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Abstract  

In this paper, we are interested in the prediction of flank wear through dry hard turning of AISI D2 

steel with a mixed alumina insert. In the machining process, the cutting tool is principally affected 

by two kinds of wear: flank and crater wear. The latter are criteria for cessation of the tool function. 

In the absence of a real-time wear sensor, it is necessary to know or track wear with the view to 

prevent tool damage. For this purpose, the current research focuses on the development of predictive 

models of flank wear based on Artificial Neural Network (ANN), Gaussian Process Regression 

(GPR), Support Vector Machine (SVM), and Polynomial Fit using Genetic Algorithm 

(GAPOLYFITN). The simulation process involves considering input variables including feed (f), 

cutting speed (Vc), and cutting time (tc); the output is the flank wear (VB). To assess the statistical 

efficacy of the predictive models, some performance indicators were employed, including the R-

squared statistic-R2, Mean Square Error-MSE, Mean Absolute Error-MAE, and Mean Absolute 

Percentage Error-MAPE. The results, for the present case study, show that the R-squared statistic 

ranges from 0.85 to 0.99, the MSE is between 0.000046 and 0.000177, the MAE ranges from 

0.002958 to 0.009336, and the value of MAPE varies from 3.50 to 9.60%. The predictive capability 

of GPR and GAPOLYFITN in determining flank wear are the best, as they exhibit high (R2), and 

lower values of MSE, MAE, and MAPE. The powerful predictive model of flank wear is the GPR 

because it provides R2 = 0.96, MSE = 4.6e-5, MAE = 0.002958, and MAPE = 3.50%.  

Keywords: Flank wear. Ceramic insert. AISI D2 steel. Hard turning. Learning process. GA. 
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1. Introduction  

The modeling of the tool’s wear is a significant challenge of the cutting theory because it is 

quite difficult to construct a theoretical model that effectively describes the wear mechanisms 

(mechanical, thermal, and metallurgical). In machining, the cutting tool’s wear can be characterized 

as a detrimental process that affects the machined surface, resulting in gradual alterations to the 

tool's geometry, state of contact surfaces, and tool properties. Generally, these alterations decrease 

the cutting tool capacity. In addition, the wear can directly influence various factors of the 

machining process, including cutting force, temperature, product quality, etc. It is rational to assert 

that the initial factor influencing tool longevity is wear, which may be categorized into abrasion, 

adhesion, erosion, fretting, and chemical wear. The tool's life is contingent upon the magnitude of 

its wear; as a result, the time and cost of machining are related to the wear. For this, the 

manufacturers of tools continually enhance the cutting-edge, coating, geometry, and overall material 

of the tool. Finally, the tool wear must be controlled and correctly predicted to ensure better 

performance of the cutting process. In this context, several studies have been conducted by 

numerous researchers to address the task of modeling or predicting the wear of the cutting tool but 

we will cite some related to the wear during the turning of hard steel (AISI D2). 

Özel et al. (2007) developed MLR and ANN models for predicting surface roughness and tool 

flank wear in the finish-turning of hard steel (AISI D2) with wiper ceramic insert. Their results 

demonstrate that neural network models are adept at prediction across various cutting conditions. 

Quiza et al. (2008) compared statistical models in ANN on predicting tool wear. For the statistical 

models, experimental data were used to adjust three regressions, namely linear, quadratic, and 

potential. For their study, the neural network model has demonstrated superior ability in predicting 

tool wear. Davim et al. (2007) in their study, considers the impact of wiper inserts in contrast to 

conventional inserts on machinability parameters such as (cutting forces, surface roughness, and 

tool wear). Using wiper ceramic inserts enabled the attainment of machined surfaces with a 

roughness average (Ra) of less than 0.8 µm. As a result, it is feasible to achieve surface qualities in 

a workpiece of mechanical precision within (IT < 7). The paper of Khan et al (2017) reports on tool 

wear/life, material removal, and workpiece surface roughness when utilizing mixed alumina tool 

inserts with three different nose radii. Their results demonstrate that flank wear leads to catastrophic 

tool failure at the combination of the highest nose radius and feed rate. After, their investigation, the 

study revealed that cutting speed exerts a notable impact on tool wear/life, contributing 55.38% 

followed by feed rate (13.72%) and depth of cut (11.43%). 

The PCBN, among the likes of carbide and ceramic cutters, is widely accepted for machining 

AISI D2 and serves as a cost-effective substitute for costly grinding operations. Arsecularathe et al. 

(2006) performed an empirical investigation into the machining of AISI D2 steel utilizing PCBN 

tools. Their results indicate that, under the specified conditions, the correlation between tool 

longevity and cutting parameters can be described through a Taylor-type tool life equation. 

Muhammad et al. (2018) attempted to explore the effect of wipers and conventional insets during 

the turning of AISI D2 steel with PCBN tools. In this research inserts (wiper and conventional) 

having three different tools of nose radius were evaluated. The research revealed that in profile 

turning, conventional inserts with a larger nose radius outperformed the other two inserts in surface 

roughness and dimensional accuracy. In the case of wiper inserts, the surface roughness and 

dimensional accuracy outcomes did not surpass those of conventional inserts. Choudhury et al. 

(2023) investigated the impact of the surface texturing of a coated carbide tool on the flank face 

while machining AISI D2 steel, and then the artificial neural network was implemented for the 

prediction of the surface finish and flank wear. Contours are generated for surface roughness and 

flank wear for each texture using data generated from ANN. It was observed that the latter serves 

as a powerful predictive tool for the prediction of surface roughness of the machined surface and 

flank wear of the cutting tool. Tang et al. (2019) examined the wear characteristics of the PCBN 

tool during dry hard turning of AISI D2 at different hardness values under fixed cutting parameters. 

The results show that workpiece hardness has a significant effect on flank wear. Junaid et al. (2018) 
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analyzed a series of machinability studies focusing on tool wear and surface roughness in the 

finishing hard turning of AISI D2 steel utilizing PCBN, mixed ceramic, and coated carbide inserts. 

The findings indicate that tool wear was primarily influenced by cutting time and, to a lesser extent, 

by the hardness of the cutting tool. The relation between input variables and the response is 

ascertained through the utilization of a quadratic regression model. 

For our contribution, we will develop predictive models to estimate the flank wear of the 

cutting tool based, on the one hand, on a learning process (ANN, GPR, SVM), and, on the other 

hand, on polynomial fit (GAPOLYFITN). For each predictive model, factors such as feed (f), cutting 

speed (Vc), and cutting time (tc) are the input variables of the process; the output or response variable 

is the flank wear (VB). To assess the statistical efficacy of the predictive models, some performance 

indicators were employed, including the R-squared statistic-R2, Mean Square Error-MSE, Mean 

Absolute Error-MAE, and Mean Absolute Percentage Error-MAPE. 

 

2. Modeling 

 

2.1. ANN Approach 

 

The ANN applied in this study utilizes a multilayer feed-forward structure, comprising input, 

hidden, and output layers. The ANN architecture includes an input layer for receiving inputs, an 

output layer that transmits final data to users, and a hidden layer that functions as an intermediary 

and remains isolated from direct interaction with the external environment. The hidden layer of the 

network is composed of interconnected neurons, serving as simple processing units. The output of 

a neuron (sj) is done by Equation 1 (Hagan et al., 2014). 

 

1

m

j ij i j

i

s g w e b
=

 
=  − 

 
               (1) 

When the activation level surpasses or equals the bias (bj), the argument of the transfer 

function (g) applied to the sum of inputs attains a positive value (+1), while it remains zero 

otherwise. The bias is analogous to a weight applied to a fixed input of (-1). The weights (wij) 

assigned to neuron inputs (ei) and the bias (bj) are adjustable parameters. 

To design the network the data are, generally, divided into two distinct databases: training and 

testing. A training algorithm is then employed to modify the coefficients (wij) and (bj) to accomplish 

the preferred input-output relationship. Typically, the users have the flexibility to choose the transfer 

function, the number of hidden layers and neurons, and the training algorithm for giving good 

performances. 

 

2.2. GPR model 

 

The Gaussian processes model is a probabilistic supervised machine-learning framework that 

has been widely used for regression and classification tasks. GPR models are extensively utilized in 

machine learning applications due to their flexible representations and intrinsic capability to 

measure uncertainty in predictions. GPRs are extremely versatile regarding their application and 

can interpolate very well with small amounts of data available; however, they work best for low-

dimensional problems, steady design spaces, and moderately sized datasets (Nikolaus et al., 2021; 

Isabona et al., 2023; Kong et al., 2018). 

Given a throughput dataset (xi, yi) for training with (xi) and (yi) defining the input and target 

variable quantities. The model function that connects (xi) and (yi) can be expressed by Equation 2 

(Isabona et al., 2023; Schulz et al., 2018). 

 

( )i i iy f x= +                          (2) 
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Where ζi = N(0, 2

i
 ) indicates the mean noise model with ( 2

i
 ) being the variance. 

Notice that for a distributed Gaussian Process, the observed target can be equally defined 

using Equation 3: 

 

( ) ( )( ), ( , 'i ix GP m x K X X               (3) 

 

With K(X, X′) articulating the covariance matrix and m(xi) = E[f(xi)] being an expectation function 

for input (xi). 

 

2.3. SVM model 

 

A Support Vector Machine is a type of supervised learning algorithm used in machine learning 

to solve classification and regression tasks. The objective of the SVM algorithm is to find a 

hyperplane and to maximize the margin, which refers to the space between the hyperplane and the 

nearest data points (Salcedo‐Sanz et al., 2014; Gholami et al., 2017). SVM models have been used 

for predicting the wear and life of cutting tools (Alajmi et al., 2021; Kong et al., 2017; Bagga et al., 

2023; Yu et al., 2022). Similar to the ANN approach, the data are previously divided into training 

and test tables. After training, predictions will be generated for the test table as well as for the full 

data set. Finally, the coefficients of the SVM regression model will be extracted, including the 

support vectors, the coefficients, and the bias, which will be used to construct the equation of the 

predicted regression function, according to Equation 4: 

 

( )
1

( ) ,
n

i i
i

f x K x bX
=

=  +                        (4) 

 

Where (αi) are the coefficients obtained, (K) is the kernel function, (Xi) is the support vector, and 

(b) is the bias term. 

 

2.4. Polynomial Fit Using Genetic Algorithm 

 

In this case, the predictive model is performed by using the function GAPOLYFITN in Matlab 

software. This function incorporates the utilization of a genetic algorithm to optimize the structure 

of a polynomial fit that accurately represents experimental data (Clegg et al., 2005); the aim is to 

decrease the number of terms needed for the polynomial fit, in comparison to least squares fit that 

using all possible terms. In addition, for this approach, a population of polynomial forms is 

generated, with each form representing a subset of the set of possible terms. The fitness of these 

forms is assessed based on their ability to fit the model data, as determined by the R-squared value 

obtained from the POLYFITN function. Through the application of a Genetic Algorithm, the 

population undergoes evolution based on their respective scores. 

A polynomial with (n) variables can be represented in Equation 5: 

 
2 4 1 6 3 1

1 1 2 3 2 1 2 3 n

p

n

pa x x x x a x x x x +  +                            (5) 

 

Notice that the “term” refers to a group of variables such as. The number of terms within a 

polynomial can be determined by the following calculation: (m) denotes the maximum power 

utilized and (n) represents the number of variables. 
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3. Experimental data 

 

Experimental data are obtained during the hard turning of a high carbon-chromium cold work 

tool steel (AISI D2) alloyed with molybdenum and vanadium (Özel et al., 2007).  Table 1 gives the 

typical chemical composition of the work material.  

 

Table 1 – Chemical composition of AISI D2 steel (Özel et al., 2007). 

Element C (%) Si (%) Mn (%) Cr (%) Mo (%) V (%) 

AISI D2  

60 ± 1 HRC 

1.55 0.30 0.40 11.80 0.80 0.80 

 

Notice that hard cutting offers an economical way of finishing machined surfaces as an alternative 

process to grinding. The capacity to create complicated shapes, good surface roughness, increased 

material removal rate, shorter finishing times, cost savings, and mitigating environmental problems 

are the main benefits of hard machining. 

In addition, cold work tool steel is utilized in a wide variety of tools, dies, and other applications 

requiring great wear resistance. In addition, Furthermore, they have garnered significant interest 

because of their crucial use in industrial domains like blanking and forming dies, gauges, and collets. 

AISI D2 steels are used as dies, including trimming, coining, forming, thermosetting resin forming, 

punches, shear blades, thread rolls, press tools, pneumatic tools, etc. (Bourithis et al., 2006; Abdul 

Rahim et al., 2018). 

In this study, the tool steel AISI D2 is the workpiece machined by a mixed alumina insert with 

wiper geometry (ISO code-CNGA 120408 S01525 WH) and coated by TiN Ref. GC6050; the used 

tool holder is DCLNL2020K12 (ISO). Table 2 summarizes the Design of Experiments (DOE). 

 

Table 2 – Levels and values of explanatory factors. 

Factors Vc (m/min) f (mm/rev) tc (min) 

Levels 3 3 3 

Values 80; 115; 150 0.05; 0.1; 0.15 5; 10; 15 

 

The full factorial design with all possible combinations provides 27 couples of input-target 

data. Notice that the depth of cut is taken equal to 0.2 mm. Experimental data are reported in Tables 

3 and 4.  

The experimental dataset was split into two distinct databases for this study: the training and 

testing database. Out of the total 27 samples available, 70% of the samples were allocated for 

training, while the remaining 30% were reserved for testing. As outlined in Table 3, a total of 18 

couples of input-target data were utilized for the models based on learning process. Notice that the 

user can build other training and test databases. In addition, these tables can be designed randomly 

but the prediction cannot be set in stone. 

Figure 1 gives the histogram of experimental data of the flank wear (VB). The maximum value 

of the flank wear (VBmax = 0.164 mm) is obtained for the test n° 6 which has the input factors: Vc = 

80 m/min, f = 0.1 mm/rev, and tc = 15 min. The minimum value VBmin = 0.047 corresponds to the 

test n° 1 (Vc = 80 m/min, f = 0.05 mm/rev and tc = 5 min). The mean value and the standard deviation 

are equal respectively to 0.10422 and 0.03198.  

  



The Journal of Engineering and Exact Sciences – jCEC 

6 

 

Table 3 – Training dataset. 

Test n° 
Input variables Measured flank wear 

Vc (m/min) f (mm/rev) tc (min) VB (mm) 

2 80 0.05 10 0.070 

3 80 0.05 15 0.086 

4 80 0.1 5 0.077 

6 80 0.1 15 0.164 

7 80 0.15 5 0.067 

8 80 0.15 10 0.111 

10 115 0.05 5 0.071 

11 115 0.05 10 0.091 

12 115 0.05 15 0.111 

15 115 0.1 15 0.151 

16 115 0.15 5 0.077 

17 115 0.15 10 0.112 

20 150 0.05 10 0.098 

21 150 0.05 15 0.148 

22 150 0.1 5 0.083 

24 150 0.1 15 0.144 

25 150 0.15 5 0.081 

26 150 0.15 10 0.120 

 

Table 4 presents the testing dataset of 9 extra pairs, which were intentionally excluded from 

the training phase. 

 

Table 4 – Testing dataset. 

 

 

 

Test no 
Input variables Measured flank wear 

Vc (m/min) f (mm/rev) tc (min) VB (mm) 

1 80 0.05 5 0.047 

5 80 0.1 10 0.111 

9 80 0.15 15 0.143 

13 115 0.1 5 0.076 

14 115 0.1 10 0.104 

18 115 0.15 15 0.133 

19 150 0.05 5 0.074 

23 150 0.1 10 0.106 

27 150 0.15 15 0.158 
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Figure 1 - Histogram of experimental data of (VB). 

 

Figure 2 gives the flank wear (VB) plotted versus feed (f) and cutting time (tc) for different 

values of cutting speed (Vc). For every combination of feed and cutting speed, the flank wear grows 

with cutting time. However, there is a complex relationship between these factors and tool wear. 

For this, we consider the present case of study six predictive models to determine the most powerful 

one. 

 

 
 

Figure 2 - Flank wear (VB) versus feed (f) and cutting time (tc). 

 

4. Simulation results 

 

2.1. ANN Approach 

 

The elaborated ANN using Matlab Neural Network Toolbox is depicted in the figure below. 

To ensure efficient processing, the vectors of inputs and observations are normalized within the 

range of (-1 to 1) before training and testing the network. The optimal design of the developed 

Artificial Neural Network employs a multilayer feed-forward structure with a 3-5-1 configuration, 

as depicted in Figure 3. 
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Figure 3 - Structure of the developed (ANN) using the Matlab. 

 

Many simulations have indicated that opting for a single hidden layer yields give the most 

favorable results. Optimal outcomes were attained when employing a linear transfer function for the 

output layer, while a hyperbolic tangent sigmoid function was utilized for the hidden layer (Makhfi 

et al., 2018; Mimoun et al., 2022). Different training algorithms were tested; the stable state of the 

training process is obtained by using the Bayesian Regularization backpropagation. 

In addition, through a series of simulations reported in Table 5, we selected the number of 

hidden neurons that yielded the highest linear regression coefficient (R) and minimal Mean Square 

Error (MSE) for the training phase. It is important to note that this was done to achieve optimal 

performance. 

 

Table 5 – Choice of hidden neuron number. 

Structure R MSE 

3-2-1 0.9173 0.00014502 

3-3-1 0.9175 0.00014476 

3-4-1 0.9176 0.00014465 

3-5-1 0.9176 0.00014458 

3-6-1 0.9176 0.00014453 

3-7-1 0.9176 0.00014450 

 

From Table 5, we see that the ANN structure (3-5-1) is sufficient for training. We notice that 

the linear regression coefficient (R) stabilizes from several neurons equal to 5; however, MSE 

continues to decrease very slightly with the increase in the number of neurons. 
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Figure 4 - Relationship between targets and predictive values of flank wear in the training 

phase. 

 

Thus, to ensure rapid convergence and reduce simulation time, we can retain several neurons 

equal to 5. For the last, Fig. 4 shows the linear relationship between target and predictive values of 

flank wear in the training phase. In the training phase, the best performance is obtained at epoch 61 

with MSE = 0.00014458 as shown in Figure 5. 

 

 
 

Figure 5 - Performance of the ANN at the training phase. 

 

To train regression models including Gaussian Process Regression (GPR) and Support Vector 

Machine (SVM), we use the Regression Learner Toolbox under Matlab software. 
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4.2. GPR model 

 

All GPRs of different regression learner algorithms were trained, including Rational 

Quadratic, Squared Exponential, Matern 5/2, and Exponential. Figure 6 shows the linear relationship 

between target and predictive values of flank wear in the training phase. 

 

 
 

Figure 6 - Predicted vs measured flank wear for the GPR model. 

 

4.3. SVM model 

 

For the present study, the SVM model was trained by a Gaussian or Radial Basis Function 

(RBF) kernel given by Equation 6 (Gholami et al., 2017; Kong et al., 2017). 

 

( ) ( )
2

2
, , exp

2

i j

i j i j

x x
K x x G x x

 
 = = −
 
 

−


                    (6) 

Where (2) is the width parameter for optimization. 

To fit the SVM model, six different kernel functions were investigated under Matlab software; 

they include linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse Gaussian SVM. 

After all evaluations, the medium Gaussian is better than the other five SVMs, with automatic kernel 

scale and epsilon modes, and standardized data. Notice that for the Box Constraint, if we use 

automatic mode, the default value is calculated from the quartile deviation obtained from the box 

plot of the training data (see Table 6). 

The default Box Constraint value for the Gaussian kernel function is iqr(VB)/1.349, where 

iqr(VB) is the interquartile range of the response variable (VB). The iqr(VB) is the difference 

between the 3rd Quartile and the first Quartile. To obtain good performances in the training phase, 

the Box Constraint value is taken equal to one. Notice that under Matlab software, this value is set 

equal to one for all kernel functions except the Gaussian. 
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Table 6 – Values for Box plot of VB (Training data). 

Statistic VB 

 

Number of observations 18 

Minimum 0.067 

Maximum 0.164 

1st Quartile 0.078 

Median 0.095 

3rd Quartile 0.118 

Mean 0.103 

Variance (n-1) 0.001 

Standard deviation (n-1) 0.031 

 

Figure 7 shows the linear relationship between target and predictive values of flank wear in 

the training phase. We conclude that the training is acceptably done with the SVM model. 

 

 
 

Figure 7 - Predicted vs measured flank wear for the SVM model. 

 

4.4. GAPOLYFITN model 

 

We used the GAPOLYFITN function under Matlab software; by varying the number of terms 

and powers, the maximum number of generations is set to 50. The optimum structure is obtained 

from the results reported in Table 7. 

 

Table 7 – Choice of the GAPOLYFITN structure. 

Structure R² MSE 

3-1 0.987 0.000178 

3-2 0.983 0.000222 

3-3 0.991 0.000124 

3-4 0.990 0.000133 

3-5 0.985 0.000205 
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Note that the structure corresponds to the choice of the maximum number of terms and powers 

(maxterm-maxpower). From the last table, we see that the best structure is obtained for three terms 

and three powers because it gives the higher R2 and minimal MSE. The fitted model is expressed 

by Equation 7: 

 
20 00030511 0 5515 0 1328

c c c
VB . V . f t . f t=  −   +                      (7) 

 

5. Performance indicators of the predictive models 

 

To assess the statistical performance of the elaborated models, the following indicators were 

utilized: R2, MSE, and MAPE (Makhfi et al., 2018; Mimoun et al., 2022). These measures were 

employed to compare the predictions with the corresponding experimental values.  

• The R-squared statistic can be calculated using Equation 8: 

 

( ) ( )( )

( )( )

2

2 1

2

1

1 1

N

k

N

k

c k s k
SSR

R
SST

c k c

=

=

−

= − = −

−




                                      (8) 

Where (c) represents the observed values of (VB), (s) denotes the corresponding predictive values 

of (VB), ( c ) signifies the mean of the observed (VB) values, and (N) represents the total number 

of experimental values of (VB). 

For the MLR without intercept and GAPOLYFITN models, the SST is given by Equation 9:  

 

( )( )
2

1

N

k

SST c k
=

=                                                                    (9) 

• The MSE is expressed by Equation 10: 
 

( ) ( )( )
2

1

1 N

k

MSE c k s k
N =

= −                                                        (10) 

• The MAE formulation is done in Equation 11: 

 

( ) ( )
1

1 N

k

MAE c k s k
N =

= −                                                        (11) 

• The MAPE formulation is given by Equation 12: 

 

( )
( ) ( )

( )1

1
% 100

N

k

c k s k
MAPE

N c k=

−
=                                       (12) 

 

5.1. Comparison between ANN, GPR and SVM for the training phase 

 

Table 8 presents a summary of the performance comparison for the training phase among the 

predictive models based on based on learning process. For the training phase, the good performances 

are relative to the GPR model. 

The simulation results achieved for the training phase with the ANN, GPR, and SVM models 

have been documented in Table 9. 
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Table 8 – Performance comparison for the training phase. 

 

 

Table 9 – Simulation results for the training phase. 

Test n° 
Experimental data of VB (mm) 

(Özel et al., 2007) 

Predicted values of VB (mm) 

ANN GPR SVM 

2 0.07 0.079 0.070 0.073 

3 0.086 0.113 0.086 0.089 

4 0.077 0.069 0.077 0.078 

6 0.164 0.133 0.164 0.161 

7 0.067 0.074 0.067 0.066 

8 0.111 0.107 0.111 0.114 

10 0.071 0.070 0.071 0.074 

11 0.091 0.085 0.091 0.088 

12 0.111 0.123 0.111 0.114 

15 0.151 0.142 0.151 0.154 

16 0.077 0.079 0.077 0.074 

17 0.112 0.118 0.112 0.115 

20 0.098 0.092 0.098 0.101 

21 0.148 0.134 0.148 0.145 

22 0.083 0.077 0.083 0.080 

24 0.144 0.151 0.144 0.147 

25 0.081 0.086 0.081 0.084 

26 0.120 0.128 0.120 0.117 

 

 
 

Figure 8 - Confrontation between the experimental and predictive values (Training phase). 
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 ANN GPR SVM 

R-Squared 0.84 1.00 0.99 

MSE 0.000145 2.0762e-09 9.4623e-06 

MAE 0.009335 3.178e-05 0.002986 

MAPE % 8.94 0.03 3.03 
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Figure 8 shows a graphical confrontation during the training phase between experimental data 

and the values obtained from predictive models based on ANN, GPR, and SVM. Let us remember 

that from Figure 8, the predictive models based on GPR and SVM give the best performances in the 

training phase. 

Table 10 presents a summary of the performance comparison for the testing phase among the 

predictive models based on learning process. 

 

Table 10 – Performance comparison for the testing phase. 

 ANN GPR SVM 

R-Squared 0.86 0.90 0.74 

MSE 0.00016178 0.00011882 0.00029611 

MAE 0.009333 0.0088099 0.013816 

MAPE % 10.95 10.44 14.51 

 

For the testing phase, the good performances are relative to the GPR model. The simulation 

results achieved for the testing phase with the ANN, GPR, and SVM models have been documented 

in Table 11.  

 

Table 11 – Simulation results for the testing phase. 

Test n° 
Experimental data of VB (mm) 

(Özel et al., 2007) 

Predicted values of VB (mm) 

ANN GPR SVM 

1 0.047 0.068 0.068 0.071 

5 0.111 0.090 0.105 0.115 

9 0.143 0.149 0.145 0.174 

13 0.076 0.073 0.077 0.080 

14 0.104 0.098 0.109 0.115 

18 0.133 0.155 0.145 0.158 

19 0.074 0.073 0.081 0.072 

23 0.106 0.108 0.113 0.112 

27 0.158 0.160 0.140 0.141 

 

 
 

Figure 9 - Confrontation between the experimental and predictive values (Testing phase). 
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From Figure 9, we can see that the ANN approach performs better in the testing phase compared to 

the SVM which had better training performances. In addition, the GPR model gives the finest 

performances in the testing phase. 

 

5.2. Performances comparison for the predictive models of flank wear 

 

Table 12 presents a summary of the performance comparison among the six predictive models. 

Table 12 – Performance comparison. 

 ANN GPR SVM GAPOLYFITN 

R-Squared 0.85 0.96 0.89 0.99 

MSE 0.000177 0.000046 0.000123 0.000124 

MAE 0.009336 0.002958 0.006596 0.007816 

MAPE % 9.60 3.50 6.86 7.54 

 

Table 12 shows that the R-Squared statistic ranges from 0.85 to 0.99, the MSE is between 

0.000046 and 0.000177, the MAE ranges from 0.002958 to 0.009336, and the value of MAPE varies 

from 3.50 to 9.60%. The predictive capability of GPR and GAPOLYFITN in determining flank 

wear is the best.  

 Figure 10 shows a graphical confrontation between experimental data and the values obtained 

from the predictive models (ANN, GPR, SVM and GAPOLTFITN). 

 

 
 

Figure 10 - Confrontation between the experimental and predictive values for the predictive 

models (ANN, GPR, SVM and GAPOLTFITN). 

 

Table A-1 gives a numerical confrontation between experimental data and the values obtained 
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of flank wear is the GPR because it provides a good fit with the max. of the observations 
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6. Conclusions 

 

This study aims to establish an efficient model for estimating flank wear in the hard turning 

of AISI D2 steel using a mixed alumina insert. To accomplish this, a comparative analysis was 

conducted, evaluating the performance of ANN, GPR, SVM and GAPOLTFITN models for 

predicting flank wear. The predictive models in this study utilized an experimental machining 

dataset comprising 27 samples. The inputs for these models are the factors: feed, cutting speed, and 

machining time. 

✓ For the training phase, the good performances are relative to the GPR model with R2 = 1, 

MSE = 2.0762e-09, and MAPE = 0.03%. 

✓ For the testing phase, the best performances are relative to the GPR model with R2 = 0.90, 

MSE = 0.00011882 and MAPE = 10.44%. 

✓ We compared the flank wear predictions with experimental results to demonstrate the 

usefulness of the elaborated models. Through simulations conducted using Matlab software, 

the R-squared statistic ranges from 0.85 to 0.99, the MSE is between 0.000046 and 0.000177, 

the MAE ranges from 0.002958 to 0.009336, and the value of MAPE varies from 3.50 to         

9.60%. The predictive capability of GAPOLYFITN and GPR in determining flank wear are 

the best, as they exhibit high (R2), and lower values of MSE and MAPE. The powerful 

predictive model is the GPR because it provides R2 = 0.96, MSE = 4.6e-5, MAE = 0.002958, 

and MAPE = 3.50%. 

✓ Models based on learning process hold great promise to predict the wear of cutting tools, 

however, the GAPOLYFITN model is more practical because it is a simple mathematical 

formulation that can be easily integrated, for example, into an adaptive control loop based 

on wear observation.  
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Appendix 

 

The simulation results achieved with the six developed models have been documented in 

Table A-1. 

Table A-1: Simulation results for the elaborated models. 

Test n° 
Experimental data of VB (mm) 

(Özel et al., 2007) 

Predicted values of VB (mm) 

ANN GPR SVM GAPOLYFITN 

1 0.047 0.068 0,068 0.071 0.051 

2 0.07 0.079 0,070 0.073 0.077 

3 0.086 0.113 0,086 0.089 0.103 

4 0.077 0.069 0,077 0.078 0.063 

5 0.111 0.090 0,105 0.115 0.102 

6 0.164 0.133 0,164 0.161 0.141 

7 0.067 0.074 0,067 0.066 0.062 

8 0.111 0.107 0,111 0.114 0.100 

9 0.143 0.149 0,145 0.174 0.137 

10 0.071 0.070 0,071 0.074 0.061 

11 0.091 0.085 0,091 0.088 0.088 

12 0.111 0.123 0,111 0.114 0.114 

13 0.076 0.073 0,077 0.080 0.074 

14 0.104 0.098 0,109 0.115 0.113 

15 0.151 0.142 0,151 0.154 0.152 

16 0.077 0.079 0,077 0.074 0.073 

17 0.112 0.118 0,112 0.115 0.110 

18 0.133 0.155 0,145 0.158 0.148 

19 0.074 0.073 0,081 0.072 0.072 

20 0.098 0.092 0,098 0.101 0.098 

21 0.148 0.134 0,148 0.145 0.125 

22 0.083 0.077 0,083 0.080 0.085 

23 0.106 0.108 0,113 0.112 0.123 

24 0.144 0.151 0,144 0.147 0.162 

25 0.081 0.086 0,081 0.084 0.083 

26 0.12 0.128 0,120 0.117 0.121 

27 0.158 0.160 0,140 0.141 0.158 

 

 


