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Resumo  

A estimativa dos termos-fonte presentes em equações diferenciais possui diversas aplicações, que 

vão desde a avaliação estrutural, monitoramento de processos industriais, detecção de falhas em 

equipamentos, identificação de fontes de poluição ambiental até aplicações na medicina. Nos 

últimos anos, houve progresso significativo em metodologias capazes de estimar esse parâmetro. 

Este trabalho utiliza uma metodologia baseada em uma formulação explícita da transformação 

integral para caracterizar o termo-fonte desconhecido, reconstruindo-o por meio da expansão em 

autofunções conhecidas do problema de autovalor de Sturm-Liouville. Para alcançar isso, um 

modelo linear é considerado em um meio heterogêneo com propriedades físicas conhecidas e 

variáveis espacialmente, e duas fontes de calor, com dependências temporais e espaciais, sendo que 

a dependência é apenas espacial. O problema de autovalor contém informações sobre as 

propriedades heterogêneas e é resolvido usando a técnica generalizada de transformação integral. 

Além disso, é proposta uma interpolação inicial dos dados do sensor para cada tempo de observação, 

tornando o problema inverso computacionalmente mais leve. As soluções do problema inverso 

apresentam desempenho ótimo, mesmo com dados de entrada ruidosos e fontes com 

descontinuidades abruptas. As temperaturas recuperadas pelo problema direto, considerando a fonte 

recuperada, coincidem de perto com dados experimentais sintéticos, mostrando erros inferiores a 

1%, garantindo a robustez e confiabilidade da técnica para a aplicação proposta. 

Palavras-chave: Problemas inversos. Transformadas integrais. Termo fonte. Meios heterogêneos. 

 

Abstract  

The estimation of source terms present in differential equations has various applications, ranging 

from structural assessment, industrial process monitoring, equipment failure detection, 

environmental pollution source detection to identification applications in medicine. Significant 

progress has been made in recent years in methodologies capable of estimating this parameter. This 

work employs a methodology based on an explicit formulation of the integral transformation to 
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characterize the unknown source term, reconstructing it through the expansion in known 

eigenfunctions of the Sturm-Liouville eigenvalue problem. To achieve this, a linear model is 

considered in a heterogeneous medium with known and spatially varying physical properties and 

two heat sources, with both temporal and spatial dependencies, and only spatial dependence. The 

eigenvalue problem contains information about the heterogeneous properties and is solved using the 

generalized integral transformation technique. Additionally, an initial interpolation of the sensor 

data is proposed for each observation time, making the inverse problem computationally lighter. 

The solutions of the inverse problem exhibit optimal performance, even with noisy input data and 

sources with abrupt discontinuities. The temperatures recovered by the direct problem considering 

the recovered source closely match synthetic experimental data, showing errors less than 1%, 

ensuring the robustness and reliability of the technique for the proposed application. 

Keywords: Inverse problems. Integral transforms. Source term. Heterogeneous media. 

 

1. Introduction 

Estimating source terms in diffusion problems is a classic instance of an inverse heat 

conduction problem (IHCP), which has been thoroughly investigated over the years (Alifanov, 

1994; Beck and Arnold, 1997; Beck et al., 1985; Özisik and Orlande, 2021). This field has found a 

large range of applications (Negreiros et al., 2020; Lugão et al., 2022; Mital and Scott, 2006; Nelson 

and Yoon, 2000; Yoon et al., 2023; Mehrabanian and Nejad, 2023; Alosaimi and Lesnic, 2023). 

The inverse problem of heat source identification can be formulated as either parameter estimates 

or function estimation, considering some IHCP classifications found in the literature. In particular, 

for three-dimensional inverse problems involving function estimates, computational data processing 

is increased, posing a challenging problem, especially for some methods like Monte Carlo with 

Markov Chains in Bayesian inference (Orlande et al., 2014; Kaipio and Somersalo, 2006; Cao et 

al., 2022; Sajedi et al., 2021).  

The use of GITT in inverse problems has proven to be a consistent approach, and the results 

and applications obtained so far are quite exciting. It is worth noting that, for example, the use of 

measurements in the transformed domain can not only lead to lower computational costs but also 

provide regularization for the ill-posed nature that is typical of inverse problems (Naveira-Cotta et 

al. 2011a, b; Abreu et al, 2018; Özisik and Orlande, 2021).  

A new explicit approach for identifying boundary source terms was proposed by Knupp and 

Abreu (2016), using a regularization scheme through the truncation of terms in a series and an 

associated eigenvalue problem. This proposal was experimentally validated and compared with the 

MCMC method in Sanches et al. (2021), where the same explicit method utilized an explicit 

formulation with the assistance of an integral transform to address the actual experimental data for 

estimating time-varying boundary heat fluxes in thin thermally plates using temperature 

measurements obtained through infrared thermography. Knupp (2021) presented an approach where 

direct and simultaneous estimation of thermal conductivity and thermal capacity in heterogeneous 

media is carried out, employing transformed temperatures in the transformed equation. The 

methodology is based on a minimization problem that does not require an iterative solution of the 

direct problem, making it a computationally lightweight cost process. 

Recently, Negreiros et al. (2020) proposed a methodology for estimating source terms in 

diffusion models using the classical integral transformation technique (CITT), more details about 

the technique at Cotta (1993). They evaluated the methodology using simulated measurements with 

different noise levels, and the results, employing a basis of eigenfunctions and eigenvalues from the 

eigenvalue problem, proved to be robust. The technique was tested on classical one-dimensional 

and two-dimensional diffusion models, considering constant coefficients in the differential 

equations. However, models involving variable coefficients are common, introducing complexity, 

especially in the eigenvalue problem of the integral transformation. 

In this work, the goal is to apply the same technique proposed by Negreiros et al. (2020), but 

with the inclusion of a more complex model involving spatially varying coefficients in the 

eigenvalue problem. This problem is solved using the Generalized Integral Transformation 
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Technique (GITT), as described by Cotta (1993). Additionally, linear interpolation is employed on 

the sensor data to avoid the self-cost of semi-analytical interval integration, reducing the 

computational cost of the problem. 

 

2. Direct problem 

Consider the one-dimensional transient diffusion equation, presented in a general form in 

Naviera-Cotta et al. (2011 a, b) and Knupp (2021). This model describes the heat conduction in a 

thermally thin plate with length 𝐿 and thickness 𝑙𝑒, where 𝒦(𝑥) and 𝜌(𝑥)𝑐𝑝(𝑥) represent spatially 

varying thermal conductivity and thermal capacity, respectively. The plate experiences an imposed 

heat flux 𝑞(𝑥, 𝑡) on one surface, while the opposite surface exchanges heat with the surrounding 

environment at 𝜃∞. 

 

𝜌(𝑥)𝑐𝑝(𝑥)
𝜕𝜃𝑚(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝒦(𝑥)

𝜕𝜃𝑚(𝑥,𝑡)

𝜕𝑥
) −

ℎ

𝑙𝑒
(𝜃𝑚(𝑥, 𝑡) − 𝜃∞) +

𝑞(𝑥,𝑡)

𝑙𝑒
, 𝑥 ∈ [0, 𝐿], 𝑡 > 0  (1a) 

𝒦(𝑥)
𝜕𝜃𝑚(𝑥,𝑡)

𝜕𝜼
= 0,  at 𝑥 = 0 and 𝑥 = 𝐿            (1b) 

𝜃𝑚(𝑥, 0) = 𝜃∞, 𝑥 ∈ [0, 𝐿]              (1c) 

  

 Before presenting the solution to the model represented by Eq. (1), a linear filter is applied to 

filter the initial condition of the problem. This filtering methodology, which can occur in the initial 

condition or boundary conditions, aims to homogenize the problem, demonstrating convergence 

benefits in terms of solution truncation, (Cotta, 1993; Cotta, 2013). Therefore: 

 

𝜃𝑚(𝑥, 𝑡) = 𝜃∗(𝑥, 𝑡) + 𝜃∞              (2) 

 

where 𝜃∗ represents the filtered temperatures, and 𝜃∞ is the filter temperature. The equation for the 

filtered temperatures is then represented by: 

 

𝒲(𝑥)
𝜕𝜃∗(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝒦(𝑥)

𝜕𝜃∗(𝑥,𝑡)

𝜕𝑥
) − 𝑑(𝑥)𝜃∗(𝑥, 𝑡) + 𝑃(𝑥, 𝑡)       (3a) 

𝑘(𝑥)
𝜕𝜃∗(𝑥,𝑡)

𝜕𝜼
= 0, at 𝑥 = 0 and 𝑥 = 𝐿            (3b) 

𝜃∗(𝑥, 0) = 0               (3c) 

 

where 𝒲(𝑥) = 𝜌(𝑥)𝑐𝑝(𝑥) and 𝒦(𝑥) are the terms responsible for the heterogeneous information 

of the problem, with the source term  𝑃(𝑥, 𝑡) =  
𝑞(𝑥,𝑡)

𝑙𝑒
 and 𝑑(𝑥) =  

ℎ

𝑙𝑒
.  

The integral transform technique consists, first and foremost, in defining the transform-inverse 

pair and normalized eigenfunctions: 

 

�̅�𝑖
∗(𝑡) = ∫ 𝒲(𝑥)Υ̃𝑖

𝐿

0
(𝑥)𝜃∗(𝑥, 𝑡)𝑑𝑥, transform         (5a) 

∑ Υ̃𝑖(𝑥)∞
𝑖=1 �̅�𝑖

∗(𝑡), inverse            (5b) 

Υ̃𝑖(𝑥) =
Υ𝑖(𝑥)

√𝑁𝑖
, normalized eigenfunctions          (5c) 

𝑁𝑖 = ∫ 𝒲(𝑥)[Υ𝑖(𝑥)]2𝑑𝑥
𝐿

0
, normalization integrals        (5d) 

 

with �̅�𝑖
∗ representing the transformed filtered potential, 𝜉𝑖and Υ𝑖 are, respectively, eigenvalues and 

eigenfunctions originating from the eigenvalue problem (see Naviera-Cotta et al., 2009), which 

contains information about the heterogeneous medium: 

 
𝜕

𝜕𝑥
(𝒦(𝑥)

𝜕Υ𝑖(𝑥)

𝜕𝑥
) + (𝜉𝑖

2𝒲(𝑥) − 𝑑(𝑥)) Υ𝑖(𝑥) = 0, 𝑥 ∈ [0, 𝐿]       (6a) 
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𝜕Υ𝑖(𝑥)

𝜕𝜼
= 0, at 𝑥 = 0 and 𝑥 = 𝐿             (6b) 

The problem given by Eq. (6) is solved using the GITT technique, see Cotta (1993), proposing 

a simpler Sturm-Liouville eigenvalue problem with a closed-form solution. The unknown 

eigenfunctions Υ𝑖 are expanded around this base, as detailed in (Naviera-Cotta et al., 2009; Naviera-

Cotta et al., 2010). 

Thus, with the eigenfunctions and eigenvalues in hand, the operator ∫ 𝒲(𝑥)Υ̃𝑖(𝑥, 𝜉𝑖)(∙)𝑑𝑥
𝐿

0
 is 

applied to (3), transforming the potential and yielding the following transformed differential 

equation: 

 
𝜕�̅�𝑖

∗(𝑡)

𝜕𝑡
+ 𝜉𝑖

2�̅�𝑖
∗(𝑡) = �̅�𝑖(𝑡)              (7a) 

�̅�𝑖
∗(0) = 0               (7b) 

 

where �̅�𝑖 is the transformed source term, given by: 

 

�̅�𝑖(𝑡) = ∫ 𝒲(𝑥)Υ̃𝑖(𝑥)𝑃(𝑥, 𝑡)𝑑𝑥
𝐿

0
             (8) 

 

The solution to the differential equation (7) determines the transformed potentials �̅�𝑖
∗. 

Subsequently, the solution to the filtered problem can be determined by applying the inverse, as 

defined by Eq. (5b). Therefore, the final solution to the problem (1) is given by: 

 

𝜃𝑚(𝑥, 𝑡) = 𝜃∞ + ∑ Υ̃𝑖(𝑥) ∫ �̅�𝑖(𝑡)𝑒−𝜉𝑖
2(𝑡−𝑡′)𝑑𝑡′𝑡

0
∞
𝑖=1          (9) 

 

2. Inverse problem 

In this work, the focus is on estimating the unknown source term function 𝑞(𝑥, 𝑡) using 

measurements of transient temperatures assumed to be available at equally spaced locations in the 

domain. For this purpose, an explicit formulation is proposed based on the transformed equation Eq. 

(7a) to estimate the transformed source term �̅�𝑖(𝑡), and by utilizing the inverse Eq. (5b), the source 

term 𝑃(𝑥, 𝑡) is found, controlling the number of eigenfunctions in the expansion Negreiros et al. 

(2020). Therefore: 

 

𝑃(𝑥, 𝑡) = ∑ 𝒲(𝑥)Υ̃𝑖(𝑥)
𝑁𝑇
𝑖=1 �̅�𝑖(𝑡)           (10) 

 

where the normalized eigenfunctions originate from the eigenvalue problem Eq. (6).  

 Considering the measurements over the domain 𝜃𝑒 at each position (𝑥𝑛, 𝑡𝑗), they are 

transformed using Eq. (5b). In the methodology proposed by Negreiros et al. (2020), these 

measurements are transformed using semi-analytic interval integration. However, simple linear 

interpolation of the sensor data 𝑥𝑛 for each time unit allows for a single integration, reducing 

computational cost, as follows:  

 

𝜃𝑒(𝑡𝑗) =  ∫ (𝜃𝑒(𝑥, 𝑡𝑗) − 𝜃∞)𝒲(𝑥)Υ̃𝑖(𝑥)𝑑𝑥
𝐿

0
         (11) 

 

Thus, using finite differences to approximate the derivative of the potential represented by Eq. 

(7a), one can estimate �̅�𝑖(𝑡), as per Eq. (12). To distinguish the notations, we denote �̂�𝑖(𝑡) as the 

estimated source term through experimental measurements. 

 
𝜃𝑒(𝑡𝑗+1)−𝜃𝑒(𝑡𝑗−1)

2∆𝑡
+ 𝜉𝑖

2𝜃𝑒(𝑡𝑗) = �̂�𝑖(𝑡)           (12) 
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hence, applying the inverse formulation to �̂�𝑖(𝑡) the flux of the source term �̂�(𝑥, 𝑡) is determined as 

follows: 

 

�̂�(𝑥, 𝑡) = 𝑙𝑒 ∑ 𝒲(𝑥)Υ̃𝑖(𝑥)
𝑁𝑇
𝑖=1 �̂�𝑖(𝑡)           (13) 

 

The truncation 𝑁𝑇 is chosen by the principle of discrepancy, where the optimal truncation of 

the series in the solution of the inverse problem is the one for which the variance of the recovered 

data 𝜎²𝑟𝑒𝑐 best approximates the variance of the uncertainties in the experimental data 𝜎²𝑒, see 

(Knupp and Abreu, 2016; Özisik and Orlande, 2021;  Beck and Arnold, 1997; Beck et al., 1985). 

 

3. Numerical results 

 For numerical simulations, the parameter values presented in Knupp (2021) were considered. 

This scenario represents a nanocomposite consisting of a high-density polyethylene matrix with a 

concentration of 45%. The parameter data are represented in Table 1. The properties vary spatially 

at positions 𝑥 =  0 and 𝑥 =  𝐿.  In this work, the exponentially smoothed transition will be 

considered, as given by the following equations, where 𝒦0 and 𝒲0 represent values at 𝑥 = 0, and 

𝒦𝐿 and 𝒲𝐿 represent values at 𝑥 = 𝐿. 

 

𝒦(𝑥) =  𝒦0 + (𝒦𝐿 − 𝒦0)𝒲(𝑥)                (14) 

𝒲(𝑥) =  𝒲0 + (𝒲𝐿 − 𝒲0)ℋ(𝑥)           (15) 

 

with 

 

ℋ(𝑥) =  
1

1+𝑒𝑥𝑝[−200(𝑥−0.04)]
            (16) 

 

 The function ℋ allows for a smooth transition between abrupt changes in the system, as 

illustrated in Figure 1, providing a graphical representation of the smoothed variation of parameters 

𝒦(𝑥) and 𝒲(𝑥), representing the conductivity and thermal capacity, respectively. The values of 

these parameters correspond to those in Table 1. These parameters contain the heterogeneous 

information of the model. 

 

Table 1 - Definition of the model parameter values. 

Parameter Defined 

values 

𝜃∞[℃] 25 

𝐿[𝑚] 0.08 

𝑙𝑒[𝑚] 0.002 

ℎ[𝑊/𝑚²𝐾] 15 

𝒦0[𝑊/𝑚𝐾] 0.549 

𝒦𝐿[𝑊/𝑚𝐾] 2.29 

𝒲0[𝐽/𝑚³𝐾] 2.23 × 106 

𝒲𝐿[𝐽/𝑚³𝐾] 2.58 × 106 

Note: Table adapted from Knupp (2021). 
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(a)   (b)  
 

Figure 1 - Spatially varying parameters of heterogeneous properties: Spatially varying 

parameter 𝓚 with exponential transition Eq. (14).; Spatially varying parameter 𝓦 with 

exponential transition Eq. (15). 

 

Two types of heat flow are proposed for the inverse problem estimation: one continuous and 

transient, represented by Eq. (17); the other stationary, with discontinuity and abrupt transitions, 

represented by Eq. (18), graphically depicted in Figure 2. The fluxes are adapted from Yang et al. 

(2012), who proposed the inverse problem of heat flow estimation considering available 

measurement data in the domain. 

 

𝑞1(𝑥, 𝑡) = 104(𝜋2 − 2𝑡)𝑒−𝑡 sin (
𝜋𝑥

𝐿
) , (𝑥, 𝑡) ∈ [0,0.08] × [0, 1]      (17) 

𝑞2(𝑥, 𝑡) = {
106,   (𝑥, 𝑡) ∈ [0.02, 0.06] × [0.2, 0.6]  

0,                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (18) 

 

  

(a)  (b)  

Figure 2 - Graphical representation of the heat flows to be estimated: (a) - Heat flow 𝒒𝟏; (b) - 

Heat flow 𝒒𝟐. 
 

 To avoid the "inverse crime", as discussed in Kaipio and Somersalo (2006), synthetic 

experimental measurements are simulated using the numerical solution routine of partial differential 

equations available in the symbolic computing platform Wolfram Mathematica NDSolve, Wolfram 

(2023). This solution package has been consistently employed in scientific works such as (Freitas 

et al., 2023; Cotta et al., 2013; Knupp and Abreu, 2016), demonstrating reliability in numerical 

solutions. These measurements are determined considering uncertainties in the experimental data 

with a normal distribution of mean zero and standard deviation 𝜎𝑒, as follows: 
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𝜃𝑒(𝑥𝑛, 𝑡𝑗) =  𝜃(𝑥𝑛, 𝑡𝑗) + 𝜖; 𝜖~𝑁(0, 𝜎𝑒)          

 

𝑛 = 1, 2, 3, ⋯ , 𝑀𝑥; 𝑗 = 1, 2, 3, ⋯ , 𝑀𝑡          (19) 

 

where 𝑀𝑥 and 𝑀𝑡 represent the quantity of spatial sensors and temporal measurements, respectively; 

𝜖 is the uncertainty at each point; 𝑁 is the normal distribution; 𝜃𝑒 denotes the pointwise 

experimental measurement; and 𝜃 is the value of the numerical solution of the problem.  

 Firstly, the transient flow is estimated, represented by Eq. (17). The quantity of experimental 

data consisted of 36 spatial measurements and 20 temporal measurements. In the first example, 

experimental noise was taken into account with a standard deviation of 𝜎𝑒 = 0.1℃. The problem 

was analyzed over the range of 20 eigenvalues and eigenfunctions. 

 

 

 

Figure 3 - Principle of Discrepancy in the first simulation 𝝈𝒆 = 𝟎. 𝟏℃. 

 

Figure 3 shows the variances obtained through the principle of discrepancy. The smallest 

distance between the variance of experimental noise and the variance obtained by recovery at each 

truncation occurs when 𝑁𝑇 = 18. In Figure 4, the estimation profile for time 𝑡 =  0.5[𝑠], is 

presented, with some truncations of the inverse problem solution illustrated. Figure 5 illustrates in 

three dimensions the best estimate for the flow. 

 

 

 

Figure 4 - Representation of the estimation profile for various truncations of the inverse 

problem solution at time 𝒕 = 𝟎. 𝟓[𝒔] with a standard deviation of uncertainty equal to 𝝈𝒆 =
𝟎. 𝟏℃. 
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Figure 5 - Graphical representation of the estimated flow. 

 

 

  

(a)   (b)   
Figure 6 - Comparison between experimental temperatures and recovered temperatures, 

and differences among the data: (a) - Comparison between experimental temperatures and 

recovered temperatures; (b) - Estimation errors between experimental temperatures and 

recovered temperatures. 
 

The estimated flow is then used to solve the direct problem again. Figure 6(a) shows the 

comparison between the experimental temperature measurements used as input for the inverse 

problem and the measurements recovered by solving the direct problem using the estimated flow. It 

can be observed, as shown in Figure 6(b), that the difference between the measurements varies 

between −0.2[℃] and 0.2[℃], for the considered times. The temperature range illustrated in Figure 

6(a) is between 25[℃]  and 34[℃], indicating that the errors are between 0,59% and 0,8% in relation 

to the experimental values. This indicates robustness in the technique and that the estimates have 

good results. 

Now, we analyze the estimation of the steady-state flow, represented by Eq. (18). The quantity 

of experimental data remains at 36 spatial measurements and 20 temporal measurements. In the first 

example, experimental noise was taken into account with a standard deviation of 𝜎𝑒 = 0.1℃ and 

𝜎𝑒 = 0.5℃. The problem was analyzed over the range of 40 eigenvalues and eigenfunctions. The 

results are evaluated below: 
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(a)  (b)   
Figure 7 - Graphical representation of the estimation and error for the heat flow 𝒒𝟐 with 

noise having a standard deviation of 𝝈𝒆 = 𝟎. 𝟏℃: (a) - Estimated flow �̂�𝟐; (b) - Estimation 

error 𝒒𝟐 − �̂�𝟐. 
 

 

Figure 8 - Representation of the estimation profile for various truncations of the inverse 

problem solution at time 𝒕 = 𝟎. 𝟑[𝒔] with a standard deviation of uncertainty equal to 𝝈𝒆 =
𝟎. 𝟏℃. 

 

  

(a)   (b)   

Figure 9 - Graphical representation of the estimation and error for the heat flow 𝒒𝟐 with 

noise having a standard deviation of 𝝈𝒆 = 𝟎. 𝟓℃: (a) - Estimated flow �̂�𝟐; (b) - Estimation 

error 𝒒𝟐 − �̂�𝟐. 
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Figure 10 - Representation of the estimation profile for various truncations of the inverse 

problem solution at time 𝒕 = 𝟎. 𝟑[𝒔] with a standard deviation of uncertainty equal to 𝝈𝒆 =
𝟎. 𝟓℃. 

 

 Figures 7(a) and 9(a) present, respectively, the reconstructions of heat flows and the errors in 

the estimates. It is observed that in both Figure 7(b) and Figure 9(b), the highest concentration of 

errors is at the edges where the discontinuity is encountered. Since the expansion reconstructs the 

term continuously, estimation errors are expected at these points of discontinuity. It is also noted 

that the quality of the experimental data directly affects the solution of the inverse problem. The 

better the quality of the data, as in the case of 𝜎𝑒 = 0.1℃, the better the solutions. Figures 8 and 10 

show estimation profiles for some truncations of the solution, where larger oscillations are also 

visible when 𝜎𝑒 = 0.5℃. The method is able to estimate heat flow even in stationary cases with 

discontinuity. 

 

3. Conclusions 

In this work, the application of the inverse problem-solving methodology for estimating 

source terms applied to the reconstruction of heat flows in heterogeneous media was presented. This 

approach considers spatially varying physical properties within the eigenvalue expansion problem, 

with regularization truncation guided by the principle of discrepancy. 

To verify the robustness of the technique, two examples were considered for heat flow 

estimation. Experimental data were subject to uncertainties, and it was observed:  

• The performance of the solution is satisfactory, obtaining good estimates of the flows in both 

transient and steady state cases.  

• Clearly the solution is more accurate when the quality of observational data is better. 

• The method exhibits a good recovery of experimental measurements from the direct problem 

using the solution of the inverse problem as the recovered flow. In the results presented here, 

a difference of less than 1% was obtained. 

It is concluded that the methodology is capable of establishing approximations of flow 

characteristics, demonstrating good accuracy and being easily implemented for the proposed 

application. 
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