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Abstract 

The miniaturization of electronics, electrical, thermal, mechanical and optical devices and systems 

calls for increasing demand for efficient cooling systems with higher thermal efficiency. The use of 

passive mode of cooling using fins has provided unprecedented results. However, the previous 

transient analyses of the extended surfaces have been done without proper considerations of the 

imperfect contact between the fin base and the prime surface. Also, the tip of the passive device has 

been assumed to be adiabatic. However, the present article explores the significances of thermal 

contact resistance and diabatic tip on the transient thermal response of straight fin with temperature-

dependent thermal conductivity and magnetic field under radiative-convective conditions. The 

nonlinear model is analysed numerically using generalized Integral Transform Techniques and the 

numerical results are verified by the exact solution for the linear thermal model. The parametric 

explorations reveal that the dimensionless local temperature in the conductive-radiative fin increases 

when the conductive-convective, conductive-radiative and magnetic field parameters increase. 

However, under the assumption of perfect thermal contact between the prime surface and the base 

of the fin, the dimensionless temperature in the fin will decrease as the conductive-convective, 

conductive-radiative and magnetic field parameters increase. The fin temperature is significantly 

affected by the Biot numbers under the comparably low values of the conductive-convective, 

conductive-radiative, magnetic field and thermal conductivity parameters. The effects of the fin 

thermal conductivity parameter along the fin length depend on the respective values of thermal 

contact Biot number at the base of the fin and the end cooling Biot number at the tip of the fin. 

When the thermal conductivity parameter is amplified, the fin dimensionless temperature increases 

when thermal contact Biot number at the base of the fin is zero and the end cooling Biot number at 

the tip of the fin is very large. This study will help in accurate analysis and design of heat sinks and 

passive devices for heat transfer enhancement for thermal and electronic systems.  

Keywords: Thermal Management; Radiative-Convective fin, Diabatic tip, Thermal contact 

resistance; Magnetic field, Transient analysis.  
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1.  Introduction 

The resistance to flow of electrons in electrical circuit, short-circuit or spark-gap, wrong 

manufacturing or design, frictions, improper connections, prolonged systems operations under high 

temperature and improper design of the cooling systems are the sources of excessive generation of 

heat in electrical and electronics devices. Indisputably, such high and excessive internally generated 

heat has destructive effects such as thermal damage and runaway or burn off, integrated circuits 

leakage, break down and frying of solid-state electronics, degradation of constituents and 

components of the systems. Consequently, electrical and electronics systems are designed with 

effective passive and active cooling systems. However, due to relative low cost and weight-to-

volume ratio coupled with miniaturization of electrical and electronics systems, fins are continuous 

employed (Figs. 1-2) as passive devices for the effective cooling and preventions of thermal 

damages in the systems. 

                     

 
Fig. 1 Electronic circuit and cooling fins 

 

  
(a) (b) 

Fig. 2 Cooling Fins in Electrical Machines (a) and Cooling Fins in Electric Power Transformers 

(b) 

 

Research in passive heat transfer enhancement using fins has gained popularity due to 

applications in diverse systems (Kiwan and Al-Nimr, 2000; Das and Kundu, 2021). Modern 

electronics including microelectronics and embedded systems require improved processing power 

and electronic packaging. It is highlighted that for achievable improved processing power, the power 

density of semiconductors must double per Moore’s principle (Moore, 2006). On the other side, 

several smaller electronic components are crammed up to achieve miniaturisation with improved 

processing power as an emerging electronic packaging and manufacturing trend. A key electronic 

packaging design concern in high processing power system to meet the operational threshold is 

excess heat generation (Oguntala et al., 2019).  

Considerable research effort in the literature highlights the impacts of various operational 

parameters including fin profile, porosity and material on the application potential of fins. Snider 

and Kraus (1986) addressed the fin optimum shaping issue, and Jany and Bejan (1985) analysed the 

optimal geometry for straight fins of temperature-dependent and variable conductivity. Kundu 

(2010) investigated the performance of optimised absorber-plate fin of variable conductivity to 

establish the dependency parameter on the fin performance and optimum design profile. Oguntala 
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et. al. (2018) investigated the thermal characteristic, stability and optimum design profile of 

rectangular fin to determine thermal stability criteria and optimum design parameters. Moitsheki 

(2011a, 2011b) highlighted the 1-D heat transfer in a triangular and hyperbolic fin with power-law 

temperature-dependent thermal conductivity and heat transport coefficient. Roy and Kundu (2018) 

investigated the effects of fin shapes on the thermal performance of microchannel heat sinks to 

establish the optimum conditions to achieve the least thermal resistance between the heatsink and 

fluid and maximise the heat transfer rate.  

The findings of Kiwan and Al-Nimr (2000) on the effect of the porous medium to enhance 

heat transfer in fins, accelerated the popularity of porous fins. Porous fins offer the thermal 

advantage of effective surface area through which the fin transports heat to the working fluid. 

Sobamowo (2022) examined the Influence of fin surface tilt and magnetohydrodynamic effects on 

the thermal efficiency of porous fins. It is highlighted that porous fins are effective at low inclination 

angle, magnetic, porosity and radiative parameters values. Kiwan and Alzahrany (2007) discovered 

the critical threshold ratio value for effective and fluid thermal conductivities, above which the 

porous media behave as a fin, whilst below the threshold value behaves like an insulator. Kundu 

and Yook (2021) using a generalised analytical approach based on the differential transformation 

method (DTM) introduced the porosity factor in the natural convection term of porous fin analysis. 

Asadian et.al. (2017) using Galerkin and Akbari-Ganji’s method investigated the heat transport 

through porous rectangular fins, whereas Deshamukhya et al. (2018) employed particle swarm 

optimisation to predict optimised key variables to maximise heat transport in rectangular porous fin. 

Shokouhmad et.al. (2018) investigated the effect of 2-D heat transport in porous fins of variable 

thermal conductivity of solid phase using finite difference method. Das and Kundu (2017) predicted 

the heat generation from the surface temperature of a porous fin. 

The use of materials of various compositions, profiles and microstructure features has been 

identified to maximise heat transfer through fins (2019). Hatami and Ganji (2013) investigated the 

temperature distribution and heat transport of various selected materials such as Al, Cu, and ceramic 

(SiC, and Si3N4) in rectangular, triangular, convex and exponential profiles. Sobamowo et al. 

(2019) evaluated the fin performance of functionally graded material. Yasong and Benwen (2017) 

analysed the heat transport in fins using spectral element method. 

Different solution methodologies including analytical, numerical, exact, semi-analytical, 

symbolic, experimental, programming and optimisation have been used to investigate the 

performance of fins for thermal enhancements in the literature (Sobamowo, 2016; Oguntala et al., 

2019, 2020; Roy et al., 2015; Mosayebidorcheh et al., 2014; Vahabzadeh e t al., 2015; Ghasemi et 

al., 2014; Moradi et al., 2014, Kundu and Lee, 2016; Jooma and Harley, 2017; Sobamowo et al., 

2022). These studies highlight the controlling models for the investigation of the thermal behaviour 

of fins as nonlinear. Most of these various solution methodologies offer different advantages and 

limitations including high computational complexity such as solutions with huge expressions and a 

large number of terms, limitations to linear problems, and time. The current solution approach is 

directed towards the use of various approximate analytical methods for symbolic solutions of 

nonlinear equations.  

Moreover, the previous transient analyses of the extended surfaces have been done without 

proper considerations of the imperfect contact between the fin base and the prime surface. Also, the 

tip of the passive device has been assumed to be adiabatic. Therefore, the present work explores the 

impacts of thermal contact and diabatic tip on the transient nonlinear thermal performance of the 

longitudinal fin of temperature-dependent thermal conductivity subjected to the magnetic field 

under convective-radiative conditions using Generalized Integral Transform Techniques. The 

results of the developed approximate analytical solution are verified by the exact solution for the 

linear thermal model.  The symbolic solutions are applied to investigate the effects of thermal model 

parameters on the performance of the longitudinal fin. 
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2. Formulation of the Problem 

Given a porous rectangular fin under the influence of thermal convection and radiation (Fig. 

3). The fin tip is diabatic and the base of the fin is not in perfect thermal contact with the prime 

surface. The fin is subjected to identical magnetic field applied in the perpendicular direction (y-

direction) to the fin surface. The fin material is taken to be homogenous and isotropic with constant 

physical and thermal properties except the thermal conductivity.  

 

 
 

Fig. 3 Schematic of convective-radiative porous fin subjected to magnetic field  

 

Thermal energy equation based on model assumptions is expressed as 
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where Jc , the conduction current intensity is given as 
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It should be noted that                                                                                                                        
  

2 2

o m

m

B u



=c c

J J
                                                                                                                    (2)

 

Therefore, by substituting Eq. (2) into (1), we obtain 
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where thermal conductivity and the heat that is internally generated vary with temperature as a linear 

law 

 

( ) ,(1 ) [1 ( )]eff f s eff bk T k k k T T    

= + − = + −                                                                  (4a) 
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 = + −                                                                                               (4b) 

 

Introducing Eqs. (4) into Eq. (3), it gives 
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Initial condition is given as 
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and boundary conditions expressed as 
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Using the following dimensionless parameters of Eq. (9) in Eqs. (5)-(8)  
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we arrived at the dimensionless forms of the governing as follows.  
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Expansion Eq. (10), we have   
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and the dimensionless initial conditions is given as 

 

0, 0, 0 1X = =                                                                                                         (12) 

 

The dimensionless boundary conditions are 

0  , when 0, (1 )
d

X Bi
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
 = + = −                                                                             (13)
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d
X Bi

dX


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(14)
 

                                                                                                         

 

3. The Hybrid Analytical-Numerical Solutions for the Nonlinear Thermal Problems  

Indisputably, the developed nonlinear and linear thermal models can easily be solved 

numerically and analytically, respectively. However, the computational methods are approximate 

methods with inherent high computational cost and time. The approximate solutions involve power 

series with the rigorous solution procedures and large number of terms are not convenient for use 

in practice Therefore, the obvious advantages of generating non-power series analytical solutions to 

the nonlinear problems are very much important and this is given in the present study. Such non-

power series solutions allow effective thermal predictions of the extended surface over a large 

domain and time. Also, the non-power series solutions reduce the complex mathematical analysis 

that gives analytic expressions involving large number terms, high computational cost and time. 

Therefore, it very important to find non-power series solutions to the thermal problems. Moreover, 

an excursion into literature shows the rare application of generalized integral transform technique 

(GITT) to thermal analysis of fins. Such a hybrid analytical-numerical solution will provide better 

physical insights into the importance of thermo-physical parameters than a total numerical method. 

In the generation of the analytical solutions to differential equations, the practical significance of 

transform methods facilitates observation of great many properties and hidden views, of both 

mathematical and physical interest, which are not yet well known and have not met with proper 

appreciation. 

 

 

3.1. Generalized Integral Transform Technique  

GITT is a hybrid analytical-numerical solution that is based on eigenfunctions expansion of 

a Sturm-Liouville problem from a partial differential equation (Mikhailov and Ozisik, 1984; Cotta, 

1990, Cotta, 1994; Cotta et al., 2018, Cotta et al., 2019, Cotta et al., 2020; Knupp et al., 2015, and 

Knupp et al., 2020). With the aid of an integral transform pair and a Sturm-Liouville eigenvalue 

problem, the developed partial differential equation can be converted into a coupled system of 

ordinary differential equations. Unfortunately, the system of the differential equations does not have 

a general method that will always provide analytical solutions. Consequently, a readily available 

recourse is a numerical technique to solve the set of the equations. Therefore, the generalized 

integral transform technique is often referred to as a hybrid analytical-numerical method. In the 

course of providing the need solution to the system of the differential equations with the GITT, the 

potential solution is obtained by applying the inverse function of the transformed pair which gives 

an eigenfunction expansion that must be truncated to obtain the desired convergence of the solution.  



The Journal of Engineering and Exact Sciences – jCEC 

7 

It is recommended to homogenize the boundary conditions using a simple filter defined as: 

 

( , ) ( , ) 1X X  = +                                                                                                               (15)         

 

where ( , )X  is the filtered potential. The simple filter enhances the computational efficiency of 

the solution. Also, it helps to reduce the numbers of terms in the eigenfunction expansion, 

Substituting Eq. (15) into Eqs. (11)-(14),  
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and for the initial  
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After expansion and collection of like terms in Eq. (15), we arrived at 
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Having properly defined the filtered problem, we can now easily apply GITT formalism via a 

transform and inverse pair as follows: 
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0
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The normalized eigenfunctions is written as  
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Following the filtering process, ( , )X   can be expanded in a series of eigenfunctions: 
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where the orthogonal eigenfunctions, 
i  satisfies  
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iN   represent the Kronecker delta  

The norms of the eigenfunctions are given as 
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Using the Sturm-Liouville problem solution, we can easily obtain the eigenfunctions 𝜓𝑖(𝑋). For 

example, adopting the simplest eigenvalue problem,  
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With the boundary conditions 

 

0 0i at X = =  

                                                                                                                                               (27)  

0 1i at X
X


= =


 

 

Which gives the solution 

 

( )
2 1

, 1,2,3,...
2

i

i
X sin X i 

 −  
= =  

  
                                                                           (26) 

 

With the norm given as  
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For further reading on the solutions of the Sturm-Liouville problem under different boundary 

conditions, the reader is referred to Mikhailov and Özisik (1984) for the solution of Eq. (24)  

Now using the operator 
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with the initial condition as 
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1 ( ) ( ) 2 2 4 ( ) ( )i j k j i j iF X X dX Sh Sh Mc Q Nr X X dX         
 = − + − + − − + −
     

 

( )
1

2 4

0
2 ( )i iG Sh Sh Sh Mc Mc Nr Ha Q Q Q Nr X dX          = − − + + − − + − − + +   

 

There is no analytical solution for the system of nonlinear equations in Eq. (10). Therefore, 

a necessary recourse is numerical method. With the aid of NDSolve routine from Wolfram 

Mathematica software, numerical method is applied to solve the system of nonlinear equations 

which is being truncated to an order N (which was chosen for the desired convergence and accuracy 

of the solution). The software gives the required solutions to the system of the nonlinear ODEs with 

predetermined controls of the relative and absolute errors.  

Having found ( )i  numerically, using the inversion formulae in Eq. (19b), one can find 

( , )X  as 

 

( , ) ( ) ( )
N

i i

i

X X   =                                                                                                                  (30)  

 

From Eq. (14), the required dimensionless temperature ( , )X  can be expressed as  

 

( , ) 1 ( ) ( )
N

i i

i

X X   = +                                                                                                               (31) 

 

To validate the GITT solutions, the numerical solution was provided for the nonlinear model 

using Crank-Nicolson finite different method due to its unconditional mathematical stability. The 

solution is presented as  

 

( )
1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 2

2
1 1 1 1 1

1 1 1 1 1 1 1 1

2

2 2 2 2

2 2

2 2

4 2

n n n n n n n n n n n n
ni i i i i i i i i i i i
i

n n n n n n n n n n

i i i i i i i i i i
i

X X

Sh
X X

           
 

         
  

+ + + + + +

+ − + − + − + −

+ + + + +

+ − + − + − + −


   − + + − + − + + − +
+   

    

   − + − − + + − +
+ − −   

    
( )

( ) ( )( )

2

1
4

2 42 1

n

n n
n n n n i i
i i i iSh Sh Mc Nr Ha Mc Nr Q

 
         



+

    

 −
+ − − − − + + + + − =  

 

                    (32)                                                                                                                 
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The FDM of the initial condition is 

 

0 ,o

i =
                                                                                                                                     (33) 

and FDM of boundary conditions is 

 

( )
( )

1 1
1 1

2
1

2 1

n n n
n n n nM M M
M M M M n

M

XBi
Bi

X

  
   



+ −
+ −

 − 
+ = −  = − 

 +                                                                                                                               
 

                                                                                                                                              (34) 

( ) ( )
( )

( )1 1
1 1

2
1 1 1

2 1

n n
n n n n nM M
M M M M Mn

M

XBi
Bi

X

 
    



+ −
+ −

 − 
+ = −  = + − 

 + 

                                                 (35) 

 

       4. Results and Discussion 

The solutions of GITT are developed and the results of the parametric studies are shown in Figs. 4-

22. However, Table 1 illustrate the comparison between finite difference method (FDM) and GITT 

results for the nonlinear thermal models  

      Table 1: Comparison of results  

X                              FDM                               GITT 

0.0000                     0.9581                             0.9581                        

0.2000                     0.9597                             0.9597                            

0.4000                     0.9647                             0.9647                          

0.6000                     0.9730                             0.9730                           

0.8000                     0.9846                             0.9846                           

1.0000                     1.0000                             1.0000                                                     

 

Figures 4 – 20 dispaly the impact of convection-conduction, radiation-conduction, magnetic 

field, contact resistance and diabatic parameters on the dimensionless transient temperature profiles 

of the fin.  

Figures 4, 5 and 6 is drawn to investigate the impact of conduction-convection on heat 

transport through the longitudinal fin while Figures 7 and 8 explores the roles of conduction-

radiation parameters on the dimensionless thermal performance of the passive device. It is noticed 

that the temperature of the fin decreases as the convection-conduction and radiation-conduction 

parameters increase. This depicts an increase in the surface heat loss of the fin as the heat transfer 

coefficient increases and invariably increased heat dissipation capability.  
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Fig. 4 Impact of convective parameter on the dimensionless temperature distribution in the fin 

when Nr=0.1 

 

The increase in the heat transfer coefficient significantly improves the heat transport from 

the base of the passive device and the surrounding fluid as the fin surface convects more heat away 

from the fin surface, which decrease the temperature distribution of the fin and improve the heat 

transport in the extended surface. For the conduction-radiative influence, the decrease in the fin 

temperature is due to increased heat transport from the fin surface via thermal radiation, which 

subsequently increases the intensity of the radiative cooling.  

 

 

 
Fig. 5 Impact of convective parameter on the dimensionless temperature distribution in the fin 

when Nr=0.2 

 



The Journal of Engineering and Exact Sciences – jCEC 

12 

 
Fig. 6 Impact oof convective parameter on the dimensionless temperature distribution in the fin 

when Nr=0.3  

 

The impact of magnetic field parameters on the dimensionless temperature distribution in 

the conductive-radiative extended surface is shown in Fig. 9. From the illustration, when the 

magnetic field parameter is augmented, the dimensionless local temperature in the conductive-

radiative device is enhanced. The increase in the magnetic parameter increases the Lorentz force 

which provide resistive force to oppose the motion of the fin working fluid and consequently, the 

fin temperature decreases. 

On the issue of contact resistance, the imperfect thermal contact, the reason for the response 

is because, as the conduction-convection, conduction-radiation and magnetic field parameters 

increase, the convective heat in the gap between the prime surface and fin base increases. This 

convective heat which is of higher heat transfer coefficient than that of the fin surface and tip, is 

mainly absorbed by the fin through its base. Consequently, more heat is gained from the base of the 

fin than to the heat loss from the surface and the tip of the fin. Therefore, as the conductive-

convective, conductive-radiative and magnetic field parameters increase, the dimensionless 

temperature in the fin also increases.  

However, if the assumption of perfect thermal contact between the prime surface and the fin 

base prevails, it will be that as the convection-conduction, radiation-conduction and magnetic field 

parameters are augmented, the dimensionless temperature in the fin will depreciate. As a 

consequence, there is an increase in the heat loss from the surface of the fin surface. As a consequent, 

surface temperature of the fin drops (the fin thermal profile falls) and the rate of heat transfer from 

the fin increases as the convective, radiative and magnetic field parameters increase. It should be 

noted that the low value of the convective parameter and radiative, M and Nr implies a relatively 

thick and short fin of very high thermal conductivity while a high value of the convective and 

radiative parameters indicates a relatively thin and long fin of a very low thermal conductivity. 

Therefore, under the condition of perfect thermal contact between the prime surface and the base of 

the fin, the rate of heat transfer from the extended surface and the fin thermal efficiency are favoured 

at low these thermo-magneto-geometric parameters, i.e. a relatively thick and short fin with a high 

thermal conductivity. 
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Fig. 7 Effect of radiative parameter on the dimensionless temperature distribution in a convective-

radiative fin when M=1.0 

 

Fig. 8 Effect of radiative number on the dimensionless temperature distribution in a convective-

radiative fin when M=0.2 

 
Fig. 9 Effect of Hartmann (magnetic field) parameter on the dimensionless temperature 

distribution in a convective-radiative fin 
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Fig. 10 Effect of thermal contact Biot number on the dimensionless temperature distribution in a 

convective-radiative fin when Nr=0.1 

 

         
Fig. 11 Effect of thermal contact Biot number on the dimensionless temperature distribution in a 

convective-radiative fin when Nr=0.3 

 

 

Figs. 10 and 11 show the effect of thermal contact Biot number on the nondimensional 

temperature of the porous fin at the point where the radiative-convecting fin joins with the prime 

surface while Fig. 12 presents the effect of end cooling Biot number on a conductive- fin at the tip 

of the fin. The fin base and tip Biot numbers have significant effect on the fin temperature. This 

happens at the comparably low values of the conductive-convective, conductive-radiative, magnetic 

field and thermal conductivity parameters A further analysis revealed that at comparably high values 

of the conductive-convective, conductive-radiative and magnetic field parameters, the variations in 

the Biot numbers do not have significant effect on the fin temperature. However, when the tip of the 

fin is assumed insulated or the end cooling Biot number is zero, there are significant variations in 

the temperature of the conductive-radiative fin.  
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Fig. 12 Effect of end cooling Biot number on the dimensionless temperature distribution in a 

convective-radiative fin 

 

 
Fig. 13 Effect of nonlinear thermal conductivity parameter on the dimensionless temperature 

distribution in a convective-radiative fin 

 

Fig. 13 presents the effects of thermal conductivity parameter,   on the dimensionless 
temperature distribution in the fin. It is shown that the fin temperature is indirectly and directly 

proportional to the fin thermal conductivity from 0 < X< 0.35 and 0.35 < X< 1.00, respectively.  

Physically speaking, when the thermal conductivity parameter is amplified which results in a 

decrease in the local temperature of the fin within the range 0 < X< 0.35. However, when the thermal 

conductivity parameter is magnified, there is a decrease in the local dimensionless temperature of 

the fin within the range 0.35 < X< 1.00.  

This behaviour is as depicted in the figure is not general behaviour but it is based on the 

respective values of thermal contact Biot number (which depicts the extent of thermal contact) at 

the fin base and the fin tip Biot number. In order to establish this fact, effect of the nonlinear thermal 

conductivity when thermal contact Biot number at the base of the fin and the end cooling Biot 

number at the tip of the fin are 0 and 10, respectively as shown in Fig. 14. It is shown that when the 

thermal conductivity parameter is amplified, there is an increase in the local dimensionless 

temperature of the fin as shown in the figure. It is further observed that the temperature of the fin-

tip amplifies as the thermal conductivity parameter magnifies. 
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The impact of thermo-geometric or conductive-convective parameter on the dimensionless 

temperature distribution in the conductive and non-radiative fin is shown in Figs. 15 and 16 while 

Fig. 17 shows the effect of thermal contact Biot number on a fin at the point where the conductive 

and non-radiative fin joins with the prime surface. Fig. 18 presents the effect of end cooling Biot 

number on a conductive and non-radiative fin at the tip of the fin. 

 

 

 
Fig. 14 Effect of nonlinear thermal conductivity parameter on the dimensionless temperature 

distribution in a convective-radiative fin Bi= 0 and Bic =10(the large value is for approximately 

perfect thermal contact) 

 

 

 
Fig. 15 Effect of convective parameter on the dimensionless temperature distribution in a 

convective and non-radiating fin when Bic=0.1 
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Fig. 16 Effect of convective parameter on the dimensionless temperature distribution in a 

convective and non-radiative fin when Bic=0.05 

 

Fig. 17 Effect of thermal contact Biot number on the dimensionless temperature distribution in a 

convective and non-radiative fin 

 

Fig. 18 Effect of end cooling Biot number on the dimensionless temperature distribution in a 

convective and non-radiative fin 
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The impact of conductivity  , on the dimensionless transient thermal behaviour of extended 

surface with porosity is illustrated in Figs. 19 and 20. It is shown that the conductive and non-

radiative fin temperature is indirectly and directly proportional to the fin conductivity from 0 < X< 

0.35 and 0.35 < X< 1.00, respectively.  The increase in both conductivity and its gradient leads to a 

rise in the local temperature of the fin. The heightened local temperature of the fin results in an 

increase in heat transport in the fin, which consequently reduce heat dissipation capability of the fin. 

It is worth noting that high conductivity materials tend to store more heat than dissipate it as 

compared to a material of low conductivity materials that dissipates more heat. Therefore, for 

increased heat dissipation as required as in high power electronics and embedded systems, relatively 

low conductivity materials are effective for thermal enhancement.  

 
Fig. 19 Effect of nonlinear thermal conductivity parameter on the dimensionless temperature 

distribution in a convective and non-radiative fin 

 

 
Fig. 20 Effect of nonlinear thermal conductivity parameter on the dimensionless temperature 

distribution in a convective-radiative fin Bi= 0 and Bic =10 (the large value is for approximately 

for perfect thermal contact) 
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In order to establish this fact, effect of the nonlinear conductivity parameter when thermal 

contact Biot number at the base of the conductive and non-radiative fin and the end cooling Biot 

number at the tip of the fin are 0 and 10, respectively as shown in Fig. 20. As shown in the previous 

Fig. 20, when the conductivity parameter is amplified, there is an increase in the local temperature 

of the fin. It is also observed that the temperature of the fin-tip amplifies as the conductivity 

parameter magnifies. The non-radiating effect does not change the thermal behaviour of the fin as 

the same effects are recorded in all the figures. 

 

Figure 21.  Impact of time on the fin thermal distribution 

 
Figure 22. Temperature history in the fin at various locations in the fin 

 

Fig. 21 demonstrates the fin temperature profiles at different timeframes, whilst the 

temperature evolution at various positions in the fin is shown in Figure 22. The figures highlight 

that at different fin positions, an increased temperature is experienced with increase in time. The 

time periods in the solution reveal that the transient solution approaches a steady state as the tip 

temperature increases over time. 
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5. Conclusion 

In this paper, the effects of thermal contact resistance at the fin base, a convecting-radiative 

(end cooling) tip and magnetic field on the thermal performance of a convecting and radiating fin 

with temperature-variant thermal conductivity have been numerically investigated with the aid of 

generalized integral transform techniques. The parametric studies reveal the following: 

i. The dimensionless local temperature in the radiative-conductive porous fin is augmented 

when the conductive-convective, conductive-radiative and magnetic field parameters are 

amplified.  

ii. With the assumption of perfect thermal contact between the prime surface and the base of 

the fin, the dimensionless temperature in the passive device depreciates as the convective-

conductive, radiative-conductive and magnetic field parameters appreciate.  

iii. The fin dimensionless local temperature is significantly affected by the Biot numbers under 

the comparably low values of the convective-conductive, radiative-conductive, magnetic 

field and thermal conductivity parameters  

iv. At comparably high values of the convective-conductive, radiative-conductive and magnetic 

field parameters, the variations in the Biot numbers do not significantly affect the 

temperature of the fin.  

v. When the tip of the fin is assumed adiabatic or the end cooling Biot number is zero, there 

are significant variations in the temperature of the radiative-conductive porous fin.  

vi. The effects of the fin conductivity parameter along the fin length depend on the respective 

values of thermal contact Biot number at the base of the fin and the end cooling Biot number 

at the tip of the fin.  

vii. When the conductivity parameter is amplified, the fin dimensionless temperature increases 

when thermal contact Biot number at the base of the fin and the end cooling Biot number at 

the tip of the fin are 0 and 10 (or very large), respectively. 

viii. When conductivity parameter is increased, the fin tip temperature is magnified. 

ix. For different positions in the fin, the temperature increases with an increase in time. 

Consequently, the time histories of the solution depict the transient solution converging to a 

steady state as the fin tip temperature increases with time progression. 

The study provides high accurate prediction of thermal performance of longitudinal fins and a 

good platform for the effective design of extended surfaces in thermal and power electronics. 

 

Nomenclature 

 
crA  Cross-sectional area of fin, [ 2m ] 

rA     Ratio of surface area to the cross-sectional area  
  

crA    Cross-sectional area of fin, [ 2m ] 
  

rA     Ratio of surface area to the cross-sectional area  

T     Fin Temperature, [ K ] 

LT   Temperature at fin base, [ K ] 

T
 Ambient temperature, [ K ] 

k    Thermal conductivity of fin, [ 1 1Wm K− − ] 

bk     Thermal conductivity at fin base, [ 1 1Wm K− − ] 

cJ  Conduction current intensity, [ A ] 

J   Total current intensity, [ A ] 

x      Axial distance of Fin, [ m ] 

L    Fin length, [ m ] 

P     Fin perimeter, [ m ] 

oB  Magnitude of magnetic field, [ 1 2 1 2 1 1 2kg m s− ] or T 

t       Time, [ ]sec  
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E      External electric field, [ 1V m− ] 

u     Axial velocity, m/sec   1[ ]m sec−  

pc     Specific heat capacity, 1 1[  ]J kg K− −  

V   Macroscopic velocity of electrons 

h      Heat transmission coefficient, [ 2 1. . W m K− − ] 

X   Dimensionless fin length 

cM    Dimensionless convective parameter 

Nr   Dimensionless radiation parameter 

Ha     Hartman number 

 Bi     Biot number 

 

Greek Symbols 

      Coefficient of nonlinear thermal conductivity, [  ] 

    Emissivity of Fin material 

       Fin thickness, [ m ] 

   Dimensionless time 

     Dimensionless temperature 

L  Dimensionless temperature at fin base 
  Density of Fin [ 3kg m− ] 

  Stefan Boltzmann constant, [ 2 4. . W m K− − ] 

m  Electric conductivity, [ 1 1 1m K− − −   ] 
  Dimensional nonlinear thermal conductivity coefficient [ 1K − ] 
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