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Abstract  

This research investigates the intricate interplay of incompressible Schrödinger flow, heat-transfer, 

and the presence of an immersed isothermal body. The mathematical framework encompasses the 

Schrödinger equation for incompressible fluids, the heat transfer equation, and introduces a term 

that represents the thermal influence of an immersed isothermal geometry. Emphasizing the 

modeling and analysis of isotropic fluid dynamics, the study seeks to unravel the subtle relationship 

between the principles of quantum mechanics and the classical behavior of fluids. The initial 

discoveries produce an important theorem that leads the name of the authors, allowing new and 

valuable insights into the effects of the isothermal body immersed in a fluid medium. As a result, it 

was found that the term temperature source offers a unique perspective at the intersection of 

quantum mechanics and fluid dynamics. 

Keywords: Incompressible Schrödinger Flow. Isothermal Immersed Geometry. Heat Transfer. 

Mathematical Modeling. 

 

Resumo 

Esta pesquisa investiga a intrincada interação entre o escoamento incompressível de Schrödinger, a 

transferência de calor e a presença de um corpo isotérmico imerso. A estrutura matemática abrange 

a equação de Schrödinger para fluidos incompressíveis, a equação de transferência de calor, e 

introduz um termo que representa a influência térmica de uma geometria isotérmica imersa. 

Enfatizando a modelagem e análise da dinâmica de fluidos isotrópicas, o estudo busca desvendar a 

relação sutil entre os princípios da mecânica quântica e o comportamento clássico dos fluidos. As 

descobertas iniciais produzem um importante teorema que dá origem ao nome dos autores, 

permitindo novos e valiosos insights sobre os efeitos do corpo isotérmico imerso em um meio fluido. 

Como resultado, descobriu-se que o termo fonte de temperatura oferece uma perspectiva única na 

intersecção da mecânica quântica e da dinâmica dos fluidos. 
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Palavras-chave: Escoamento Incompressível de Schrödinger. Geometria Imersa Isotérmica. 

Transferência de Calor. Modelagem Matemática. 

 

About mathematical notations 

 

Exploring the nuanced interaction between quantum mechanics and classical fluid dynamics stands 

as a captivating field of research. In this initial inquiry, we immerse ourselves in the domain of 

incompressible Schrödinger flow, considering the factors of heat transfer and the existence of an 

immersed isothermal body. The mathematical formulations utilized lay the groundwork for 

modeling and scrutinizing the isotropic fluid dynamics within this distinctive context. Notations 

corresponding to each section are detailed within the body of the text. 

 

1. Introduction 

 

The concept of Incompressible Schrödinger Flow (ISF) presents an interesting mathematical 

structure that draws parallels between the Schrödinger equation in quantum mechanics and the 

equations that govern incompressible fluids in well-known fluid mechanics. The approach presented 

in this work seeks to unite two apparently separate domains, investigating the mathematical 

similarities between quantum phenomena and non-compressible (incompressible) fluid dynamic 

behavior is challenging. The equations outlined in this study, designed to encapsulate 

incompressibility with heat-transfer, can be articulated mathematically, illuminating the 

fundamental connections between quantum mechanics and fluid dynamics. From this point of view, 

the study not only seeks to unravel the intricate interplay between concepts, but also lays the 

foundation for a nuanced understanding of the subtle analogies that intertwine the structures of the 

physical world. 

Medeiros & Miranda (2000) in this work, the authors begin a seminar dedicated to Sobolev 

spaces and their applications in partial differential equations, held at the Brazilian Center for Physics 

Research in the 1970s. It consisted of instigating young students' interest in this specific aspect of 

mathematics on a topic of relevance in the study of Functional Analysis. Its results extend into 

different applications to this day. 

Works such as Brezis (2011) offer a coherent, concise, and unified approach to integrating 

elements from two distinct realms—functional analysis and partial differential equations. The 

author facilitates a seamless transition between these areas, delving into the intricacies of one-

dimensional PDEs, thereby providing a more accessible entry point for beginners. 

Turning our attention to Sobolev Spaces, the contributions of Santos & Sales (2023) and 

Santos & Silva (2023) deserve mention. In a broad sense, these works employ Sobolev functional 

spaces to scrutinize the asymptotic behavior of turbulent flow in a fluid medium. The mathematical 

analyses in these works serve as foundational pillars for a more extensive exploration of the 

regularity of the Navier-Stokes Equations. In this specific context, the authors embark on a crucial 

step in advancing the Smagorinsky model. Drawing on the frameworks of Banach and Sobolev 

Spaces, they develop a novel theorem that illuminates the path toward constructing an anisotropic 

viscosity model. Their dedicated effort initially focuses on presenting a more comprehensive 

mathematical analysis, thereby fostering a nuanced understanding of the challenges posed by the 

regularity of the Navier-Stokes equations. 

In the work Teschl (2009), the author presents a succinct and autonomous introduction to the 

mathematical techniques of quantum mechanics, with specific emphasis on their practical 

application to Schrödinger operators. In the first part of the text, the author delves into the spectral 

theory of unbounded operators, covering only the fundamental topics essential for subsequent 

applications, with the spectral theorem taking center stage. In Part 2, Teschi begins the exploration 

with the free Schrödinger equation, deftly computing the free resolvent and time evolution. Notably, 

concepts such as position, momentum, and angular momentum are elucidated using algebraic 

methods. 
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This particular job by Teschl requires only a robust understanding of advanced calculus and 

an introductory knowledge of complex analysis. Notably, he makes no assumptions about 

Lebesgue's functional analysis or integration theory. This approach makes your work accessible and 

ensures readers can interact with the content effectively. 

The second edition of Evans (2022), work on partial differential equations (PDE) is of utmost 

importance, offering a thorough exploration of contemporary techniques in the theoretical study of 

Partial Differential Equations (PDE), with specific emphasis on non-linear equations. Recognized 

for its broad scope and lucid exposition, Evans' (2022) work has been acclaimed by both educators 

and students of the exact sciences. His distinctive combination of deep knowledge and technical 

precision makes him a crucial resource for anyone delving into the complexities of PDE. 

Remarkable for its ability to elucidate fundamental ideas and techniques, this work is highly 

recommended, establishing itself as an essential reference for various facets of the area. 

Thus, the functional analysis presented by Brezis (2011), Evans (2022), Santos & Sales (2023) 

and Santos & Silva (2023), is crucial to understanding Sobolev spaces, which are frequently used 

in the analysis of solutions of Partial Differential Equations. Teschl's work on quantum mechanics 

provides a basis for understanding Schrödinger's equations and their associated operators, and is 

useful for those exploring quantum phenomena such as incompressible flow with heat-transfer. 

Evans' work on PDEs offers comprehensive tools to address issues related to heat transfer in a more 

general context. Although these references do not specifically address incompressible Schrödinger 

flow with heat-transfer considering an immersed isothermal body, they provide the mathematical 

and theoretical basis necessary to address problems related to partial differential equations, 

functional analysis and quantum phenomena. Exploring the intersection of these concepts can be a 

challenging and innovative task within the field of mathematical physics. 

Although we mention some references in an introductory manner, other important ones will 

be presented and commented succinctly throughout this work. Thus, an important, albeit 

introductory, step will be taken towards understanding Schrödinger Incompressible Flow with Heat-

Transfer. 

 

2. Mathematical analysis of the problem 

 

The incompressible Schrödinger equation draws an analogy between the Schrödinger equation 

in quantum mechanics and the incompressible fluid equations in fluid mechanics. Initially, the aim 

is to establish a broad correspondence between these two distinct fields or areas. 

The incompressible Schrödinger equation provides an interesting analogy between quantum 

mechanics and incompressible fluid mechanics. This analogy is established through the 

mathematical expression: 

𝑖ℏ
𝜕𝜓

𝜕𝑡
+

ℏ2

2𝑚
∇2𝜓 + 𝑉(𝒙, 𝑡)𝜓 = 𝑄(𝒙, 𝑡), (2.1) 

where, 𝑖 is the imaginary unit, ℏ represents the reduced Planck constant, 
𝜕𝜓

𝜕𝑡
 is the partial derivative 

with respect to time, ∇2𝜓 is the spatial Laplacian of the wave function 𝜓, 𝑚 is the mass of the 

particle, and 𝑉(𝒙, 𝑡) is the potential that may depend on both the position 𝑥 and time 𝑡, 𝑄(𝒙, 𝑡) is 

the heat source. This formulation, by incorporating elements from the conventional Schrödinger 

equation of quantum mechanics, provides an intriguing perspective for analyzing complex physical 

phenomena that share similarities between the two scientific domains. 

Thus, the Eq. (2.1), represents the conservation of energy for the particle in the context of 

quantum mechanics. It describes how the wave function 𝜓 evolves over time under the influence of 

the potential 𝑉(𝒙, 𝑡) and initial conditions. This specific formulation, with an emphasis on 

incompressible fluids, can be applied to analyze the quantum behavior of fluid systems, such as, the 

dynamics of superfluids or Bose-Einstein condensates (just exemplifying). It provides a 

mathematical tool for investigating quantum phenomena in specific fluid contexts. 
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 2.1 Existence and uniqueness for the incompressible Schrödinger equation with immersed 

isothermal body and Robin boundary condition 

 

Consider the incompressible Schrödinger equation in a domain Ω ⊂ ℝ3 with an arbitrary two-

dimensional isothermal body Γ. The Eq. (2.2), expressed by 

𝑖
𝜕𝜓

𝜕𝑡
+

1

2
∇2𝜓 + 𝑉(𝒙, 𝑡)𝜓 = 𝑄(𝒙, 𝑡), 𝑖𝑛 (0, 𝑇) × Ω, (2.2) 

subject to Dirichlet boundary conditions in the parts of 𝜕Ω that do not coincide with Γ  

 

𝜓(𝒙, 𝑡) = 0, for all 𝒙 ∈  𝜕Ω\Γ, 𝑡 ∈ (0, 𝑇). 

 

where, this expression represents the Dirichlet boundary conditions. Each term represents, 

𝜓(𝒙, 𝑡), the wave function, which is the solution we are looking for to the incompressible 

Schrödinger equation. It depends on the spatial variables 𝒙 and temporal variables 𝑡. The 𝜕Ω 

represents the domain boundary Ω, which is the three-dimensional (3D) space where we are studying 

the problem. The Γ represents the region occupied by the immersed isothermal two-dimensional 

arbitrary body. So, 𝜕Ω\Γ denotes the part of the border that does not coincide with the region 

occupied by the body. And, 𝑡 ∈ (0, 𝑇), indicates that the boundary conditions are applied for all 

time instants in the interval 0 < 𝑡 < 𝑇. Therefore, this condition means that the wave function is 

zero in those parts of the boundary that do not coincide with the region occupied by the arbitrary 

isothermal body. In other words, this boundary condition specifies the value of the function at the 

domain boundary. That is, it indicates that the wave function is fixed to zero in these parts of the 

boundary, to be clear. Now, considering, the Robin boundary condition on the parts of 𝜕Ω that 

coincide with Γ 

𝑎(𝒙, 𝑡)𝜓 + 𝑏(𝒙, 𝑡)
𝜕𝜓

𝜕𝑛
= 𝑔(𝒙, 𝑡), for all 𝒙 ∈ Γ, 𝑡 ∈ (0, 𝑇), 

 

the previous expression, represents the Robin boundary condition. Some of its terms have already 

been mentioned, however, the term 𝑎(𝒙, 𝑡) is a known function that describes the influence of the 

potential at the boundary Γ on the wave function. The term, 𝑏(𝒙, 𝑡), it is also a known function that 

modulates the normal derivative of the wave function at the Γ boundary. The notation 
𝜕𝜓

𝜕𝑛
 , represents 

the normal derivative of the wave function with respect to the variable normal to the boundary. 

Here, 
𝜕

𝜕𝑛
 is the normal derivative operator; and 𝑔(𝒙, 𝑡), it is a known function that specifies the 

values on the boundary Γ with respect to time. And still,  𝒙 ∈ Γ indicates that this boundary condition 

applies to the boundary region occupied by the arbitrary two-dimensional isothermal body.  In 

summary, the Robin boundary condition establishes a linear relationship between the wave function, 

its normal derivative at the boundary and known functions 𝑎(𝒙, 𝑡), 𝑏(𝒙, 𝑡) and 𝑔(𝒙, 𝑡). This 

condition is generally used when one wants to model heat transfer or other physical quantities that 

depend on the normal flow at the boundary. The specific choice of 𝑎(𝒙, 𝑡), 𝑏(𝒙, 𝑡) and 𝑔(𝒙, 𝑡), will 

always depend on the physical characteristics of the problem in question. 

An important theorem below, called in this work as "Santos-Sales Theorem (SST)", plays a 

fundamental role in affirming the singular solution of the incompressible Schrödinger equation. 
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Theorem (Santos-Sales Theorem - SST). An incompressible Schrödinger equation has a singular 

solution 𝜓 ∈ 𝐻0
1(Ω) within Sobolev space, which acts as the only minimizer of the energy functional 

E[ψ], under Dirichlet and Robin boundary conditions.  

Before starting the mathematical proof process, it is worth mentioning that the variational 

formulation to be used is a powerful mathematical approach to solving partial differential equations 

(PDEs) that arises from the theory of Hilbert spaces and functional analysis. It transforms the 

original problem, generally formulated in terms of partial derivatives, into an optimization problem, 

where we seek to minimize a functional expression called energy functional. This approach is 

particularly useful when dealing with linear partial differential equations, such as the incompressible 

Schrödinger equation. In the variational formulation for the incompressible Schrödinger equation, 

we seek to minimize the energy functional E[ψ] subject to the specified boundary conditions.  

The energy functional is defined as 

E[𝜓] = ∫ (
1

2
|∇𝜓|2 + 𝑉(𝒙, 𝑡)|𝜓|2) 𝑑𝒙.

Ω

 (2.2.1) 

The variational approach involves choosing a suitable space of test functions (often a Sobolev 

space) and considering the variational of E[𝜓] with respect to these test functions. Minimizing the 

energy functional leads to a variational differential equation which, when solved, provides the 

approximate solution to the original equation. 

 

Proof.  Thus, initially, to demonstrate the validity of the Dirichlet boundary conditions for the 

Sobolev space 𝐻0
1(Ω), let us consider that for the mentioned Sobolev space, i.e., 𝐻0

1(Ω), it is 

necessary that the test functions 𝜙 satisfy 𝜙(𝒙, 𝑡) = 0 for all 𝒙 ∈  𝜕Ω\Γ, and 𝑡 ∈ (0, 𝑇). And yet, 

how 𝜙 ∈ 𝐻0
1(Ω), 𝜙 is a function that belongs to 𝐿2(Ω) and has distributional derivatives in 𝐿2(Ω), 

and satisfies the Dirichlet boundary conditions 𝜙(𝒙, 𝑡) = 0 for all 𝒙 ∈  𝜕Ω\Γ, and 𝑡 ∈ (0, 𝑇). 
Decomposing 𝜙 as the sum of a part that respects the Dirichlet boundary conditions (𝜙𝐷) and a part 

that is null in the parts of 𝜕Ω\Γ(𝜙𝐷): 

 

𝜙(𝒙, 𝑡) = 𝜙𝐷(𝒙, 𝑡) + 𝜙0(𝒙, 𝑡). 
 

Therefore, 𝜙𝐷(𝒙, 𝑡) = 𝜙(𝒙, 𝑡) for all 𝒙 ∈  𝜕Ω\Γ and 𝑡 ∈ (0, 𝑇); and still, 𝜙0(𝒙, 𝑡) = 0, for all 

𝒙 ∈  𝜕Ω\Γ and 𝑡 ∈ (0, 𝑇). Thus, it is important to note that 𝜙𝐷 respects the Dirichlet boundary 

conditions, and that 𝜙𝐷 ∈ 𝐻0
1(Ω). Therefore, when performing variation with test functions 

𝜙(𝒙, 𝑡) = 0 for all 𝒙 ∈  𝜕Ω\Γ and 𝑡 ∈ (0, 𝑇), we can ensure that the variations respect the Dirichlet 

boundary conditions. It is concluded then, that, when choosing test functions 𝜙 that belong to 𝐻0
1(Ω) 

and that satisfy 𝜙(𝒙, 𝑡) = 0 for all 𝒙 ∈  𝜕Ω\Γ and 𝑡 ∈ (0, 𝑇), we prove that the Dirichlet boundary 

conditions are preserved when applying the variational formulation to the incompressible 

Schrödinger equation. ∎ 

When applying the Robin boundary condition to the variation 𝜙, this implies that the part 𝜙𝐷 

(that respects Dirichlet) will only contribute to the term 𝑎(𝒙, 𝑡)𝜙 in the boundary condition. The 

part 𝜙0 will not contribute to the term 𝑎(𝒙, 𝑡)𝜙, because it is null in the parts of 𝜕Ω\Γ. Thus, the 

appropriate choice of 𝜙 ensures that the Dirichlet boundary condition is satisfied, and the Robin 

boundary condition is applied consistently across variations. Therefore, using test functions 𝜙, that 

belong to 𝐻0
1(Ω) and satisfy 𝜙(𝒙, 𝑡) = 0 for all 𝒙 ∈  𝜕Ω\Γ and 𝑡 ∈ (0, 𝑇), we can ensure that the 

Robin boundary conditions are respected when applying the variational formulation to the 

incompressible Schrödinger equation. ∎ 

Now, regarding the variational formulation of the energy functional E[𝜓], Eq. (2.2.1), 

involves obtaining the variational with respect to the test functions 𝜙, that belong to Sobolev space 

𝐻0
1(Ω). The variational is a directional derivative of the energy functional along a test function 𝜙. 

Let's demonstrate this mathematically. Given the energy functional, in Eq. (2.2.1), the variational 

E[𝜓; 𝜙] is defined as 
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E′[𝜓; 𝜙] = lim
𝜖→0

𝐸[𝜓 + 𝜖𝜙] − 𝐸[𝜓]

𝜖
, 

 

(2.2.2) 

here, replacing 𝜓 + 𝜖𝜙 in 𝐸[𝜓], we have: 

E[𝜓 + 𝜖𝜙] = ∫ (
1

2
|∇(𝜓 + 𝜖𝜙)|2 + 𝑉(𝒙, 𝑡)|𝜓 + 𝜖𝜙|2) 𝑑𝒙 ,

Ω

 (2.2.3) 

the expression for 𝐸[𝜓] is the same as the original in Eq. (2.2.1). Now, subtracting 𝐸[𝜓] of 

𝐸[𝜓 + 𝜖𝜙] and dividing by 𝜖, we obtain:  

E′[𝜓; 𝜙] = lim
𝜖→0

1

𝜖
∫ (

1

2
|∇(𝜖𝜙)|2 + 𝑉(𝒙, 𝑡)|𝜖𝜙|2) 𝑑𝒙 .

Ω

 (2.2.4) 

Simplifying Eq. (2.2.4), obtain: 

E′[𝜓; 𝜙] = lim
𝜖→0

1

𝜖
∫(∇𝜙 ∙ ∇𝜓 + 𝑉(𝒙, 𝑡)𝜙𝜓)𝑑𝒙 .

Ω

 (2.2.5) 

Therefore, the variation of E[𝜓] in relation to 𝜙 is given by 

E′[𝜓; 𝜙] = ∫(∇𝜙 ∙ ∇𝜓 + 𝑉(𝒙, 𝑡)𝜙𝜓)𝑑𝒙 ,

Ω

 (2.2.6) 

this is the expression for the variational of the energy functional 𝐸[𝜓]. This variational is 

fundamental in the variational formulation of the incompressible Schrödinger equation, where we 

seek to minimize 𝐸[𝜓] subject to appropriate and mentioned boundary conditions. Thus, the solution 

𝜓 minimizes energy functional E[𝜓] in Sobolev space 𝐻0
1(Ω). ∎ 

We now present the Lax-Milgram Theorem, a central component in the present research, 

offering a robust theoretical framework to guarantee the existence and uniqueness of solutions to 

the incompressible Schrödinger equation with heat transfer. This is particularly significant when the 

equation is formulated within the Sobolev space 𝐻0
1(Ω). and subjected to Dirichlet and Robin 

boundary conditions. This indispensable tool in functional analysis establishes critical conditions 

for solving the associated variational problem. It guarantees the continuity of the bilinear form and 

imposes limits that govern the behavior of the solution in relation to the test functions. 

The need to use the Lax-Milgram Theorem (see more, in Showalter (2013) and Yosida 

(2012)), arises from the complexity inherent to the proposed equation. The intricate interplay 

between fluid dynamics, heat transfer and boundary conditions require mathematical treatment. The 

application of the Lax-Milgram Theorem not only guarantees the existence and uniqueness of 

solutions, but also provides reliability and validity to the mathematical modeling process. This 

reinforcement of theoretical foundations increases the credibility of research in the fields of 

mathematical physics and fluid dynamics. 

 

Lax-Milgram Theorem. Consider the variational problem: finding 𝜓 ∈ 𝐻 such that 𝒶(𝜓, 𝜙) =
𝐿(𝜙), ∀𝜙 ∈ 𝐻, where 𝐻 is a Hilbert space, 𝒶 is a continuous bilinear form in 𝐻 × 𝐻 and 𝐿 is a 

continuous linear form in 𝐻. If for all 𝜙 ∈ 𝐻, there is a constant 𝑐 > 0 such that |𝒶(𝜓, 𝜙)| ≤
𝑐‖𝜙‖𝐻, so, the variational problem has a unique solution 𝜓 ∈ 𝐻. 

 

Proof. Now, we apply the Lax-Milgram Theorem to the variational formulation of the 

incompressible Schrödinger equation with heat-transfer in Sobolev space 𝐻0
1(Ω). Suppose that the 

bilinear form associated with the problem is denoted by 𝒶(∙,∙) and the linear form by 𝐿(∙). Assuming 

that, the incompressible Schrödinger equation with heat-transfer has been formulated in a variational 

manner, resulting in finding 𝜓 ∈ 𝐻0
1(Ω), such that 𝒶(𝜓, 𝜙) = 𝐿(𝜙), ∀𝜙 ∈ 𝐻0

1(Ω). So, the 
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variational problem has a single solution 𝜓 ∈ 𝐻0
1(Ω) according to the Theorem. Now, let's analyze 

the continuity of the bilinear form 𝒶(𝜓, 𝜙) = ∫ (
1

2𝑖ℏ
∇𝜓 ∙ ∇𝜙 + 𝑉(𝒙, 𝑡)𝜓𝜙) 𝑑𝒙.

Ω
 The continuity of 

the bilinear form is related to the existence of a constant 𝑐 > 0 such that |𝒶(𝜓, 𝜙)| ≤ 𝑐‖𝜙‖𝐻0
1(Ω), 

where ‖𝜙‖𝐻0
1(Ω) is the norm in Sobolev space 𝐻0

1(Ω). It is worth noting that, the term 
1

2𝑖ℏ
∇𝜓 ∙ ∇𝜙 

involves the dot product of two gradients, but now multiplied by 
1

2𝑖ℏ
. We can use the Cauchy-

Schwarz inequality to state that  

|
1

2𝑖ℏ
∇𝜓 ∙ ∇𝜙| ≤

1

2|ℏ|
‖∇𝜓‖𝐿2(Ω)‖∇𝜙‖𝐿2(Ω), (2.2.7) 

the term 𝑉(𝒙, 𝑡)𝜓𝜙 involves multiplying the potential 𝑉 by functions 𝜓 and 𝜙. The presence of 

potential 𝑉 can introduce additional challenges into the analysis, especially if 𝑉 is not limited. 

Considering these analyses, we can state that the continuity of the bilinear form will depend on the 

regularity of the functions involved, especially the spatial derivatives. To ensure continuity, the 

functions 𝜓 and 𝜙 belong to Sobolev space 𝐻0
1(Ω). We conclude, then, that the variational problem 

has a single solution 𝜓 ∈ 𝐻0
1(Ω). Digite a equação aqui. 

 

3. Conclusion 

 

In summary, the comprehensive mathematical analysis and variational formulation presented 

for the incompressible Schrödinger equation, incorporating Dirichlet and Robin boundary 

conditions within the Sobolev space 𝐻0
1(Ω), establish a robust theoretical framework for 

investigating the dynamics of isotropic fluids interacting with an isothermal immersed geometry. 

The application of the Minimum Energy Principle unequivocally demonstrates the existence of a 

unique solution, residing in the Sobolev space 𝐻0
1(Ω), which represents a stable equilibrium state 

for the incompressible Schrödinger flow. This not only underscores the coherence between quantum 

physics and fluid dynamics at a theoretical level but also validates the presented SST Theorem. The 

amalgamation of functional analysis, variational formalization, and consideration of boundary 

conditions forms a solid foundation, fostering a deeper understanding of this intricate interaction. 

However, it is crucial to acknowledge that the practical implementation of these theoretical concepts 

demands a meticulous approach, considering the validity of simplifications and adapting to more 

complex scenarios in fluid dynamics. This conclusion underscores the imperative nature of 

interdisciplinary collaboration between quantum physics and fluid mechanics, offering a more 

holistic perspective on physical phenomena involving isotropic fluids and their intricate interplay 

with isothermal immersed bodies (geometries). 

 

References 

 

Brezis, H., & Brézis, H. (2011). Functional analysis, Sobolev spaces and partial differential 

equations (Vol. 2, No. 3, p. 5). New York: Springer. 

https://link.springer.com/book/10.1007/978-0-387-70914-7 

Evans, L. C. (2022). Partial differential equations (Vol. 19). American Mathematical Society.  

Medeiros, L. A., & Miranda, M. M. (2000). Espaços de Sobolev. IM-UFRJ, Rio de Janeiro, RJ, 

Brasil. https://www.im.ufrj.br/images/documentos/editora-im/eBook_LA_Sobolev.pdf 

Santos, R. D. C. dos, & Sales, J. H. de O. (2023). Treatment for regularity of the Navier-Stokes 

equations based on Banach and Sobolev functional spaces coupled to anisotropic viscosity for 

analysis of vorticity transport. The Journal of Engineering and Exact Sciences, 9(8), 16656–

01e. https://doi.org/10.18540/jcecvl9iss8pp16656-01e 

Santos, R.D.C. dos, & Sales, J.H.O. (2023). Turbulent Flow Analysis with Banach and Sobolev 

Spaces in the LES Method Incorporating the Smagorinsky Subgrid-Scale Model. The Journal 

https://link.springer.com/book/10.1007/978-0-387-70914-7
https://www.im.ufrj.br/images/documentos/editora-im/eBook_LA_Sobolev.pdf
https://doi.org/10.18540/jcecvl9iss8pp16656-01e


The Journal of Engineering and Exact Sciences – jCEC 

8 

of Engineering and Exact Sciences, 9(10), 16534–01e. 

https://doi.org/10.18540/jcecvl9iss10pp16534-01e 

Santos, R.D.C.; Silva, A.R. (2023). A Mathematical analysis of incompressible turbulent flow: 

Exploring Smagorinsky sub-grid model with asymptotic behavior. Journal of Engineering 

Research, v. 3, p. 1-13, 2023. 10.22533/at.ed.3173352319109 

Showalter, R. E. (2013). Monotone operators in Banach space and nonlinear partial differential 

equations (Vol. 49). American Mathematical Soc. 
Teschl, G. (2014). Mathematical methods in quantum mechanics (Vol. 157). American 

Mathematical Soc. 

Yosida, K. (2012). Functional analysis (Vol. 123). Springer Science & Business Media. 

 

 

https://doi.org/10.18540/jcecvl9iss10pp16534-01e
file://///Users/romulo/Desktop/10.22533/at.ed.3173352319109

