaussian. Process. Metamodels. Optimization. Robust  

 

https://orcid.org/0000-0001-7264-6220
mailto:cmcruz@uesc.br
https://orcid.org/0000-0002-7401-4718
mailto:fslobato@ufu.br
https://orcid.org/0000-0002-4583-6026
mailto:gustavolibotte@iprj.uerj.br


The Journal of Engineering and Exact Sciences – jCEC 

2 

1. Introduction 

 Ideal solutions to optimization problems are often not viable in practice, because the results 

found in nominal problems can be in highly nonlinear regions. The problem parameters can vary 

due to uncertainties arising from various sources, such as properties of materials and variations in 

environmental conditions, among others. Thus, the system may no longer operate satisfactorily, 

according to Tsutsui, et al., 1996. In these cases, the solution must be robust, that is, it must be able 

to maintain system performance, even when subject to small external disturbances. 

The concept of robustness is closely linked to the name of Genichi Taguchi, who states that 

robustness is the state where the performance of the technology, product, or process is minimally 

sensitive to factors that cause variability (whether in manufacturing or in the user s environment) 

and aging at the lowest unit cost of manufacturing” (Park , et al., 2006, citing Taguchi, 1987). 

 However, the computational cost of evaluating robustness can become prohibitive when the 

problem requires significant computational effort, as is the case with finite element analysis 

problems (Yang et al, 2022). This difficulty can be circumvented using metamodels, which 

approximate the objective function or the constraints of the problem  at an acceptable computational 

cost to achieve optimal results like the original problem (Jiang et al, 2020). 

   In this work, a methodology based on Gaussian Processes is proposed for metamodeling 

during the robustness evaluation process. This is done to reduce the number of objective function 

evaluations and thus decrease the computational cost of the procedure. At the same time, the results 

achieved using metamodels are analyzed to assess their deviation from the solutions achieved with 

the original models. Therefore, the joint objective of the proposed methodology is to use 

metamodeling to reduce computational cost and obtain solutions equivalent to those obtained with 

the original model in the context of robust optimization. 

   The rest of this article is organized as follows: In Section 2, a brief review on genetic 

algorithms, Gaussian processes, and robust optimization is presented. In Section 3, the proposed 

methodology is described. In Section 4, the results obtained with the application of the proposed 

methodology in a low-dimensional benchmark problem and a high-dimensional structural 

engineering problem are presented. Finally, in Section 5, the conclusions and perspectives for future 

work are presented. 

 

2. Regression with Gaussian Processes, Genetic Algorithms and Robustness 

This section briefly describes Gaussian process regression, the use of genetic algorithms in 

the optimization process, and the concept of robustness. 

 

2.1 Regression with Gaussian Processes 

A Gaussian Process is a probabilistic model that describes the dependence between random 

variables of a collection, so that any finite subset of them follows a joint Gaussian distribution 

(Rasmussen and Williams, 2006). A Gaussian process can be used to perform regression, which 

consists of estimating a function from a set of input and output data. 

Consider a function 𝑓: 𝒳 → 𝒴 that maps an input 𝒳 space to an output space 𝒴. Suppose this 

function is unknown (of the black box type: only some input and output pairs are known, but not 

the rule that relates them), or it is very costly to evaluate at all points of the input space, so only a 

set of data is available 𝒟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, where 𝑥𝑖 ∈ 𝒳 and 𝑦
𝑖

∈ 𝒴 are vectors. 

The objective is to estimate 𝑓  in a set of points, 𝒳∗ = {𝑥1
∗ , 𝑥2

∗ , … , 𝑥𝑚
∗ } , using regression with 

Gaussian Processes (Rasmussen and Williams, 2006). 

A Gaussian Process, which we denote as 𝑓(𝑥) ∼ GP(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) , is completely 

determined by its mean and covariance. The mean and covariance are defined respectively as 

𝑚(𝑥) = 𝔼[𝑓(𝑥)] and 𝑘(𝑥, 𝑥′) = 𝔼[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]  where 𝔼  is the expectation 

operator and 𝑘 is called the kernel function or covariance function.  
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In the regression process, it is generally assumed that the output of a function is given by 𝑦 =
𝑓(𝑥) + 𝜖, where 𝜖 is a Gaussian noise with mean zero and variance  𝜎2, that is,  𝜖 ∼ 𝒩(0, 𝜎𝑛

2),  ( 

Rasmussen e Williams, 2006).  

A kernel function is a crucial component of the Gaussian Process, as it determines how the 

points in the input set relate to each other. One of the most common choices is the Radial Basis 

Function (RBF), also known as the Gaussian function, which is expressed as follows: 

 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2exp ቀ−

1

2𝑙2 ||𝑥 − 𝑥′||2ቁ   (1) 

Here, 𝜎𝑓
2 is the variance of the function and 𝑙 is the length scale. These values are known as 

hyperparameters and are adjusted during the metamodeling process, in order to maximize the 

likelihood of the model.  

The joint distribution between the training points (observed points) and the unobserved points is 

given by: 

ቂ
𝑦
𝑓∗ቃ ∼ 𝒩 ൬0, ൤

𝐾 + 𝜎𝑛
2𝐼 𝐾∗

𝐾∗
𝑇 𝐾∗∗

൨൰,  (2) 

where 𝐾 is the covariance matrix between the training points, 𝐾∗ is the covariance matrix between 

the training points and the unobserved points, 𝐾∗∗ is the covariance matrix between the unobserved 

points, and 𝐼 is the identity matrix. With this, the predicted value for the unobserved points is given 

by: 

 

𝑓∗ ∼ 𝒩(𝐾∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦, 𝐾∗∗ − 𝐾∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝐾∗)  (3) 

In other words, the prediction at a point 𝑥∗ and its covariance can be given respectively by: 

𝑚(𝑥∗) = 𝐾∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦  (4) 

and 

 

𝑘(𝑥∗) = 𝐾∗∗ − 𝐾∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝐾∗ (5) 

The detailed development can be consulted in Rasmussen and Williams (2006), and 

Wackernagel (2003). 

2.2 Genetic Algorithms 

Genetic Algorithms are indeed useful in the optimization of complex problems, because they 

allow for the search for solutions in large search spaces, simulating the process of natural evolution. 

They combine the idea of survival of the fittest individual with the exchange of information between 

individuals (Goldberg, 1989). Here we present a brief description of how genetic algorithms operate. 

At first, a population of individuals is generated randomly and assessed using the objective 

function. Selection for reproduction is based on the objective function evaluation. The reproductive 

process employs genetic operators, including crossover and mutation. Crossover merges two chosen 

individuals to produce a new one, while mutation randomly modifies a selected individual. The 

individuals generated by both operators are once again evaluated by the objective function, and the 

fittest are chosen for the next generation. This defines the selection process by favoring the fittest 

individuals. The process repeats until a stopping criterion is met. Additional details can be found in 

Goldberg (1989). 
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2.3 Robustness 

In the context of optimization, robustness is associated with solutions that are minimally 

sensitive to external disturbances, in the context of a problem subject to uncertainties. These 

uncertainties can be caused by several factors, such as measurement errors, geometric inaccuracies, 

modeling errors, roundoff errors, among others. Therefore, the optimal solution of a problem that 

does not consider robustness (the so-called nominal problems) can be unfeasible or even useless 

when applied in the practice of a project. In some cases, it may not be convenient to follow the 

optimal solution if it is a very acute point, that is, when small disturbances at the optimal point cause 

large variations in the value of the objective function. This applies especially to areas where it is 

important to have a certain safety against variations in environmental conditions, such as the 

adjustment of the parameters of aerospace or nuclear energy control systems, according to Tsutsui, 

et al. (1996). 

Consider the effective mean approach in calculating robust solutions. For a problem of 

minimizing a function 𝑓 , a solution 𝑥∗  is said to be robust if it minimizes the effective mean 

function, defined in relation to a 𝛿-neighborhood of 𝑥∗, where 𝛿 is a robustness parameter (Deb and 

Gupta (2006)). The effective mean function is defined as: 

𝑓eff(𝑥) =
1

|ℬ𝛿(𝑥)|
∫

𝜉∈ℬ𝛿(𝑥)
𝑓(𝜉)𝑑𝜉. (6) 

However, often the calculation of the equation is unfeasible, and therefore, an approximation 

is sought for the effective mean function, given by: 

𝑓eff(𝑥) ≈
1

𝑁
∑

𝑖=1

𝑁

𝑓(𝜉𝑖), (7) 

where 𝜉𝑖 ∈ 𝐵𝛿(𝑥) and 𝑁 is the number of samples in the 𝛿-neighborhood of 𝑥 . 

3. Metamodeling of Robust Optimization Problems 

One of the main challenges in analyzing robustness through the effective mean approach is 

the need to evaluate the objective function for each of the samples in the neighborhood of a 

candidate solution. This can be computationally infeasible, depending on the complexity of the 

function involved. Therefore, it is crucial to find efficient methods to approximate the effective 

mean function, especially for complex optimization problems.  

To reduce the computational cost of robustness analysis, it is proposed to use metamodels for 

the calculation of the values of the effective mean function. This approach can significantly reduce 

the computational cost in terms of the number of evaluations of the objective function during the 

optimization process, while achieving a solution as close as possible to that of the corresponding 

problem in which metamodels are not used. 

3.1 Hybrid Genetic Algorithm with Gaussian Processes 

 The proposed methodology consists of the following stages: 

• Initial Metamodel Training: The algorithm initializes the candidate solution population 

using the Latin Hypercube strategy (HCL) and evaluates each member of the population according 

to the objective function. With the obtained input and output points, Gaussian Processes-based 

regression model is constructed (trained). 

• Initialization: In the second stage of the algorithm, the population from the previous stage 

is used as the initial population. The regression model, trained in the previous stage, serves as the 

objective function used in the evaluation of the effective mean function. Here, the effective mean 

function is the function to be optimized. 

• Exploration: In the third stage, a test set is derived from the new individuals created in the 

mutation and crossover stage. If the error between the metamodel and the original function in 

these individuals is arbitrarily greater than 20%, the objective function is evaluated in all 
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individuals in the current population, and the metamodel is updated. Otherwise, the individuals in 

the test set are added to the training set and the metamodel is updated. Subsequently, the updated 

regression model is used as the objective function to evaluate the robustness of the solution 

candidates through the effective mean approach. This process is repeated for each generation until 

a stopping criterion related to the model is met.  

• Refinement: Once such a stopping criterion is met, the fourth stage begins. In this stage, 

the algorithm relinquishes the use of the surrogate model and begins employing the original 

objective function to evaluate the individuals of the population in the calculation of the effective 

mean function, thus initiating the refinement phase. The refinement phase is arbitrarily executed 

for 10% of the number of generations used by the metamodel. The flowchart of the hybrid genetic 

algorithm operation is shown in Figure 1. 

The refinement criterion is used to ensure that the metamodel is not used to determine the final 

robust solution. This is because the metamodel approximates the objective function and can produce 

solutions that are less accurate than the original model. Therefore, the metamodel is used in the 

exploratory phase of the algorithm, and the original objective function is used in the refinement 

phase (Baquela and Oliveira, 2019). 

4 Results and Discussion 

In this section, the proposed approach for finding robust solutions to optimization problems 

is evaluated. Initially, a two-dimensional problem is solved to illustrate the behavior of the obtained 

results. Additionally, an engineering problem is analyzed, aiming to verify the efficiency of the 

proposed approach in a more challenging problem. 

For the execution of the algorithm, the following parameters were used: number of samples 

used to calculate robustness 𝑁 = 50 , maximum number of generations 𝐺𝑚𝑎𝑥 = 11,000 , 

probabilities of mutation and crossover  𝑃𝑚 = 𝑃𝑐 = 0.1, and percentage in relation to the total 

number of generations during  which the genetic algorithm is executed using the metamodel for 

calculating  robustness 𝐺𝑝 = 0.9. As a stop criterion for the use of the metamodel for the calculation 

of robustness, a tolerance of 10−6
 for the difference between the best individual in two subsequent 

Generation of an initial

 population

Initial population

of Metaheuristics

Mutation and

Crossover

Sample from the

new individuals

Error between

 the metamodel

and the objective

function is greater

than 20% in the

set of samples?

Evaluation of the samples with the

objective function and with the

metamodel

Yes

Metamodel

training
Training set

Evaluation with the objective

function in new individuals

All individuals in the

current population

No Population of the previous generation

and samples of new individuals

k>0?
No

Training set

Was the stop

criterion met?

No

Yes

Final

Population

k=k+1

Output:

Solution

Metaheuristics without

using metamodel

Iteration counter

k=0

Yes Evaluation of robustness using the

metamodel and other stages of

metaheuristics in the current iteration

Evaluation of robustness using the metamodel

in each individual of the initial population.

Figure 1: The flowchart of the hybrid genetic algorithm. 
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generations was used. Complementarily, a tolerance of 10−8
 was used for the difference between 

the best objective function value of two successive iterations. 

4.1 Simple Benchmark Problem 

 Initially, let  𝑓: 𝑅2 → 𝑅  be a function given by:  

𝑓(𝒙) = −exp ቀ−
(𝑥1+2,5)2+(𝑥2+2,5)2

0,22
ቁ −0.8exp ቀ−

(𝑥1+2)2+(𝑥2+1)2

0,42
ቁ + exp ቀ

(𝑥1+𝑥2)2

100
ቁ (8) 

The constrained optimization problem is given by: 

minimize
𝒙

 𝑓(𝒙)  (9) 

Subject to gi(x) ≤ 0, for i = 1,2,3, where 

𝑔
1

(𝒙) = ൫𝑥1
2 + 𝑥2

2 + 2𝑟𝑥1൯
2

− 4𝑟2൫𝑥1
2 + 𝑥2

2൯ + 2  (10) 

𝑔
2

(𝒙) = ൫𝑥1
2 + 𝑥2

2൯
3

− 4𝑎𝑥1
2𝑥2

2  (11) 

𝑔
3

(𝒙) = −ൣ(𝑥1 + 1)2 + 𝑥2
2 − 2𝑟(𝑥1 + 1)൧

2
+ 4𝑟2ൣ(𝑥1 + 1)2 + 𝑥2

2൧ − 2  (12) 

Additionally, the search space is bounded by 

−5 ≤ 𝑥1, 𝑥2 ≤ 0 (13) 

This problem is multimodal, and the global minimum is located at 𝑥𝑔 = (−2.5, −2.5), with 

𝑓(𝑥𝑔) ≈ 0.284025 . In addition, there is a local minimum at 𝑥𝑙 = (−2, −1) , with 𝑓(𝑥𝑙) ≈
0.294174 . If we consider a robustness level of 10%, evaluating the effective mean function 

directly, without using the proposed methodology, we obtain 𝑓eff(𝑥𝑔) ≈ 0,871970 and 𝑓eff
൫𝑥𝑙൯ ≈

0,371026. This shows that the point 𝑥𝑙  is more robust than the point 𝑥𝑔 , thus being a more 

appropriate solution considering uncertainties.  

Following the methodology proposed in the previous section, and assuming a robustness level 

of 10%, the robust point obtained is 𝒙 = (−1.996647, −0.980849), with 𝑓eff(𝒙) ≈ 0.373839, 

Figure 2 - (a) The feasible region of the problem, along with the level curves of the objective 

function. (b) A graph of the objective function. 
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which demonstrates that the optimal robust occurs at 𝒙𝒍 = (−2; −1). For this level of robustness, 

39,620 evaluations of the objective function were necessary without the use of metamodeling, 

whereas 33,436 evaluations of the objective function with the use of metamodeling, which 

represents a reduction of 15.6% in the number of evaluations of the objective function, 

demonstrating the effectiveness of the proposed methodology. Figures 2(a) and 2(b) illustrate the 

feasible region of the problem, the contour plots of the objective function, and the robust and non-

robust optimal points for the different levels of robustness achieved using the proposed 

methodology. 

4.2 - Problem of optimizing a truss bridge 

This problem involves finding the optimum geometry of a truss bridge structure, considering 

uncertainties in the model parameters, to minimize the mass of the structure, maximize the safety 

factor, and limit the maximum deflection. It was modified from a problem presented by Chen 

(2022). Figure 3 shows the geometry of the truss bridge, comprising 21 rods and 12 nodes. The 

design variables are the material of the rods (aluminum, titanium, or steel), the cross sectional area 

of the rods, and the position of the free nodes in the structure. Free nodes are those that can have 

their cartesian coordinates (𝑥, 𝑧) changed, while fixed nodes have their positions predefined. In this 

problem, the free nodes are 𝑛2, 𝑛5, 𝑛7, 𝑛9 and 𝑛11 , and the fixed nodes are 𝑛1, 𝑛3, 𝑛4, 𝑛6, 𝑛8, 𝑛10 

and 𝑛12 . Therefore, the problem has 52 design variables, 21 relating to the material of the rods, 21 

relating to the cross sectional area of the rods, and ten relating to the position of the free nodes. 

The objective function to be maximized is given by:  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐷, 𝑆𝐹min, 𝑀) = dfit(𝐷) + sfit(𝑆𝐹min) + 3.5 × mfit(𝑀)  (14) 

With 

dfit(𝐷) = 1 −
𝐷

𝐷ref
  (15) 

  

𝑠𝑓𝑖𝑡(𝑆𝐹𝑚𝑖𝑛) = ቐ

𝑆𝐹𝑚𝑖𝑛

𝑆𝐹𝑡𝑎𝑟𝑔𝑒𝑡
− 0.5, 𝑖𝑓 𝑆𝐹𝑚𝑖𝑛 < 𝑆𝐹𝑡𝑎𝑟𝑔𝑒𝑡

1 −
𝑆𝐹𝑚𝑖𝑛−𝑆𝐹𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝐹𝑡𝑎𝑟𝑔𝑒𝑡
, 𝑖𝑓 𝑆𝐹𝑚𝑖𝑛 > 𝑆𝐹𝑡𝑎𝑟𝑔𝑒𝑡

  (16) 

mfit(𝑀) = 1 −
𝑀

𝑀ref
  (17) 

 

Figure 3 - A truss bridge with weights at points n3, n4, n6, n8,and n10.  

Modified from Chen (2022). 
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where 𝐷 represents the maximum displacement of the structure and,  𝐷ref is a constant that denotes 

the reference displacement used to calculate the fitness. On the other hand, 𝑆𝐹min corresponds to 

the minimum safety factor of the structure, which is a critical indicator of system safety. 𝑆𝐹target is 

another essential constant, representing the minimum desired safety factor for the structure. As for 

the mass of the structure, it is denoted by 𝑀, being the total sum of the component masses. 𝑀ref  is 

a constant that refers to the reference mass, used as a basis for evaluating fitness. The value of 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is calculated as the total fitness factor, incorporating the considerations of displacement, 

safety factor, and mass to evaluate the overall effectiveness of the structure in relation to the 

established criteria.  

It is important to emphasize that 𝐷, 𝑆𝐹𝑚𝑖𝑛 , and 𝑀 depend on the design variables, which are 

the coordinates of the free nodes, the cross sectional area of the rods, and the materials of the rods. 

Obtaining 𝐷, 𝑆𝐹𝑚𝑖𝑛 , and M is done through structural analysis, and their calculations are beyond 

the scope of this work. For more details about structural analysis, please refer to Soriano (2005) and 
Chen (2022). 

The algorithm was executed 100 times, taking 11,000 as the maximum number of generations 

in each execution, and the results were compared to those obtained using only the genetic algorithm 

without metamodeling, employing the same parameters. 

In Figures 4, 5, and 6, the distribution of the number of evaluations of the objective function 

performed in each case are presented, considering all executions performed for the different levels 

of robustness. It is very important to emphasize that these results include the number of evaluations 

required for the calculation of robustness, the construction of the metamodel, and the refinement at 

each generation, that is, all the procedures that can impact the computational cost of the proposed 

methodology. 

In Figure 4, the number of evaluations of the objective function to obtain the solution of the 

truss problem is presented, compared to the approach in which metamodeling is adopted, 

considering robustness level equal to 10%. It is possible to observe in Figure 4(a) that the use of the 

metamodel significantly reduced the number of evaluations of the objective function by about ten 

Figure 4 - Comparison between the numbers of evaluations of the objective function 

for the truss problem using the metamodel and without the metamodel for the 

calculation of the level of robustness at 10%. 

(a)                                                                (b) 
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times in relation to the typical strategy (without metamodel). In addition, in Figure 4(b), the optimal 

values obtained in both cases represent are in quite good agreement.   

 

Figure 6 - Comparison between the numbers of evaluations of the objective function 

for the truss problem using the metamodel and without the metamodel for the 

calculation of the level of robustness at 1%. 

Figure 5 - Comparison between the numbers of evaluations of the objective function 

for the truss problem using the metamodel and without the metamodel for the 

calculation of the level of robustness at 5%. 

(a)                                                          (b) 

(a)                                                          (b) 
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Figures 5 and 6 show that, despite the significant reduction in the number of objective function 

evaluations when using metamodeling, no significant statistical differences are observed in the 

results achieved when the original model is replaced by the metamodel. This allows for more 

generations in the refinement phase as needed, which corroborates the advantages of using 

metamodeling. 

5 Conclusion 

In this article, we propose a Gaussian process-based metamodeling approach to estimate the 

objective function for calculating robustness at different levels. We apply our methodology to two 

problems, dimensionally distinct, to demonstrate its computational efficiency in terms of reducing 

the number of objective function evaluations. Our approach proved to be adequate, decreasing the 

number of objective function evaluations by more than tenfold in the high-dimensional problem 

without compromising the quality of the robust solution. 

One possible improvement to our methodology is to change the stop criterion for the 

refinement phase to enable greater proximity between the solutions with and without metamodeling. 

This could further improve the quality of the robust solution. 

Another promising direction for future research is to explore the use of metamodels to estimate 

robustness in multi-objective optimization problems. This could be done by integrating reliability 

techniques in the search for robust solutions. We could also explore the use of other metamodels, 

such as neural networks, to estimate robustness in optimization problems. 
 

Acknowledgements 

The authors gratefully acknowledge the financial support provided by State University of 

Santa Cruz and Rio de Janeiro State University. This study was financed in part by the Coordenação 

de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. 

 

References 
Baquela, E. G., Olivera, A. C. (2019). “A novel hybrid multi-objective metamodel-based 

evolutionary optimization algorithm”. In: Operations Research Perspectives 6, p. 100098. 

ISSN: 2214-7160. DOI: https://doi.org/10.1016/j.orp. 2019.100098.  

Chen, C. (2022). Introduction to Structural Optimization: Truss Analysis Using the Principles of 

Finite Element Analysis, Genetic Algorithms and Python. Kindle Edition.  

Deb, K., Gupta, H. (2006). “Introducing Robustness in Multi-Objective Optimization”. In: 

Evolutionary Computation 14.4, pp. 463–494. DOI: https://doi. 

org/10.1162/evco.2006.14.4.463.  

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. 

Addison Wesley series in artificial intelligence. Addison-Wesley. ISBN: 9780201157673.  

Jiang, P., Zhou, Q., Shao, X. (2020). Surrogate Model-Based Engineering Design and Optimization. 

Springer Singapore. ISBN: 978-981-15-0730-4. DOI: https://doi. org/10.1007/978-981-15-

0731-1.  

Park, Gyung-Jin et al. (2006). “Robust Design: An Overview”. In: AIAA Journal 44.1, pp. 181–

191. DOI: https://doi.org/10.2514/1.13639.  

Rasmussen, C. E., Williams, C.K.I. (2006). Gaussian Processes for Machine Learning. The MIT 

Press.  

Soriano, H. L. (2005). Análise de estruturas: formulação matricial e implementação computacional. 

Editora Ciência Moderna. ISBN: 8573934522, 9788573934526 

Taguchi, G. (1987). System of Experimental Design: Engineering Methods to Optimize Quality and 

Minimize Costs. Dearborn: American Suppliers Institute, pp. 653–655.  

Tsutsui, S., Ghosh,  A., Fujimoto, Y. (1996). “A robust solution searching scheme in genetic 

search”. Em: International Conference on Parallel Problem Solving from Nature. Springer, 

pp. 543–552.  

https://doi.org/10.1016/j.orp.%202019.100098.
https://doi.org/10.1162/evco.2006.14.4.463
https://doi.org/10.1162/evco.2006.14.4.463
https://doi.org/10.1007/978-981-15-0731-1
https://doi.org/10.1007/978-981-15-0731-1
https://doi.org/10.2514/1.13639


The Journal of Engineering and Exact Sciences – jCEC 

11 

Wackernagel, H. (2003). Multivariate Geostatistics: An Introduction with Applications. Springer 

Berlin Heidelberg. ISBN: 978-3-642-0791 1-5. DOI: https://doi.org/10.1007/ 978-3-662-

05294-5.  

Yang, Y. et al. (2022). “A Computationally Efficient Surrogate Model Based Robust Optimization 

for Permanent Magnet Synchronous Machines”. In: IEEE Transactions on Energy Conversion 

37.3, pp. 1520–1532.  

 
 

https://doi.org/10.1007/%20978-3-662-05294-5
https://doi.org/10.1007/%20978-3-662-05294-5

