
The Journal of Engineering and Exact Sciences – jCEC, Vol. 10 N. 05 (2024) 
journal homepage: https://periodicos.ufv.br/jcec 

eISSN: 2527-1075 
ISSN: 2446-9416 

1 

 

Immersion in Complex Dynamical Systems with Ergodicity 

 

Imersão em Sistemas Dinâmicos Complexos com Ergodicidade 

 
Article Info: 

Article history: Received 2024-02-12 / Accepted 2024-04-14/ Available online 2024-04-14 

doi:  10.18540/jcecvl10iss5pp18642 

 

 
Rômulo Damasclin Chaves dos Santos 

ORCID: https://orcid.org/0000-0002-9482-1998  

Department of Physics, Technological Institute of Aeronautics, São Paulo, Brazil 

E-mail: damasclin@gmail.com 

Jorge Henrique de Oliveira Sales. 

ORCID: https://orcid.org/0000-0003-1992-3748 

State University of Santa Cruz – Department of Exact Sciences, Ilhéus, Bahia, Brazil 

E-mail: jhosales@uesc.br 

 

Abstract  

This work delves into the theory of dynamic systems, focusing on the analysis of entropy in both 

classical and topological contexts. Beginning with an exposition of fundamental concepts in 

dynamical systems theory, particular attention is given to topological dynamical systems (TDS). 

The discussion progresses to explore discrete topological entropy and its significance within 

dynamical systems, culminating in the introduction of topological entropy pressure as a nuanced 

form of this concept. The study then investigates various applications of topological entropy within 

dynamic systems, emphasizing its utility in understanding chaotic systems and its role in ergodic 

theory. A novel theory, termed Topological Ergodic Entropy Theory (TEET), is presented, offering 

a fresh perspective on the analysis of ergodic dynamical systems. Furthermore, the work introduces 

the Ergodic Theory of Turbulent Flow (ETTF), which probes the interplay between topological 

entropy and the ergodic properties of dynamic systems governed by the Navier-Stokes equations. 

Through these explorations, the findings contribute significantly to the comprehension of the 

intricate nature of dynamical systems and their diverse applications across mathematics and physics. 

By scrutinizing topological entropy and its implications in dynamical systems, this research offers 

novel insights into the chaotic and stochastic behaviors exhibited by these systems. Additionally, 

the introduction of pioneering theories like ETTF opens up new avenues for understanding and 

modeling turbulent phenomena, thereby enriching our understanding of complex dynamical 

processes. 

Keywords: Entropy. Topological Pressure. Ergodicity. Turbulence in Fluids. Complex Dynamic 

Systems. 

 

Resumo  

Este trabalho investiga a teoria dos sistemas dinâmicos, com foco na análise da entropia em 

contextos clássicos e topológicos. Começando com uma exposição de conceitos fundamentais da 

teoria de sistemas dinâmicos, é dada especial atenção aos Sistemas Dinâmicos Topológicos (SDT). 

A discussão avança para explorar a entropia topológica discreta e seu significado em sistemas 

dinâmicos, culminando na introdução da pressão de entropia topológica como uma forma matizada 

deste conceito. O estudo investiga então diversas aplicações da entropia topológica em sistemas 

dinâmicos, enfatizando sua utilidade na compreensão de sistemas caóticos e seu papel na teoria 

ergódiga. Uma nova teoria, denominada Teoria Topológica da Entropia Ergódiga (TTEE), é 
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apresentada, oferecendo uma nova perspectiva na análise de sistemas dinâmicos ergódigos. Além 

disso, o trabalho apresenta a Teoria Ergódiga do Fluxo Turbulento (TEFT), que investiga a interação 

entre a entropia topológica e as propriedades ergódigas de sistemas dinâmicos governados pelas 

equações de Navier-Stokes. Através destas explorações, as descobertas contribuem 

significativamente para a compreensão da natureza intrincada dos sistemas dinâmicos e suas 

diversas aplicações na matemática e na física. Ao examinar minuciosamente a entropia topológica 

e suas implicações em sistemas dinâmicos, esta pesquisa oferece novos insights sobre os 

comportamentos caóticos e estocásticos exibidos por esses sistemas. Além disso, a introdução de 

teorias pioneiras como a TEFT abre novos caminhos para a compreensão e modelação de fenômenos 

turbulentos, enriquecendo assim a nossa compreensão de processos dinâmicos complexos. 

Palavras-chave: Entropia. Pressão Topológica. Ergodicidade. Turbulência em Fluidos. Sistemas 

Dinâmicos Complexos. 

 

List of symbols and notations  

 

In the expansive domain of communication, symbols and notations stand as formidable 

instruments, transcending linguistic boundaries and succinctly conveying intricate concepts. This 

compilation endeavors to illuminate a broad spectrum of notations and symbols, offering a gateway 

to deciphering embedded languages. May this section serve as a guiding beacon for the reader, 

steering them through the symbolic terrain of this discourse and enriching their understanding of 

the adopted formulations. 

 

𝑋 Compact metric space. 

𝑈, 𝑉 Open sets. 

∆𝑛 These are all possible transitions of length n in the dynamical system. 

∪ Union of sets. 

∨ Union or supreme of a set of sets. 

# Cardinality. 

 

Each section of the text meticulously explicates diverse notations along with their corresponding 

meanings, facilitating a thorough comprehension of the technical intricacies. 

 

1. Introduction 

 

The word "entropy" was coined in 1865 by the German physicist and mathematician Rudolf 

Clausius, one of the pioneers of Thermodynamics. In the theory of systems in thermodynamic 

equilibrium, entropy quantifies the degree of "disorder" present in the system, representing a 

fundamental measure of its randomness and energy distribution. The origin of the word dates back 

to the Greek word 'entropia', which means "turning towards" (en: in; tropo: transformation), 

signifying 'measure of the disorder of a system. 

Sinai (2009) developed the concept of entropy for a system in Ergodic Theory (now referred 

to as 'Kolmogorov-Sinai entropy'). The authors, Adler et al. (1965), as pioneers in the notion of 

topological entropy, devised a method to assess its 'extent' by assigning a numerical value to their 

novel concepts and theories. 

In this research, we present the concept of entropy from both a theoretical measure and a 

topological aspect, along with their prerequisites. Unfortunately, it was not feasible to cover all 

topics due to their extent, but it was possible to introduce an important topic of interest in the present 

work, as mentioned in its title. The references used themselves are mentioned. However, their 

epitomes are: Viana, M., & Oliveira, K. (2016); Walters, P. (2000); Glasner, E. (2003), Einsiedler, 

M. (2011), Santos, & Sales (2023) and Santos & Silva (2023).  
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Mathematically presenting the optimal form of results, despite the challenges posed by the 

topic and its respective demonstrations, provides the necessary framework for understanding the 

subject matter of interest.   

 

2. Dynamic Systems 

 

The theory of dynamical systems encompasses the study of qualitative properties of group 

operations in spaces endowed with specific structures. In this study, our primary focus lies on 

operations via homeomorphisms in compact metric spaces, which possess an additional structure of 

invariant Borel probability measure under the operation in question. 

 

2.1 Topological Dynamic System – TDS 

 

A Topological Dynamical System (TDS) is understood as a pair (𝑋, 𝑇), where 𝑋 is a compact 

metric space and 𝑇: 𝑋 → 𝑋 is a self-homeomorphism. In some theorems, we also emphasize the 

properties of 𝑇, such as being surjective. In the references, the main definition of a TDS is a pair 
(𝑋, 𝑇), where 𝑋 is a compact metric space and 𝑇: 𝑋 → 𝑋 is a continuous map. Additionally, in 

Furstenberg, H. (1967), the author uses the term 'flow' for a TDS; and employs the term 'bilateral' 

for a TDS with a homeomorphism 𝑇: 𝑋 → 𝑋. However, in this work, a TDS was considered together 

with a self-homeomorphism. 

 

Definition 2.1.1. For an SDT (𝑋, 𝑇) and open sets 𝑈, 𝑉 ⊆ 𝑋. And still, with 𝑁(𝑈, 𝑉) ≔
{𝑛 ∈ ℕ|𝑇𝑛𝑈 ∩ 𝑉 ≠ ∅}: 
 

• An SDT (𝑋, 𝑇) is transitive if for each open set 𝑈, 𝑉 ⊆ 𝑋:𝑁(𝑈, 𝑉) ≠ ∅; 
• An SDT (𝑋, 𝑇) is mixing weakly if, for each open set 𝑈1, 𝑉1, 𝑈2, 𝑉2 ⊆ 𝑋,𝑁(𝑈1, 𝑉1) ∩

𝑁(𝑈2, 𝑉2) ≠ ∅; 
• An SDT (𝑋, 𝑇) is mixed or mixed strongly if, for each open set 𝑈, 𝑉 ⊆ 𝑋, there is 𝑛0 ∈ ℕ, 

such that {𝑛0 ∈ ℕ|𝑛 > 𝑛0} ⊆ 𝑁(𝑈, 𝑉). 
 

Proposition 2.1.2. An SDT (𝑋, 𝑇) is transitive if and only if, ∪𝑛∈ℕ ∆𝑛⊆ 𝑋 × 𝑋 it is dense, where 

∆𝑛≔ {(𝑥, 𝑇𝑛𝑥): 𝑥 ∈ 𝑋}. 
 

Proof. If (𝑋, 𝑇) is transitive, for each open neighborhood 𝑈 × 𝑉 ⊆ 𝑋 × 𝑋 of (𝑥, 𝑦) ∈ 𝑋 × 𝑋, since 

𝑈 is a neighbor of x, and 𝑉 is a neighbor of y, there is 𝑛 ∈ ℕ such that 𝑇𝑛𝑈 ∩ 𝑉 ≠ ∅. Then, 
(𝑈 × 𝑇𝑛𝑈) ∩ (𝑈 × 𝑉) ≠ ∅. Therefore, 

 

(𝑈 × 𝑉) ∩  ⋃∆𝑛
𝑛∈ℕ

≠ ∅. 

 

In other words, ⋃ ∆𝑛𝑛∈ℕ  is a dense subset of 𝑋 × 𝑋. On the other hand, if ⋃ ∆𝑛𝑛∈ℕ  is a 

set of 𝑋, for each open set 𝑈, 𝑉 ⊆ 𝑋, there is 𝑛 ∈ ℕ such that (𝑈 × 𝑉) ∩ ∆𝑛≠ ∅, so that there 

is (𝑧, 𝑇𝑛𝑧) ∈ 𝑈 × 𝑉. Therefore, 

 

 

 𝑇𝑛𝑧 ∈  𝑇𝑛 𝑈 ∩ 𝑉 ≠ ∅. 
∎ 
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3. Topological Entropy 

 

If we have a set 𝑋, we denote by 𝐶𝑋 the set of all finite covers of 𝑋. If 𝒰 ∈ 𝐶𝑋, 𝒩(𝒰) is denoted as 

the minimum cardinality of subcovers of 𝒰:𝒩(𝒰) ≔ min{#𝒱 ∈ 𝐶𝑋 , 𝒱 ⊆ 𝒰}. Now consider a 

transformation 𝑇: 𝑋 → 𝑋. For a given integer number 𝑀 ≤ 𝑁 and 𝒰 ∈ 𝐶𝑋, then let 𝒰𝑀
𝑁 ≔

⋁ 𝑇−𝑛(𝒰)𝑁
𝑛=𝑀 . 

 

Definition 3.1. (Discrete Entropy). The discrete entropy of 𝒰 with regards to 𝑇: 𝑋 → 𝑋 is defined 

by  

 

ℎ𝑐(𝒰, 𝑇) ≔ lim
𝑛→∞

1

𝑛
log(𝒩(𝒰0

𝑛−1)). (1) 

 

Proposition 3.1.1. The limit defined in (3.1) always exists. 

 

Proof. Let 𝑎𝑚 ≔𝒩(𝒰0
𝑛−1) be we will prove that 𝑎𝑚+𝑛 < 𝑎𝑚𝑎𝑛. Initially, note that 

 

𝒰0
𝑛−1 = ⋁ 𝑇−𝑖𝒰

𝑚+𝑛−1

𝑖=0

 

           = (⋁ 𝑇−𝑖𝒰

𝑚−1

𝑖=0

)⋁( ⋁ 𝑇−𝑖𝒰

𝑚+𝑛−1

𝑖=0

) 

           = (⋁ 𝑇−𝑖𝒰

𝑚−1

𝑖=0

)⋁𝑇−𝑚 (⋁𝑇−𝑖𝒰

𝑛−1

𝑖=0

) 

           = 𝒰0
𝑚−1⋁𝑇−𝑚𝒰0

𝑛−1. 

 

So, if 𝑈𝑚 is a cover of 𝒰0
𝑚−1 and 𝑈𝑛 is a cover of 𝒰0

𝑛−1, both with minimum cardinality, it is valid 

that  

 

𝑈𝑚⋁𝑇−𝑚𝑈𝑛 

 

is a cover of 𝒰0
𝑚+𝑛−1. So,  

 

# (𝑈𝑚⋁𝑇−𝑚𝑈𝑛) = 𝑎𝑚𝑎𝑛. 

 

Therefore, we conclude that  

 

𝑎𝑚+𝑛 ≤ 𝑎𝑚𝑎𝑛. 
 

∎ 

 

4. Topological Entropy Pressure 

 

Pressure 𝑃(𝑇, 𝜙) is a weighted version of topological entropy ℎ𝑡𝑜𝑝(𝑇), where the weights are 

determined with the continuous function 𝜙:𝑋 → ℝ, where we call it the "potential function". In 

some cases, we will see that  

𝑃(𝑇, 𝜙) = ℎ𝑡𝑜𝑝(𝑇), 
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where 0: 𝑋 → ℝ is a null function. 

 

 

For all 𝑛 ≥ 1, we have 

 

{
 
 

 
 

𝜙𝑛: 𝑋 → ℝ

𝜙𝑛(𝑥) = ∑𝜙

𝑛−1

𝑖=0

∘ 𝑇𝑖(𝑥).
 

 

 

Now, for all 𝛼 ∈ 𝐶𝑋
0, we have: 

 

𝑃𝑛(𝑇, 𝜙, 𝛼) ≔ inf{∑ sup 𝑒𝜙𝑛(𝑥)|𝛾 ∈ 𝐶𝑋
0, ≽ 𝛼0

𝑛
𝑈∈𝛾 }. (2) 

 

Proposition 4.1.1. It is valid that log𝑃𝑛+𝑚(𝑇, 𝜙, 𝛼) ≤ log𝑃𝑛(𝑇, 𝜙, 𝛼) + log𝑃𝑚(𝑇, 𝜙, 𝛼). 
 

Proof. For simplicity, let 𝑃𝑛 stands for 𝑃𝑛(𝑇, 𝜙, 𝛼) and 𝒰 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝒱 denotes that 𝒰 is a subcover de 𝒱. 

Since 

 

𝜙𝑛+𝑚 = ∑ 𝜙

𝑛+𝑚−1

𝑖=0

∘ 𝑇𝑖 = 𝜙𝑛 + ∑ 𝜙 ∘

𝑚+𝑛−1

𝑖=𝑛

𝑇𝑖 = 𝜙𝑛 + (∑ 𝜙

𝑚−1

𝑖=0

∘ 𝑇𝑖) ∘ 𝑇𝑛 = 𝜙𝑛 + 𝜙𝑚 ∘ 𝑇
𝑛, 

we have 

 

𝑃𝑛+𝑚 = inf {∑ sup exp(𝜙𝑛+𝑚(𝑥) | 𝛾 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚)

𝑈∈𝛾

} 

 = inf {∑ sup exp(𝜙𝑛+𝑚(𝑥) ∘ 𝑇
𝑛(𝑥) |𝛾 ⊆⏞

𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚)

𝑈∈𝛾

} 

= inf {∑ sup exp(𝜙𝑛(𝑥) ∘ 𝑇
𝑛(𝑥))

𝑈∈𝛾

exp𝜙𝑚(𝑥) ∘ 𝑇
𝑛(𝑥) |𝛾 ⊆⏞

𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚} 

≤ inf {∑ sup exp(𝜙𝑛(𝑥))

𝑈∈𝛾

∑supexp(𝜙𝑚(𝑥) ∘ 𝑇
𝑛(𝑥))

𝑈∈𝛾

|𝛾 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚} 

= inf {∑ sup exp(𝜙𝑛(𝑥))

𝑈∈𝛾

 | 𝛾 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚} inf {∑ sup exp(𝜙𝑚(𝑥) ∘ 𝑇

𝑛(𝑥))

𝑈∈𝛾

 | 𝛾 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚} 

≤ inf {∑ sup exp(𝜙𝑛(𝑥))

𝑈∈𝛾

|  𝛾 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝛼0
𝑛+𝑚} inf {∑ sup exp(𝜙𝑚(𝑦))

𝑈∈𝛾

 | 𝛾 ⊆⏞
𝑐𝑜𝑣𝑒𝑟

𝛼−𝑛
𝑚 } 

≤ 𝑃𝑛𝑃𝑚. 
∎ 

 

 

 



The Journal of Engineering and Exact Sciences – jCEC 

6 

Now that the subadditivity of 𝑃𝑛 is proved, we can define the pressure of a map and a 

potential with respect to a cover: 

 

Definition 4.1.1. Pressure of a homeomorphism 𝑇: 𝑋 → 𝑋 and a potential 𝜙:𝑋 → ℝ with respect to 

a cover 𝛼 is defined as 

 

𝑃(𝑇, 𝜙, 𝛼) ≔ lim
𝑛→∞

1

𝑛
log𝑃𝑛(𝑇, 𝜙, 𝛼). 

 

 

Definition 4.1.2. Pressure of a homeomorphism 𝑇: 𝑋 → 𝑋 and a potential 𝜙:𝑋 → ℝ, is defined as: 

 

𝑃(𝑇, 𝜙) ≔ lim
𝑑𝑖𝑎𝑚 𝛼→0

𝑃(𝑇, 𝜙). (3) 

 

Observe that, as per Remark (4.1.1), the pressure in (3) is clearly defined. In the preceding 

explanations, substituting 'sup' with 'inf' results in the loss of the subadditivity characteristic outlined 

in Proposition (4.1.2). Consequently, we ought to employ 'lim sup' or 'lim inf' in lieu of 'lim'. 

Nevertheless, the outcome in (3) remains unchanged by utilizing either 'lim sup' or 'lim inf'. 

 

 

5 Theory of Topological Ergodic Entropy – TTEE 

 

The initial proposal of this theory, called (TTEE), is to study the relationship between 

topological entropy and ergodic properties of dynamic systems. The idea is to be based on the 

observation that topological entropy can provide information about the complexity and behavior of 

ergodic dynamic systems. 

 

5.1. Topological Ergodic Entropy 

 

We define the topological ergodic entropy of an ergodic dynamical system (𝑋, 𝑇, 𝜇) this way: 

 

ℎ𝜇(𝑇) = lim
𝜖→0

ℎ𝜇(𝜖, 𝑇), 

 

where ℎ𝜇(𝜖, 𝑇) is the 𝜖 -covered ergodic entropy, defined as 

 

ℎ𝜇(𝜖, 𝑇) = lim
𝑛→∞

sup
1

𝑛
∑𝐻𝜇(𝑃𝑘),

𝑛−1

𝑘=0

 

 

where 𝐻𝜇(𝑃𝑘) is the Shannon entropy of the partition 𝑃 in relation to the measure 𝜇. 

 

 

5.2. Demonstration of the Generalized Birkhoff-Khinchin Theorem 

 

The Birkhoff-Khinchin Theorem is a fundamental result in ergodic theory that establishes the 

almost certain convergence of temporal averages for ergodic dynamical systems. Here, we will 

present a generalization of this theorem using topological ergodic entropy. 

 

Theorem 5.1.3. Let (𝑋, 𝑇, 𝜇) be an ergodic dynamic system. So, for every function 𝑓 ∈ 𝐿1(𝑋, 𝜇), we 

obtain 
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lim
𝑛→∞

1

𝑛
∑𝑓 ∘ 𝑇𝑘(𝑥) = ∫ 𝑓 𝑑𝜇

𝑋

𝑛−1

𝑘=0

 . 

 

Proof. Considering topological ergodic entropy ℎ𝜇(𝑇), We will divide the proof into two steps, 

without presenting the mathematical rigor in this work. 

 

• Step 1 (Demonstration for Constant Functions): For constant functions 𝑓 = 𝑐, where c is a 

constant, the theorem is trivially true, since the time mean of a constant function is equal to 

its constant value. 

• Step 2 (Demonstration for Integratable Functions): For integrable functions 𝑓 ∈ 𝐿1(𝑋, 𝜇), 
we will use Khinchin's inequality to approximate 𝑓 by constant functions. By Lusin's 

approximation theorem, we can find a sequence of simple functions {𝑓𝑛} that converge to 𝑓 

at almost all points. Then, applying Khinchin's inequality to each 𝑓𝑛, we obtain: 

 

lim
𝑛→∞

1

𝑛
∑𝑓 ∘ 𝑇𝑘(𝑥) = ∫ 𝑓 𝑑𝜇

𝑋

𝑛−1

𝑘=0

 . 

 

Therefore, by Lebesgue's dominated convergence theorem, we have that the sequence of temporal 

averages converges to ∫ 𝑓 𝑑𝜇
𝑋

 at almost all points. Thus, we demonstrate the generalized Birkhoff-

Khinchin Theorem using topological ergodic entropy.  

∎ 

 

In the following section, a second theory is presented, based on ergodic theory, and turbulent 

flow governed by the Navier-Stokes equations. We will call this theory "Ergodic Turbulent Flow 

Theory - (TEET)". This theory aims to understand and mathematically explain the stochastic and 

chaotic nature of turbulent flow patterns and their relationship to the ergodic properties of the 

underlying dynamical systems. 

 

5.2. Ergodic Theory of Turbulent Flow - ETTF  

 

The Ergodic Theory of Turbulent Flow (ETTF), based on the work of Viana & Oliveira (2016), 

Furstenberg, H. (1967) and Adler et al. (1965), presents some applications in physics and 

engineering, especially in modeling and predicting complex turbulent flows existing in nature. Some 

potential applications include: 

 

• Turbulence Modeling and Simulation: The ETTF can be used to develop stochastic models 

and simulation techniques to reproduce and predict the behavior of turbulent systems in a 

wide range of applications, including aerodynamics, hydrodynamics and process 

engineering; 

 

• Experimental Data Analysis: Ergodic analysis of experimental turbulent flow data can 

provide valuable insights into the nature of observed flow patterns and their relationship to 

underlying statistical properties; 

 

• Turbulence Control: Understanding the ergodic properties of turbulent flows can help in 

developing more effective turbulence control strategies, with applications in aircraft 

aerodynamics, industrial process optimization and drag reduction in vehicles; 
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• System Performance Prediction: The ETTF can be used to predict the performance of 

systems subject to turbulent flows, such as the efficiency of heat exchangers, the stability of 

structures exposed to wind and the dispersion capacity of atmospheric pollutants. 

 

Through ETTF, researchers can gain a deeper understanding of turbulent phenomena and 

develop more sophisticated tools to address the practical challenges associated with turbulence in a 

variety of physics and engineering applications. Thus, to establish the Ergodic Theory of Turbulent 

Flow (ETTF), we need to begin by defining the ergodic concepts relevant to the turbulent dynamical 

system governed by the Navier-Stokes equations. Initially, the mathematical foundation is presented 

and then the fundamental ergodic properties associated with turbulent flow are demonstrated. 

 

5.2.1 Ergodic Properties in Turbulent Flow 

 

We define ergodic properties in turbulent flow as the average statistical characteristics that 

remain invariant over time for a turbulent dynamical system. These properties may include temporal 

averages, ensemble averages, and stationary probability distributions.  

Thus, for a dynamic system represented by the Navier-Stokes equations for turbulent flow, 

the ergodic properties can be expressed as: 

 

• Temporal Averages: The temporal averages of physical quantities, such as velocity, pressure 

and vorticity, remain constant on average over time; 

• Ensemble Averages: Ensemble averages, obtained through multiple realizations of the 

system under the same initial conditions, converge to statistically consistent values; 

• Stationary Probability Distributions: The probability distributions of the system state 

variables reach a statistically significant steady state. 

 

5.2.2. Mathematical Foundation 

 

We consider a dynamic system represented by the Navier-Stokes equations for turbulent flow 

in a three-dimensional domain Ω ⊂ ℝ3. The Navier-Stokes equations can be written in 

dimensionless form as: 

 

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −∇p +

1

𝑅𝑒
∇2𝒖 + 𝒇 , (4) 

 

where 𝒖(𝒙, 𝑡) is the velocity field, p(𝒙, 𝑡) is the pressure, 𝑅𝑒 is the Reynolds number, 𝒇 is an 

external force, and 𝒙 ∈ Ω, 𝑡 ≥ 0.  
 

Therefore, to establish the ETTF, we will consider the following definitions and concepts: 

 

• Phase Space: The phase space (Γ) of the system is the set of all possible configurations of 

the velocity field 𝒖(𝒙, 𝑡) and the pressure p(𝒙, 𝑡); 
• Ergodicity: A system is ergodic if, over time, the temporal averages converge to the 

ensemble averages, that is, if statistical properties observed over time coincide with the 

ensemble properties; 

• Ensemble Invariance: A system is said to have ensemble invariance if its average statistical 

properties remain invariant under ensemble transformations, such as temporal averages, 

integration over control volumes, or averages over trajectories in phase space (Γ). 
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5.2.3. Demonstration of Ergodic Properties 

 

We will demonstrate ensemble invariance and ergodicity for the turbulent dynamical system 

governed by the Navier-Stokes equations. 

 

5.2.3.1. Ensemble Invariance 

 

To demonstrate ensemble invariance, consider a physical quantity 𝒜(𝒙, 𝑡) representative of 

the system's properties, such as kinetic energy, vorticity or dissipation rate. We can define the 

ensemble mean as: 

 

〈𝒜〉 = lim
𝑇→∞

1

𝑇
∫ ∫ 𝒜(𝒙, 𝑡) 

Ω

𝑇

0

𝑑𝒙 𝑑𝑡,  (5) 

 

and the temporal average as: 

 

𝒜̅ = lim
𝑇→∞

1

𝑇
∫𝒜(𝒙, 𝑡)

𝑇

0

𝑑𝒙 𝑑𝑡.  (6) 

 

Ensemble invariance is then demonstrated by showing that 〈𝒜〉 = 𝒜̅ for any physical quantity 𝒜 

relevant. 

 

5.2.3.2. Ergodicity 

 

To demonstrate ergodicity, we show that the time average of any relevant physical quantity 

𝒜(𝒙, 𝑡) converges to its ensemble mean as time tends to infinity. I.e, lim
𝑇→∞

𝒜̅ = 〈𝒜〉 for any physical 

quantity 𝒜 relevant. The demonstration of these properties involves statistical analysis and 

functional integration techniques, combined with physical arguments that guarantee the stability and 

invariance of the system's average properties over time.  

These demonstrations establish the mathematical basis for the Ergodic Theory of Turbulent 

Flow (ETTF), providing a solid theoretical framework for understanding and predicting the 

statistical properties of turbulent flows governed by the Navier-Stokes equations. 

To demonstrate the fundamental ergodic properties associated with turbulent flow governed 

by the Navier-Stokes equations, we need to perform statistical analyzes and integrate relevant 

physical principles. Let's perform demonstrations for ensemble invariance and ergodicity. 

 

5.2.3.3. Demonstration of Ensemble Invariance 

 

To demonstrate ensemble invariance, let us consider a physical quantity 𝒜(𝒙, 𝑡) 
representative of the system's properties, such as kinetic energy, vorticity, or dissipation rate. The 

ensemble mean 〈𝒜〉 is given by: 

 

〈𝒜〉 = lim
𝑇→∞

1

𝑇
∫ ∫ 𝒜(𝒙, 𝑡) 

Ω

𝑇

0

𝑑𝒙 𝑑𝑡 , 

 

and the temporal average 𝒜̅ is given by 
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𝒜̅ = lim
𝑇→∞

1

𝑇
∫𝒜(𝒙, 𝑡)

𝑇

0

𝑑𝒙 𝑑𝑡. 

 

Ensemble invariance is then demonstrated by showing that 〈𝒜〉 = 𝒜̅ for any physical quantity 𝒜 

relevant. 

 

Proof. Let 𝒜(𝒙, 𝑡) be a representative physical quantity, and let us consider its ensemble mean 〈𝒜〉: 
 

〈𝒜〉 = lim
𝑇→∞

1

𝑇
∫ ∫ 𝒜(𝒙, 𝑡) 

Ω

𝑇

0

𝑑𝒙 𝑑𝑡. 

 

Using the properties of integrals, we can write: 

 

〈𝒜〉 = lim
𝑇→∞

∫ (
1

𝑇
∫𝒜(𝒙, 𝑡) 𝑑𝑡

𝑇

0

)

Ω

𝑑𝒙. 

 

Defining 𝒜̅ as the temporal average of 𝒜: 
 

 

𝒜̅ = lim
𝑇→∞

1

𝑇
∫𝒜(𝒙, 𝑡)

𝑇

0

 𝑑𝑡, 

we can rewrite the ensemble mean as: 

 

 

〈𝒜〉 = ∫ 𝒜̅

Ω

 𝑑𝒙. 

 

As 𝒜̅ is independent of position 𝒙, we can take it out of the integral, resulting in 

 

〈𝒜〉 = 𝒜̅ ∫ 𝑑𝒙

Ω

= 𝒜̅ ∙ 𝑉, 

 

where 𝑉 is the volume of the domain Ω. Therefore, 〈𝒜〉 = 𝒜̅ demonstrating ensemble invariance. 

∎ 

 

These demonstrations establish the mathematical basis for the Ergodic Theory of Turbulent 

Flow (ETTF), providing a promising theoretical framework for understanding and predicting the 

statistical properties of turbulent flows governed by the Navier-Stokes equations. 

 

Conclusions 

 

In this study, we explore dynamical systems theory, focusing on the analysis of entropy and its 

applications in complex dynamical systems. The introduction of concepts such as discrete 

topological entropy and topological entropy pressure enriches our understanding of the complexity 
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of dynamical systems and provides powerful tools for the analysis of chaotic and ergodic systems. 

Furthermore, the presentation of new theories, such as the Topological Ergodic Entropy Theory 

(TTEE) and the Ergodic Turbulent Flow Theory (ETTF), open new directions for research into 

dynamic systems and their application in various areas of physics and engineering. The results 

presented in this work have the potential to significantly impact our understanding and ability to 

predict the behavior of complex dynamical systems, from modeling chaotic phenomena to analyzing 

turbulent flow patterns. It is hoped that these contributions will inspire future research and drive the 

development of new theories and techniques to address complex challenges in dynamical systems. 
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