
The Journal of Engineering and Exact Sciences – jCEC, Vol. 10 N. 03 (2024) 
journal homepage: https://periodicos.ufv.br/jcec 

eISSN: 2527-1075 
ISSN: 2446-9416 

1 

Assessing the relative contribution of various anthropogenic sources to 

atmospheric methane in Rivers State, Nigeria: A multi-criteria decision 

analysis approach 

Article Info: 

Article history: Received 2024-01-11 / Accepted 2024-04-10 / Available online 2024-04-23 

doi:  10.18540/jcecvl10iss3pp18264 

 

 
Onwusameka Sonny Ogbowuokara  

ORCID: https://orcid.org/0000-0002-1220-1008  

Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, 

Choba, Rivers State, Nigeria. 

E-mail: ogbowuokara@gmail.com  

Tambari Gladson Leton 

ORCID: https://orcid.org/0009-0006-4106-0925  

Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, 

Choba, Rivers State, Nigeria. 

E-mail: tamleton2@gmail.com  

John Nwenearizi Ugbebor 

ORCID: https://orcid.org/0009-0007-4122-1861  

Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, 

Choba, Rivers State, Nigeria. 

E-mail: john.ugbebor@uniport.edu.ng 

Ochuko Felix Orikpete 

ORCID: https://orcid.org/0000-0001-8020-2195  

Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, 

Choba, Rivers State, Nigeria. 

E-mail: orikpeteochuko@gmail.com  

  

Abstract  

Methane is a significant greenhouse gas, with a global warming potential many times greater than 

carbon dioxide over a 20-year period. Its release from sources like landfills, agriculture, and the 

energy sector exacerbates climate change, making it crucial to monitor and reduce methane 

emissions to mitigate global warming and achieve climate goals. This research utilized the Multi-

Criteria Decision Analysis (MCDA) method, specifically the Analytic Hierarchy Process (AHP), to 

analyze the sources of atmospheric methane in Rivers State, Nigeria. It addressed the challenge of 

assessing the contributions of various anthropogenic sources such as fossil fuels, landfills, 

agriculture, wetlands, and oceans to atmospheric methane emissions. By incorporating expert 

opinions, literature reviews, and surveys, the study constructed a hierarchical model to prioritize 

these sources based on their impact. Findings identified fossil fuels and landfills as the main 

contributors. The study demonstrated MCDA's effectiveness in environmental analysis and 

provided a replicable framework for similar assessments in other regions, contributing to targeted 

emission mitigation and policy formulation efforts.  

Keywords: Atmospheric methane, Multi-Criteria Decision Analysis (MCDA), Analytic Hierarchy 

Process (AHP), Anthropogenic methane sources, Emissions mitigation. 
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1. Introduction 

Methane is a potent greenhouse gas (GHG) that significantly contributes to climate change 

(Carranza et al., 2018; Lorente et al., 2021; Ogbowuokara et al., 2023). It has a global warming 

potential (GWP) that is much higher than that of carbon dioxide (Thakur & Solanki, 2022). Methane 

emissions have a short atmospheric lifetime, but they have a strong warming effect during that time 

(Mar et al., 2022). Methane is released into the atmosphere through various sources, including 

natural processes, human activities, and industrial processes (Dlugokencky et al., 2011). 

Agricultural activities also contribute to methane emissions (Li et al., 2022). Methane oxidizes to 

form ground-level ozone (O3) that is itself a greenhouse gas and a pollutant that impair health and 

damage vegetation (Heimann et al., 2020; Sarofim et al., 2017).  

Methane, being over 25 times more effective than carbon dioxide at trapping heat in the 

atmosphere over a 100-year period, has profound implications for global warming (Bodunde, 2023). 

Research has consistently shown that even minor fluctuations in atmospheric methane source 

contributions can lead to substantial changes in global temperatures. These temperature variations, 

in turn, affect sea levels, weather patterns, and biodiversity (Dean et al., 2018). Nisbet et al. (2019) 

examined the rapid rise in atmospheric methane levels during the period 2014-2017, observing 

growth rates not seen since the 1980s. According to the authors, the implications of this surge were 

significant; they suggested that if such growth rates continued in the subsequent decades, the goals 

of the Paris Agreement could have been potentially jeopardized.  

Numerous studies in the past have developed various methodologies to determine the different 

sources' relative contributions to atmospheric methane levels. Ozkaya et al. (2007) developed a 

neural network model to predict methane fractions in landfill gas from bioreactors, using data from 

the Odayeri Sanitary Landfill in Istanbul, Turkey. The model used various leachate parameters as 

inputs and highlighted the efficiencies of anaerobic conversion, with a focus on optimizing the 

neural network's architecture and discussing its potential improvements. 

Wilson et al. (2016) assessed atmospheric methane concentrations over the Amazon Basin 

using a 3-D model, emission models, and observations from biweekly flights, finding that the region 

significantly contributed to global methane emissions and suggesting that factors like temperature 

variations might have impacted microbial emission rates. Another study by Allen (2016) explored 

new analytical methods for attributing past methane emissions to specific sources, using high-

resolution methane measurements and chemical mass balance methods to enhance the 

understanding and quantification of historical methane emission sources.  

The study by Jones et al. (2021) focused on investigating diffuse methane emissions in 

Indianapolis, USA, using a network of solar-tracking FTIR spectrometers and an innovative 

inversion method. This approach, combining a Lagrangian transport model with Bayesian inversion, 

revealed that the city's diffuse methane emissions were significantly higher than bottom-up 

estimates, accounting for about half of the total urban emissions. Naus et al. (2023) analyzed 

methane emissions from Algeria's largest gas field, Hassi R’Mel, and the oil-production area Hassi 

Messaoud in 2020. Using high-resolution Sentinel-2 and TROPOMI data, they identified 

superemitters and diffuse area sources, revealing significant discrepancies between actual emissions 

and national reporting, and emphasizing the need for targeted mitigation efforts in both oil and gas 

production sectors. 

Xia et al. (2023) embarked on a detailed assessment of methane emissions from eight 

significant municipal solid waste landfills in southeast Michigan, USA. By leveraging advanced 

mobile monitoring techniques, their study aimed to capture the spatial and temporal fluctuations in 

methane levels. Results revealed pronounced methane concentrations on the downwind sides of the 

landfills, peaking at 38 ppm in mornings. Feng et al. (2022) investigated the record-breaking global 

atmospheric methane growth rates for 2020 and 2021, the highest since 1983. The study identified 

a strong correlation between tropical methane emissions and groundwater, hinting at microbial 

sources playing an influential role. The study concluded that the majority of the methane rise in 

2020 and 2021 was due to enhanced emissions. Zimmermann et al. (2018) employed the EMAC 
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atmospheric chemistry-general circulation model to investigate the global budget and trends of 

atmospheric methane from 1997 to 2014. Drawing from data sources such as AGAGE, NOAA 15 

surface stations, and CARIBIC flights, the study observed a transient decline in methane increase 

between 1997-1999, followed by stagnation until 2006, and a sudden rise post-2006. The research 

identified the necessity for an additional emission of 28.3 Tg/y methane between 2007-2013 to 

account for observed growth, suggesting major contributions from tropical wetlands (62.6%) and 

North American shale gas emissions (37.4%).  

Roberts et al. (2022) emphasized the importance of monitoring methane especially in regions 

with industrial activities, due to its significant impact on climate change. While the TROPOspheric 

Monitoring Instrument (TROPOMI) on the Sentinal-5P satellite provides daily global methane 

measurements, cloud cover often limits data accuracy. To address this limitation, the study 

introduced a statistical model utilizing nitrogen dioxide data from TROPOMI to predict methane 

columns. This approach increased the observed coverage of the Permian basin from 16% to 88% in 

2019.  

Nickl et al. (2020) investigated methane emissions from coal mining in the Upper Silesian 

Coal Basin, Poland. Using the CoMet 1.0 campaign's measurements from May-June 2018, they 

found the basin emits about 502 kt of methane annually from ventilation shafts. Using the MECO(n) 

model, they were able to accurately forecast methane emissions and patterns up to four days. The 

study underscored the significance of precise models and measurements in understanding methane's 

role in climate change. Moreover, Toha and Rahman (2023) conducted a study comparing a 

predictive model with physical measurements for estimating methane emissions at two landfill sites 

in Dhaka. They concluded that the predictive model was more effective for this purpose.  

Lunt et al. (2019) and Nisbet et al. (2022) used aircraft campaigns and satellites to infer 

atmospheric methane emissions from Africa and concluded that in-situ measurements were scarce 

in Africa. Lunt et al. (2019) also found that linear emissions trend accounted for around one-third 

of the global emissions growth rate during the period 2010 and 2016. Consequently, Nisbet et al. 

(2022) informs that there is currently no methane data in Africa and that in order to balance the 

global methane budget isotropically, understanding African emissions is critically important. It 

follows therefore that predictive research on atmospheric methane source contributions is lacking 

in Africa. Also, the Global Methane Assessment of the United Nations Environment Programme 

and Climate and Clean Air Coalition (2021) maintains that methane inventory does not exist in 

Nigeria. 

The estimation of the relative contributions of various sources to atmospheric methane 

involves a diverse array of modeling approaches tailored to specific contexts. Previous research in 

methane emissions estimation has predominantly utilized statistical regression and machine learning 

techniques. Key examples include linear univariate and multiple regression equations (Barros et al., 

2011), random forests (Mosher et al., 2015), linear mixed models (Niu et al., 2018), probabilistic 

time series models (Rehman et al., 2021), and predictive models using nitrogen dioxide data 

(Roberts et al., 2022). Additionally, remote sensing methods like Raman lidar technology 

(Veselovskii et al., 2019) and atmospheric chemistry-general circulation models (Zimmermann et 

al., 2018) have been instrumental. Machine learning models (Mehrdad et al., 2021), including 

artificial neural networks, adaptive neuro-fuzzy inference system, and support vector regression and 

decision tree methods (Li et al., 2020), modified grey radial basis function neural network model 

(Yang et al., 2020), 3-D modeling approach (Heimann et al., 2020), detailed site-level methane 

emission estimation model (Cardoso-Saldana & Allen, 2020), as well as Monte Carlo simulations 

(De Faria et al., 2015), have also been applied.  

Fiehn et al. (2023) focused on quantifying and analyzing the isotopic signatures of methane 

emissions in the Upper Silesian Coal Basin, using airborne and ground-based sampling during the 

CoMet campaign. This comprehensive analysis enabled differentiation between fossil and biogenic 

methane sources in the region, revealing significant variations in isotopic signatures among different 

coal mine shafts and highlighting the importance of δ2H-CH4 observations in methane source 

apportionment. 
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Zhang et al. (2023) conducted an in-depth analysis of methane emissions from coal mining in 

Shanxi Province, China. The research divided the region into different zones, monitored methane 

emissions from various types of coal mines, and predicted future emissions based on coal production 

and emission factors, highlighting the significant contribution of these mines to the region's total 

methane emissions. 

Moreover, numerous studies prior to ours have also applied Multi-Criteria Decision Analysis 

(MCDA) methods in the context of environmental research, exploring various aspects and 

challenges in this field. Huang et al. (2011) conducted a comprehensive review of over 300 papers 

published between 2000 and 2009 on the application of Multi-criteria Decision Analysis (MCDA) 

in environmental projects. This review classified the papers based on environmental application 

areas, decision types, and MCDA methods used, finding a significant increase in the use of MCDA 

tools across various environmental contexts over the decade.  

Mustajoki and Marttunen (2017) analyzed 23 multi-criteria decision analysis software tools 

to determine their suitability for environmental planning processes. The research focused on 

assessing the features of these tools, how they address environmental problem-solving needs, and 

their utility in aiding practitioners with systematic analysis. It also aimed at identifying optimal 

software for environmental cases and highlighting innovative software development solutions. 

While the study by Ogonowski (2022) closely aligns with our research in its use of multicriteria 

decision-making methods, it did not apply these methods in an environmental context, specifically 

for assessing the relative contributions of various sources to atmospheric methane. 

Despite the extensive application of Multi-Criteria Decision Analysis (MCDA) in 

environmental studies, a notable gap identified is that none of these studies have specifically used 

MCDA to assess the relative contributions of various sources to atmospheric methane. To the best 

of the authors' knowledge, this study represents the first comprehensive effort to analyze the relative 

contributions of various sources to atmospheric methane in Rivers State, Nigeria. 

There are numerous Multi-Criteria Decision Analysis (MCDA) methods available that can be 

used for ranking, comparing, and selecting the most significant contributor to atmospheric methane 

in Rivers State, Nigeria based on selected criteria (Abdullah & Adawiyah, 2014; Taherdoost & 

Madanchian, 2023; Wątróbski, et al., 2019). These methods include, but are not limited to, the 

Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS), Preference Ranking Organization METHod for Enrichment Evaluations 

(PROMETHEE), and Elimination and Choice Expressing Reality (ELECTRE). Among these, our 

study has chosen to use the Analytic Hierarchy Process (AHP), as developed by Saaty (1977), for 

its robust and well-established framework in handling complex decision-making processes. 

This paper introduces a novel method for assessing the relative contributions of different 

sources to atmospheric methane levels in Rivers State, Nigeria. The popularity of the Analytic 

Hierarchy Process (AHP) methodology stems from its straightforward approach to determining 

criterion weights and its ability to incorporate diverse data types. This method is particularly 

advantageous in scenarios where defining exact relationships between numerous evaluation criteria 

is impractical or impossible (Chen et al., 2013). The Analytic Hierarchy Process (AHP) is adept at 

handling incomplete or inconsistent data through the use of matrix algebra. This involves employing 

eigenvalue-based methods or similar computational techniques to generate weights, overall scores, 

and consistency measures, as explained by Ishizaka and Lusti (2006). This capability makes AHP a 

robust tool for multi-criteria decision-making even in scenarios with challenging data quality.  

However, AHP has limitations, particularly in handling the uncertainty and imprecision 

associated with decision-makers' perceptions. It provides qualitative sensitivity measures by ranking 

input factors in order of importance but does not quantify the extent to which one factor is more 

important than another (Chen et al., 2013). Further limitations of the method include its reliance on 

subjective judgments, potentially introducing bias. The method can be unwieldy when dealing with 

numerous criteria or alternatives. Additionally, maintaining consistency in pairwise comparisons is 

often difficult, particularly in more complex scenarios where multiple factors interact in nuanced 

ways (Hontoria & Munier, 2021). 
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Assessing the relative contributions of different sources to atmospheric methane is of 

paramount importance, especially in regions experiencing rapid industrial and agricultural growth. 

Rivers State, Nigeria, a region characterized by its bustling urban centres, extensive agricultural 

activities, and significant fossil fuel reserves, stands at the forefront of such areas where changes in 

methane concentrations can have pronounced environmental impacts. Rivers State, located in the 

southern part of Nigeria, occupies a prominent position in the Niger Delta region. It is bounded to 

the north by Imo, Abia and Anambra States, to the east by Akwa Ibom State, to the west by Bayelsa 

and Delta states, and to the south by the Atlantic Ocean. It is geographically positioned at 

coordinates 4°45′N 6°50′E. The state covers an area of approximately 11,077 square kilometres. 

Rivers State is crisscrossed by several rivers and creeks, the most prominent being the River Niger 

and its tributary, the River Benue. This intricate network of water bodies has given the state its name 

and plays a significant role in its economic and socio-cultural life (Akintola et al., 2021). 

Assessing the relative contributions of different sources to atmospheric methane in Rivers 

State, Nigeria, is a multifaceted task that requires a multi-criteria approach. This complexity arises 

because a single factor cannot adequately measure these contributions. Multi Criteria Decision 

Analysis (MCDA) is an effective tool for this purpose. MCDA methods are designed to assess the 

importance of various criteria in decision-making processes, particularly when there are multiple 

alternatives to consider. These methods offer structured algorithms for ranking decision options and 

identifying the most suitable one (Labib et al., 1997). In recent years, MCDA has gained popularity 

for its effectiveness in addressing complex decision-making scenarios in various fields, including 

environmental studies (Bottero et al., 2011; Hill et al., 2005; Huang et al., 2011).  

In this paper, we will utilize the Multi Criteria Decision Analysis (MCDA) method to evaluate 

the varying contributions of different sources to atmospheric methane in Rivers State, Nigeria. 

Specifically, the Analytic Hierarchy Process (AHP), developed by Saaty (1977), will be employed 

to determine weighting factors. AHP is particularly suited for complex problems where multiple 

criteria are involved and is effective in measuring and analyzing preferences. This method's 

application is well-documented in relevant literature (Gompf et al., 2021; Ogonowski, 2022; 

Wolnowska & Konicki, 2019), underlining its suitability for our analysis. 

The aim of this paper is to demonstrate the application of the Analytic Hierarchy Process 

(AHP), a multicriteria decision-making method, in evaluating the relative contributions of various 

sources to atmospheric methane in Rivers State, Nigeria. 

 

2. Methods 

 

2.1 System sketch and dynamics analysis 

The methodology initiated with a system sketch, identifying key variables and scenarios 

reflective of the dynamic nature of atmospheric methane production sources. This step was crucial 

in understanding the different factors influencing methane emissions. 

The selected variables were then used for the initial characterization of the system and its 

dynamics. Also, at the level of the system structural analysis, the variables were evaluated from 

their impact relationships with the use of relative values (0-3 scale), based on theory, literature, 

information, and expert experience. The Cause is the row variable’s influence on the column 

variable, while the Effect is the column variable’s potential change due to the row variable. To 

determine the variables that were highly active and that influence other variables or are in turn 

influenced by other variables, a cause-effect plot and relationships diagram were constructed. As a 

result, a positive and negative feedback loops were also constructed to show the degree of stability 

of the system. 
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2.2 Methane predictive index (MPI) 

 

Our study adopted a structured approach using Multi-Criteria Decision Analysis (MCDA) to 

systematically evaluate multiple factors influencing atmospheric methane sources. This method, 

informed by in-depth reviews of key literature such as Keeney and Raiffa (1993), Malczewski and 

Rinner (2015), Persson (2014), and Scholz and Tietje (2002), enabled a sequential analysis of 

various conditions contributing to methane emission sources. 

 

2.3 Atmospheric methane source modeling 

We also formulated the model objective, identified and structured the hierarchy of the criteria, 

assigned weights to the criteria, and standardized the range of the criteria using utility. We then 

aggregated criteria utility and criteria weights into a single resulting atmospheric methane predictive 

index, which corresponds to the model objective. Lastly, we undertook model result evaluation and 

presentation. This entire workflow is illustrated in Figure 1. 

 

 
Figure 1 - Workflow of atmospheric Methane Predictive Index (MPI). Adapted from 

Keeney and Raiffa (1993), Malczewski and Rinner (2015), Persson (2014), and Scholz and 

Tietje (2002). 

 

2.4 Criteria identification 

We scoured information from diverse sources such as conceptual reasoning, knowledge, 

expert judgment, literature (journals and books), and surveys. We extensively consulted scientific 

databases like PubMed, ScienceDirect, Scopus, and Google Scholar for relevant journals and books. 

We utilized information acknowledging Rivers State, Nigeria, as a major crude oil and gas 

production zone, known for its open landfills, mangrove swamps, flood plains, and oceanic 

proximity. These factors contributed to our understanding of methane emissions. We reinforced this 

knowledge with studies like Aregbe (2016) and Anosike et al. (2016), highlighting the significant 

methane production from the fossil fuel sector in the Niger Delta. Additionally, we referred to 

reports by World Bank (2023), Obanijesu and Macaulay (2009), Thomas et al. (2014), and Kirschke 

et al. (2013) for insights on methane emissions from various sources, including urban areas and 

wetlands. Reay et al. (2018) was also consulted for information on oceanic methane emissions. 

From the literature, we identified several criteria known to be involved in the emission of 

atmospheric methane and then excluded those criteria perceived to have an insignificant impact on 

the process and retained agriculture, fossil fuel, ocean, wetland, and landfills. In this work, the ocean 

was assigned an order of 1, while agriculture, landfills, wetlands, and fossil fuel were assigned 

successively higher orders. To facilitate further modeling, criteria were parameterized, organized 

into a hierarchy, and weighted after selection and exclusion. 

 

2.5 Weighting procedure 
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We set up pairwise comparison matrices using the Analytical Hierarchical Process (AHP) 

methodology (Saaty, 2008, 2001, 1977). The objective of this methodological approach was to 

pinpoint and focus on the key factor contributing most significantly to atmospheric methane 

emissions. Five factors were identified. For each factor, weights (w) were assessed based on their 

respective relative importance. Weights (w) were assigned to each factor according to their 

importance to the question or issue being considered (pairwise matrix comparisons). This 

assignment relied on multiple pathways, such as expert judgment and actual data. The central 

question revolved around the general importance of each factor. The analysis pinpointed the most 

dominant scenario, identifying it as the key contributor to the atmospheric methane levels within 

the system. When there are evaluation criteria or objectives, decision-makers must conduct pairwise 

comparisons, with scores determined by the investigator's subjective evaluation of each factor's 

importance. 

Subsequently, we derived criteria weights from the pairwise comparison matrix. The 

eigenvector from this matrix approximates the Eigen Vector (and Eigen Value) of a reciprocal 

matrix. The Eigen Vector calculation involved 1) summing each column of the reciprocal matrix of 

the pairwise comparison matrix and 2) dividing each matrix value by its column's sum. We then 

normalized the relative weight so that each column's sum equaled 1. The normalized principal Eigen 

Vector was acquired by averaging the values across the rows. 

 

Table 1 - The rating scale used in AHP weighting (Adapted from Saaty, 2008, 2001, 1994, 

1990, 1980 & 1977). 

Relative Importance score Definition Explanation 

1 Equally important Two factors contribute 

equally to the objective. 

3 Moderately more    

important 

Experience and 

judgment slightly favour one 

criteria over another. 

5 Essential or strongly 

more important 

Experience and 

judgment strongly favour one 

criteria over another. 

7 Demonstrated 

importance or Very strongly 

more important 

One criteria is favoured 

very strongly over another; its 

dominance demonstrated in 

practice. 

9 Absolute importance or 

Extremely more important 

The evidence favouring 

one criteria is overwhelming. 

2, 4, 6, 8 Intermediate values 

between the two adjacent 

judgments 

When compromise is 

needed. 

Reciprocal of above 

rationals 

The Members of each 

pairwise comparisons have 

reciprocal values 

By definition. 

Ratios arising from the 

scale 

- If consistency were to 

be forced by obtaining n 

numerical values to span the 

matrix. 

 

 

First, Consistency Indexes (C.I.) were calculated for the weighting matrix and a random 

matrix using Equation 1. Following this, Consistency Ratios (C.R.) were then computed using 

Equation 2 to ensure consistency in the weighting process. 
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The C.I is given by: 

 

𝐶. 𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                                                                                                          (1) 

In which 

 

λmax = Principal eigenvalues (i.e., the product of the matrix and the unadjusted weight 

 vectors), and 

 

n = number of rows or columns in the weighting matrix. 

 

𝐶. 𝑅 =
𝐶.𝐼 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥

𝐶.𝐼 𝑜𝑓 "𝑟𝑎𝑛𝑑𝑜𝑚 𝑚𝑎𝑡𝑟𝑖𝑥"
                                                                                                                     (2) 

 

2.6 Criteria quantification and standardization   

Empirical data were used to quantify and standardize the criteria. However, when these were 

not available, especially in the case of the ocean, theoretically derived data or conceptual 

information were utilized. The observed criteria determined the effect on the atmospheric methane 

source contributions. How did the changes impact the question, as defined in the scenarios? In other 

words, how did the changes influence the atmospheric methane source contributions in Rivers State? 

To make these indirectly comparable, single criterion utility functions standardized all originally 

dissimilar criteria into a common 0-1 utility range. 

 

2.7 Multi-criteria decision analysis (MCDA) 

Following the standardization process, a score of '0' signified no fulfillment, whereas '1' 

represented optimal fulfillment of individual model criteria pertinent to methane prerequisites. 

Predictive modeling was thus advanced, utilizing MCDA through the equation: 

 
∑ 𝑤𝑖 × 𝑢𝑖 = 𝑇𝑜𝑡𝑎𝑙 "𝑢𝑡𝑖𝑙𝑖𝑡𝑦"𝑖                                                                                                                 (3) 

 

Here, the "utility," ui is a unit-less likelihood measure, spanning from 0 (minimum) to 1 

(maximum). Each parameter received a weight (w) based on its relevance. Parameters were 

evaluated in pair-wise or matrix comparisons, encapsulated as scenarios, culminating in the derived 

"utility". This utility gauged the parameter's influence on specific site conditions, assuming values 

within the 0-1 range. Numerous scenarios were analysed to ascertain their respective utilities. The 

scenario with the highest utility pinpointed the parameter with the highest potential for methane 

emission, hence serving as the optimal choice for climatic amelioration. 

Saaty (2008, 1977) recognized that AHP, while robust, might entertain inconsistencies due to 

redundancies. To address this, an inconsistency assessment metric was introduced. The 

inconsistency ratio (CR) gauges the logical consistency in pair-wise comparisons (CI) against a 

random consistency index (RI), with RI defined as the average CI of randomly generated matrices. 

The corresponding algorithms for CR and CI are: 

 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                                                                (4) 

 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                                                                                                          (5) 

 

Where λmax represents the maximum eigenvalue of the judgement matrix and n denotes the 

comparison matrix's size, which for this study is 5. In the context of the Poisson distribution, λ 

signifies the mean number of events in a predefined temporal or spatial interval, ranging between 

0.0 and 1.0. The value of 0 indicates that there is no gain in the use of the independent variable to 
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predict the dependent variable. That is, the independent variable does not predict the dependent 

variable in any way. The random index of 0.9999 was used for five factors of the normalized matrix. 

 

2.8 Model reliability   

Assessing the reliability of a model is crucial to ensure that the results and predictions it yields 

are consistent and dependable. In this study, the reliability of the model was determined using the 

cause-effect matrix with a Consistency Index (CI) and Consistency Ratio (CR) for validation. The 

model is reliable when it has a CR of less than 0.1. This recommendation aligns with the conditions 

set forth by Saaty (1977). The model is not reliable and cannot be relied upon if the values of CR is 

greater than 0.1. Through this rigorous testing process, we aimed to ensure that the model's outputs 

are both accurate and trustworthy for the purposes of our research. 

 

2.9 Result validation and verification    

Establishing the credibility of a model's outcomes is paramount for any scientific 

investigation. To affirm the robustness and accuracy of our model's results, a multi-faceted approach 

was undertaken. First, outcomes were meticulously juxtaposed against established literature, 

drawing comparisons with findings from previous research in the domain. This helped to discern 

patterns, consistencies, and potential deviations. Additionally, to further enhance the validation 

process, the model's outcomes were compared to data gleaned from various surveys. These surveys, 

conducted over diverse intervals, provided a real-world check on the model's predictions. By 

aligning the method's results with both historical literature and contemporary survey data, we aimed 

to ensure a comprehensive validation and verification process, thereby bolstering confidence in the 

method's applicability and precision. 

 

3. Results and Discussion 

The parameter interactions and their influence on each other are presented in Table 2, 

employing a Relative Impact Scale of 0-3. The cause-and-effect dynamics are shown in Figure 2, 

and the system's stability was evaluated through feedback loops in Figure 3. 

 

Table 2- Variable interactions and their influence on each other. 

Variables AG FF LF OC WE SUMS 

Agriculture (AG) - 1 2 2 3 8 

Fossil Fuel (FF) 3 - 2 3 3 11 

Landfills (LF) 2 0 - 1 2 5 

Ocean (OC) 2 0 0 - 2 4 

Wetland (WE) 1 0 2 1 - 4 

SUMS 8 1 6 7 10 32 
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Figure 2 - Cause and effect plot. 

 

 

 
Figure 3 - Feedback loop plot. 

 

Table 3 shows pairwise comparisons to determine the relative importance of different factors 

influencing atmospheric methane levels.  

 

Table 3 - Matrix of pair-wise comparisons for selected variables. 

Factors Name AG FF LF OC WE 

Agriculture (AG) 0 0.1429 5 0.2 3 

Fossil Fuel (FF) 7 0 0.33 5 3 

3 
2 
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Landfills (LF) 0.2 3 0 3 3 

Ocean (OC) 5 0.2 0.33 0 3 

Wetland (WE) 0.33 0.33 0.33 0.2 0 

SUMS 12.53 3.6729 5.99 8.4 12 

 

Table 4 shows the results from the calculation of normalized matrix and eigenvector. 

 

Table 4 - Normalized matrix and eigenvector calculation. 

Factors Name AG FF LF OC WE 

Agriculture (AG) 0 0.0389 0.8347 0.0238 0.25 

Fossil Fuel (FF) 0.5587 0 0.0551 0.5952 0.25 

Landfills (LF) 0.0160 0.8167 0 0.3571 0.25 

Ocean (OC) 0.3990 0.0545 0.0551 0 0.25 

Wetland (WE) 0.0263 0.0898 0.0551 0.0238 0 

 

Table 5 displays the eigenvector values (sums) derived from the normalized matrix, which 

represent the relative importance or weight of each variable in relation to atmospheric methane 

source contributions. 

 

Table 5 - Normalized matrix eigenvector calculation with total utility values. 

Factors Name Sums Weights (%) 

Agriculture (AG) 1.1474 22.94 

Fossil Fuel (FF) 1.459 29.18 

Landfills (LF) 1.4398 28.79 

Ocean (OC) 0.7589 15.17 

Wetland (WE) 0.195 3.9 

Total 5.0 99.98 

 

Table 6 provides the values of the Random Index (RI) across different matrix sizes.  

 

Table 6 - Value of the random index (RI). 

Random 

Consistency Index  

Matrix  Size 

 1 2 3 4 5 

RI 1 0.9999 1 0.4642 1 

 

The Consistency Index (CI) was determined using the formula: 

 

𝐶𝐼 =
29.18 − 5

5
= 0.0604 

 

Subsequently, the Consistency Ratio (CR) was computed as: 

 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
=

0.0604

0.9999
= 0.0604 

 

In this study, all weighting matrices had a CR value of less than 0.1, which aligns with the 

recommended conditions set forth by Saaty (1977). 

The variables’ interactions and their influence on each other are presented in Table 2. This 

table revealed the intricate interactions among the variables, with fossil fuels showing the highest 

impact sum of 11, indicating its significant influence on other variables. The cause-and-effect 
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dynamics were further illustrated in Figure 2, and the system's stability was evaluated through 

feedback loops in Figure 3, where we noted that negative feedback loops tend to stabilize the system, 

while positive feedback loops, primarily driven by fossil fuels, tend to destabilize it. 

In Table 3, we conducted pair-wise comparisons for atmospheric methane source 

contributions, highlighting the relative importance of each variable. Fossil fuels were found to be 

significantly more influential than agriculture in affecting atmospheric methane. The matrix entries 

represent the relative importance of one variable compared with another in influencing atmospheric 

methane ratio. For example, under the AG column and FF row, a value of 7 suggests that fossil fuels 

are 7 times more influential than agriculture. This was further quantified in the Normalized Matrix 

and Eigenvector Calculation (Table 4), where normalized values or eigenvectors represented the 

relative importance of each variable. The values in this matrix are derived from normalizing the 

original matrix. These normalized values, or eigenvectors, represent the relative importance or 

weight of each variable in relation to atmospheric methane source contributions, as calculated 

through the analytic hierarchy process (AHP). 

The calculated eigenvectors, as displayed in Table 5, provided a clearer understanding of how 

each variable contributes to the overall atmospheric methane ratio, with fossil fuel having the 

highest weight of 29.18%. The table displays the eigenvector values (sums) derived from the 

normalized matrix, which represent the relative importance or weight of each variable in relation to 

atmospheric methane source contributions. The percentages (weights) are calculated by normalizing 

the eigenvector values to add up to 100% (approximately, due to rounding errors). This provides a 

clearer understanding of how each factor contributes to the overall atmospheric methane source 

contributions. 

We also included the Random Index (RI) in Table 6, which assists in evaluating the 

consistency of the pair-wise comparisons. The normalized principal eigenvector indicated the 

predominance of Fossil Fuel (FF), followed closely by Landfills (LF) and Agriculture (AG), as 

shown in Table 5. The RI, based on the random consistency index, affirmed the validity of our 

judgments in the decision-making process. Table 6 provides values of the Random Index (RI) across 

different matrix sizes. The RI values serve as benchmarks for determining the consistency of pair-

wise comparisons in the Analytic Hierarchy Process (AHP). These values assist in evaluating the 

quality and reliability of the judgments made during the decision-making process. 

The normalized principal eigenvector indicates that Fossil Fuel (FF) has the highest weight 

(29.18%), followed by Landfills LF (28.7%), Agriculture AG (22.94%), Ocean OC (15.17%) and 

Wetland WE (3.9%) as shown in Table 5. The RI is based on the random consistency index as 

displayed in Table 6.  

In this study, all weighting matrices had a CR value of less than 0.1, which aligns with the 

recommended conditions set forth by Saaty (1977). 

In this research, we predicted the factors that influence the atmospheric methane source 

contributions in selected areas of Rivers State by using the factors of agriculture, fossil fuel, 

landfills, ocean, and wetland, and then applying the Analytic Hierarchy Process (AHP) method. Our 

study indicated that fossil fuel, with a weight of 29.18%, is the most influential factor for the 

emission of atmospheric methane, followed closely by landfills and agriculture. The negligible 

difference in weights between fossil fuel and landfills highlighted the importance of landfills as 

point sources. The high impact of fossil fuel, as seen in the cause-effect matrix, reaffirms its 

significant role. The Consistency Index (CI) and Consistency Ratio (CR) values suggest a high level 

of consistency and reliability in our findings. 

Therefore, the MCDA (Multi-Criteria Decision Analysis) method, as demonstrated in this 

study, can effectively evaluate atmospheric methane source contributions variability in diverse 

settings. This evaluation is advantageous for swift decision-making, as it does not require a site visit 

and relies on environmental, social, and economic information sources. The establishment of a 

spatial database, as envisaged in this study, could evaluate atmospheric methane source 

contributions using a combination of theory, expert experience, literature, and survey results, 

thereby creating a robust and foundational database for future research and policy-making. 
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4. Conclusion  

The aim of this study was to investigate the potential of multi-criteria decision analysis in 

assessing the sources and variability of atmospheric methane source contributions. Through 

meticulous research, our findings underscore the efficacy of utilizing multi-criteria decision analysis 

for a comprehensive and expeditious assessment, determination, and prediction of these sources. 

Our empirical findings shed light on a number of salient conclusions. Specifically, fossil fuels 

emerged as a predominant contributor, accounting for a substantial 29.18% of the emissions, thereby 

asserting its critical role in the methane mixing ratio. Landfills, with a weight of 28.79%, were 

closely aligned, suggesting their near-equal significance in this context. Agriculture, oceans, and 

wetlands followed, contributing 22.94%, 15.17%, and 3.9% respectively. Therefore, this empirical 

study has effectively shown that utilizing multi-criteria decision analysis offers a rigorous and 

systematic approach for the expeditious assessment, determination, and estimation of atmospheric 

methane source contributions. This study also offers a novel and efficient means to predict and 

understand the dynamics of atmospheric methane concentrations. 
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