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Abstract 

The self-compacting concrete (SCC) flows under its weight and does not require external vibration 

for compaction. However, its formulation requires careful calculation of its constituents. Three 

methods are considered: the first is an empirical method represented by an approach based on mortar 

optimization, a solution proposed by Japanese researchers who originally introduced the concept of 

self-compacting concrete; the second is a graphical method by Dreux-Gorisse used for ordinary 

concrete, which optimizes the composition of the aggregate skeleton by selecting fractions without 

additives and superplasticizers; and the third is a statistical method that we developed using an 

approach based on Artificial Neural Networks (ANN) built from a database from previous research 

projects. The objective is to characterize workability through an ANN model and compare it with 

experimental methods. Therefore, we focused on the slump flow, L-box, and sieve stability 

segregation tests. 

Keywords: Mixture design method; Fresh state properties; SCC; Workability; ANN. 

 

1. Introduction  

The formulation of self-compacting concrete (SCC) requires specialised expertise and know-

how. This type of concrete is renowned for its characteristics in the fresh state, which are assessed 

by workability tests such as the L-Box and V-Funnel tests. SCC is characterised by its fluidity, 

allowing it to flow without mechanical vibration (Rao, M et al., 2023). It differs from ordinary 

concrete in its properties in the fresh state (Raheman, A. Modani, P.O., 2013; Merabti, S., 2022). It 

is also relatively easy to produce (Merabti, S et al., 2023). To obtain the desired fluidity and flow 

characteristics, admixtures and additives are incorporated into the mixtures (Rao, M et al., 2023; 

Matos, A.M et al., 2015; Turcry, P., 2003; Bensebti, S., 2015).  

The SCC is typically manufactured following European standards (Nachbaur. L et al., 2003). 

Numerous research studies have been conducted to enhance physicochemical properties by 

incorporating various materials, including fly ash (Kovler, K et al., 2005), cork waste (Matos, A. M 

et al., 2015), waste glass powder (Matos, A.M et al., 2016), blast furnace slag (Klemczak, B et al., 
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2023), and ceramic waste powder (Gautam, L et al., 2023; Mohit, M et al., 2023; Gautam, L et al., 

2022). Other research has explored using an eco-friendly Ferrock material as a cement replacement 

and replacing 60% of the cement with fly ash (Jeffy Pravitha, J et al., 2023; Palou, M. T et al., 

2016). Additional work has also involved the incorporation of powders such as limestone (LP), 

basalt (BP), and marble (MP) in SCC production (Uysal, M. Sumer, M., 2011). 

The formulation design for SCC is a complex process often developed empirically. Several 

methods for designing SCC are based on mortar optimization (Okamura, H et al., 2000; Billberg, 

P., et al., 1999; Jacobs, F. Hunkeler, F, 1999). In contrast, others rely on paste volume optimization 

and experimental planning (Turcry, P., 2003), as well as the use of the Mortar Equivalent Concrete 

(MEC) (Nachbaur, L., et al., 2003). It is important to note that the composition influences the 

behavior of SCC. Khayat, K.H., et al., (2000) conducted a study considering the factors of each 

component. The impact of the formulation design method on shrinkage and cracking is addressed 

by Turcry and Loukili (2003). Questions related to durability are studied by Assié, S., (2004). On 

the other hand, the relationship between formulation design and rheological, physicochemical, and 

mechanical properties has been the subject of research by Yammine., (2007). 

Artificial Neural Networks (ANNs) are commonly used to assess SCC parameters (Bhuva, P et 

al., 2023). Najm et al., (2023) employed statistics and artificial neural networks to evaluate and 

predict the compressive strength of SCC. Uysal and Tanyildizi., (2011) utilized ANN to predict the 

compressive strength of concrete cores. The same authors also employed ANN to estimate the 

compressive strength of self-compacting concrete containing mineral admixtures and steel fibers 

(Uysal, M et al., 2012). Bhuva et al. explored various ANNs for predicting the stability of self-

compacting concrete. The results demonstrated the potential of ANN modeling for accurately 

predicting strength values and, consequently, the optimal dosage of SCC mix constituents (Bhuva, 

P et al., 2023). Other research has examined the rheological behavior of SCC using ANN (El Asri, 

Y et al., 2022; Ben Aicha, M et al., 2022). Ramkumar et al. (2020) also utilized artificial neural 

networks to analyze the performance of SCC using mineral admixtures and steel fibers  

In this study, we employed a statistical method based on Artificial Neural Networks (ANNs). 

This method was fueled by a database derived from previous research projects (Raheman, A. 

Modani, P.O., 2013). This method aims to develop a model capable of predicting the quantitative 

proportions of each concrete component without relying on regulations based on numerical 

methods. The network connects strength and workability characteristics. four inputs, namely 

compressive strength, Abrams cone flow test, L-Box test, and sieve stability segregation test, are 

used to determine six outputs corresponding to the quantities of each concrete component. This 

research focuses on analyzing the impact of SCC formulation on its behavior in the fresh state, 

aiming to explore aspects related to their design and rheology control. Our contribution aims to 

develop a novel methodology for SCC mixture design and establish a procedure for characterizing 

their workability based on test results. This process involves examining the influence of composition 

parameters on various fresh-state properties of SCC. 

 

2. Mixture design methods 

In the literature, there are many mixture design approaches and methods; for our study, we have 

selected three large families, from the most empirical to the most sophisticated. In this study, we 

represent the detailed principle of the different approaches.  

 

2.1 The Japanese method 

Following the Japanese approach, the mixture design of self-compacting concrete (SCC) is 

considered safe when it prioritizes the paste volume over aggregates. However, the resulting 

concrete mixtures have lower aggregate content and are far from an economic optimum. The 

fundamental principle of mixture design involves determining the proportions of each component 

in the concrete (Okamura, H et al., 2000). Japanese researchers have found that the risk of blockage 

is minimized when the volume of coarse aggregates in 1 m3 of concrete is limited to half of its total 
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volume. Compactness is crucial and depends on the compaction method: the aggregate volume ratio 

to full volume. 

Additionally, the volume of sand is fixed at 40% of the concrete mortar volume, ensuring 

concrete fluidity through reduced granular friction. Water and superplasticizer dosages are 

determined through mortar tests, with the sand volume consistently set at 40%. Japanese researchers 

have also established a linear relationship between spread and flow when the water dosage varies 

with a constant amount of superplasticizer. It allows for determining an optimal admixture-to-water 

ratio to enhance mortar fluidity. The superplasticizer dosage found is 1% of the mass of fines. The 

formulas obtained are shown in Table 5. 

 

2.2 Dreux-Gorisse method 

The procedure is based on exploiting the experience acquired in producing ordinary concrete by 

traditional methods. According to Dreux, (1981) and Dreux and Festa, J., (1998), the quality of 

concrete is defined by two key aspects: strength and workability. Starting the transformation of 

regular concrete made by the graphic process of Dreux, (1981), it aims to optimize the aggregate 

skeleton of new self-compacting concrete, with the use of a superplasticizer which ensures sufficient 

fluidity with limestone filler at an optimum dosage to produce a self-compacting paste. The principle 

of this method is first to define the Cement/Water (C/W) ratio to achieve the strength objective and 

then to adjust the parameters to obtain a strength adapted to the chosen processing conditions. 

To determine the ratio (C/W), we choose the BOLOMEY relationship (Rajamane, N.P., 2012; 

Ambily, P.S., 2012). 

 

𝑅𝑐 = 𝐺. 𝑅𝑐𝑒 . (
𝐶

𝑊
− 0.5)                                      (1) 

 

Where: 

Rc:  Compressive strength of concrete at 28 days (bars); 

G:   Granular coefficient given in Table 3.   

Rce: Compressive strength of cement at 28 days (bars);                              

C:   Cement content (kg/m3);  

W:  Water content in dry materials (l/m3). 

 

The cement content differs from the aggregate content. The Cement/Water ratio (C/W) is 

approximately evaluated using the overage strength and the required plasticity through the formula 

(1). Cement content is determined using an abacus (see Figure 1), which gives the ratio C/W as a 

function of workability (Abrams cone slump). Determining the appropriate cement content to 

achieve the desired water content.: W=C/(C/W). However, this value remains approximate and will 

be refined later through plasticity and workability tests.  
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Figure 1 - Estimation of the cement content to be used based on the water-to-cement ratio and 

workability (Dreux, G., 1981). 

 

Concerning aggregate dosing, a reference composition labeled AOB is depicted on a particle size 

analysis graph in Figure 2. Point B (at 100%) corresponds to the size D of the largest aggregate. The 

following abscissa coordinates define the stopping point A (based on sieve size D). 

- If D ≤ 20 mm, the abscissa is D/2                                                                                                      

- If D > 20 mm, the abscissa is located in the middle of the "gravel segment" limited by modulus 

38 (corresponding to 5 mm) and the related modulus to D at : 

 

  Y = 50 − √D + K                                   (2) 

 

With: 

K: is a correction factor that depends on the cement content, the effectiveness of compaction, and 

the shape of the aggregates, whether they are rounded or crushed. 

 

Figure 2 - Reference curve Dreux-Gorisse method (Dreux, G., 1981). 
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The dosage of the filler and superplasticizer is determined empirically to achieve sufficient 

fluidity to transform ordinary concrete into self-compacting concrete. Table 5 below provides the 

different quantities of constituents for each formulation method. 

 

2.3 Artificial Neural Networks (ANN) 

2.3.1 Database 

The development model employed relies on learning algorithms to construct a simplified version 

of the artificial neural network (ANN). The approach involves providing input and output data to 

the ANN, allowing it to learn and model the relationship between the two datasets (Gautam, L et 

al., 2022). 

The database comprises 163 results; 130 are used to train the network, and 33 for validation. 

Normalizing the input variables in the interval [-1, 1] makes it possible to reduce disparities between 

variables and order very different variables. Tables 1, 2, and 3 respectively present the descriptive 

statistics of the input and output variables, as well as the correlation matrix. 

 

Table 1. Descriptive statistics for input variables. 

Input Database Mean Minimum Maximum Variance S.D 

Slump flow (cm) 163 68,44 15 80 51,19 7,15 

L-Box (H2 /H1) 163 0,82 0,25 1 0,02 0,14 

Sieve Segregation (%) 163 9,33 0,39 29,58 31,50 5,61 

Rc28 (MPa) 163 41,26 20,04 71 103,66 10,18 

 

Table 2. Descriptive statistics for output variables. 

Output Database Mean Minimum Maximum Variance S.D 

Gravel 163 791,92 557,00 1121,10 7619,28 87,29 

Sand 163 836,72 578,00 1062,00 9787,62 98,93 

Cement 163 394,81 290,00 658,70 4138,49 64,33 

Filler 163 117,62 0,00 330,00 4600,77 67,83 

S/plast 163 8,33 0,50 74,00 98,85 9,94 

Water 163 198,76 75,00 275,00 1088,06 32,99 

 

Table 3. Correlation matrix. 

 

 

 

 

  Gravel Sand Cement Filler S/Plast Water S/ flow L-Box Sieve S CS28 

Gravel 1 -0,213 -0,229 -0,048 0,006 -0,178 -0,147 -0,180 0,018 -0,021 

Sand -0.213 1 -0,207 -0,077 -0,169 -0,167 -0,295 -0,105 -0,207 0,114 

Cement -0.229 -0,207 1 -0,428 0,106 0,227 0,177 0,199 -0,071 0,194 

Filler -0.048 -0,077 -0,428 1 0,384 0,006 0,016 -0,123 0,203 -0,295 

S/plast 0.006 -0,169 0,106 0,384 1 -0,094 0,086 -0,135 -0,090 -0,054 

Water -0.178 -0,167 0,227 0,006 -0,094 1 0,132 0,079 0,274 -0,374 

S/ flow  -0.147 -0,295 0,177 0,016 0,086 0,132 1 0,363 0,077 0,179 

L-Box  -0.180 -0,105 0,199 -0,123 -0,135 0,079 0,363 1 0,349 0,120 

Sieve S 0.018 -0,207 -0,071 0,203 -0,090 0,274 0,077 0,349 1 -0,308 

Rc28 -0.021 0,114 0,194 -0,295 -0,054 -0,374 0,179 0,120 -0,308 1 
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2.3.2 Application of ANN on the database 

The proposed model consists of an input layer of four neurons, one hidden layer of ten neurons, 

and an output layer of six neurons (4-10-6). The model architecture is described in Figure 3; it 

should be noted that the numerical simulations made it possible to determine the optimal architecture 

for the network. The activation function used for all neurons is of the sigmoid type. 

 

 
Figure 3 - The proposed neural network architecture. 

 

The collection process was carried out in two phases. The objective of the first phase was to 

collect data in the literature, the second they have involved normalizing selected data according to 

the rules of the characteristics of self-compacting concrete. The results obtained are shown in Table 

5. 

 

3. Experimental Study 

In this research, we will conduct an experimental study on the workability of self-compacting 

concrete parameters based on the influence of the mixture design method. 

 

3.1. Materials used  

The physical characteristics and their sources used in the experimental part are shown below in 

Table 4. Considering that ordinary tap water is used in the production of self-compacting concrete. 

 

Table 4: Materials used in the experimental section. 

Materials Density 

(kg/m3) 

Fineness 

(cm2/g) 

Origin 

CPJ-CEM II/A 42.5 3075 3601 Sétif, Algeria 

Gravel (3/15) 2593 - Sétif, Algeria 

Sand (0/3) 2503  Sétif, Algeria 

Fillers 2735 2900 Béjaïa, Algeria 

Superplasticizer GLENIUM® 27 1048 - BASF, Algeria 

 

 

3.2 Granulometric analyses 

In order to create the overall structure of the concrete using the Dreux-Gorisse technique, 

granulometric analysis is performed on our aggregates (see Figure 4). 
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Figure 4 - Curves of granulometric analyses of aggregates. 

 

3.3 Mixture Proportions 

The compositions of the chosen concrete were researched and optimized using each method, 

which varied based on the principles of each technique. The design of SCC mixtures is detailed in 

Table 5, adhering to the recommendations outlined in the NF EN 206-9., (2010) European standard. 

 

Table 5: Formulation proportions of different methods. 

Components 

(Kg/m3) 

Japanese 

method 

Dreux-Gorisse 

method 

ANN method 

Cement 400 350 380 

Filler 280 200 187 

Water 185 175 190 

Sand 715 792 852 

Gravel 865 790 767 

Superplasticizer 8 7 8,40 

Paste volume 426 370 391 

G/S 1,2 1 0,9 

W/Fine 0,27 0,31 0,42 

F/C 0,7 0,57 0,33 

W/C 0,46 0,5 0,57 

 

4. Results and Discussion  

Workability study relies mainly on two criteria: limiting the quantity of water by using 

admixtures and optimizing the aggregate skeleton to reduce friction between aggregates to increase 

flow (Lozach, D., 2006).   

Fluidity and homogeneity are the general characteristics of fresh self-compacting concrete. These 

characteristics have been studied from many angles and can be separated into three empirically 

measurable criteria: fillability, fluidity, and segregation resistance (De Schutter, G., 2005). After 

nine tests, the experimental results for characterizing the workability of self-compacting concrete 

are presented in Table 6. 
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Table 6. Results of characterization tests. 

Tests 
Japanese 

method 

Dreux-Gorisse 

method 

(ANN) 

 method 

Target 

 

Slump flow (cm) 77 70 72 ≥60 

L-Box (H2 /H1) 0,88 0,75 0,80 ≥0,80 

Sieve segregation (%) 12,7 11 3,4 ≤15 

 

4.1 Slump flow test 

The slump width of all concrete compositions is between 70 and 77 cm and has high fluidity 

according to European standards (AFGC., 2008), classifying them as self-compacting. Tests reveal 

significant bleeding at the center of the sample for concretes produced using the artificial neural 

network method. This bleeding is attributed to the water/cement ratio, although the observed signs 

of bleeding have largely disappeared, and the spread diameter has remained nearly constant. The 

spread of all the concrete compositions is between 70-77 cm and has a high fluidity according to 

European standards (AFGC., 2008), which classifies them as SCC. The tests revealed significant 

bleeding in the center of the sample for concretes produced using the artificial neural network 

method. This bleeding was attributed to the W/C ratio, although the signs of bleeding observed 

largely disappeared and the spreading diameter remained virtually constant. The spreading diameter 

of the concretes produced by the Japanese method and the artificial neural networks exceeded that 

of the concretes produced by the Dreux-Gorisse method, this phenomenon being justified by the 

high G/S and F/C ratios. Despite the relatively low W/C ratio compared with other mixtures, a 

reduction in spreading diameter of 9.09% and 6.49% was observed for the mixtures produced by 

the Dreux-Gorisse method and ANN. 

 

4.2 L-Box test  

A single box test concrete with a filling ratio (H2/H1) below 0.8 is typically associated with the 

Dreux-Gorisse method, even if its Abrams Cone Spread Test measures 70 cm (see Table 6). Such 

concrete may lead to blockages and a lack of continuous flow in the L-box. This improvement is 

particularly evident in the case of concrete produced using the Japanese method, which exhibits an 

H2/H1 ratio of 0.88. 

The results establish a strong correlation between paste volume and the outcome of the L-Box 

test. We observe that adding filler can marginally enhance the viscosity of the cement mixture, 

leading to an increase in the H2/H1 ratio when its dosage exceeds a critical value, which, in our study, 

was determined to be 33%. The mortar reaches its maximum compactness when this required filler 

dosage is reached (Yahia, A et al., 2005). 

The F/C ratio (Filler/Cement) is inadequate for the Dreux-Gorisse method, as the filling ratio 

(H2/H1) is less than 0.8. However, the two other methods meet the standards for self-compacting 

concrete, where the filling ratio is equal to or greater than 0.8. 

 

4.3 Sieve stability segregation test  

The results of the sieve stability segregation test presented in Table 6 indicate that all concretes 

exhibit a segregation rate of less than 15%, signifying satisfactory stability and consistent static 

segregation. However, the SCC produced using the ANN method demonstrates a higher laitance 

value (π=3.4%), which poses a risk of blockage and reduced workability. Concretes with a laitance 

percentage below 15% generally exhibit reasonable stability. Table 6 demonstrates that including 

33% fines results in a homogeneous SCC. 

All the concretes fall within the self-compacting range, with their laitance percentages below 

15%. Notably, the concrete produced using the Japanese method (π=12.7) exhibits the highest 

stability, primarily attributed to the increased paste volume compared to the other concretes. 

 

4.4 Comparison between the Different Mixture Design Methods  
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The different approaches to mixture design are based on various criteria, making comparisons 

very difficult. This process is influenced by the properties of the materials used, the number of 

experiments carried out, and the rheological results. 

In contrast to other methods, the Japanese method provides larger amounts but also has the lowest 

sand content due to fixing the sand volume at 40% of the mortar volume. Unlike the other two 

methods, the authors of this method do not specify the nature of the gravel (crushed or rounded), 

which can influence the risk of blockage. The simplicity of the method lies in optimizing water and 

superplasticizer dosages through mortar tests, as there is a strong correlation between the fresh state 

behavior of concrete and its mortar. Nevertheless, this method faces economic viability challenges 

as it requires a high dosage of cement (400 kg/m3), resulting in a cost price of 15% to 20% higher 

than that of other methods. Despite the validation of all tests recommended by the French Civil 

Engineering Association (AFGC., 2008), this method does not reveal the viscosity of the obtained 

concretes. 

The Dreux-Gorisse method optimizes paste volume by adding fillers and aggregating aggregates 

by selecting granular fractions and conducting granulometric analyses to identify missing classes 

(Dreux, G. Festa, J., 1998). This method offers relatively low quantities of cement, water, and 

superplasticizers, resulting in a smaller paste volume than other methods. Originally designed for 

ordinary concrete mixture design, it provides a more cost-effective and realistic industrial solution. 

The cement dosage is standard (350 kg/m3), and the manufacturing process is straightforward: 

aggregates are introduced, mixing water is added in small proportional quantities, followed by the 

equivalent binder (cement + addition) after mixing, and any remaining water is presented along with 

an admixture. While some tests recommended by regulations are validated, such as the slump flow 

test (SF=70cm) and sieve stability (π=11%), the method falls short in the L-box test (H2/H1=0.75), 

which is close to the norm. Improving the paste volume to more than (370 kg/m3) is essential to 

stabilize the concrete and prevent blockage. To apply this method correctly, experimental 

determination of the required coefficients is necessary. Interestingly, there is no correlation between 

dynamic segregation (H2/H1=0.75) and static segregation represented by the percentage of laitance 

collected during sieve stability tests (π=11%). The Japanese formulas are theoretically the most 

stable despite having the highest rates of milt. 

The ANN method offers an alternative for mathematical modeling based on algorithmic 

calculation (Dreyfus, G et al., 2002., Dreyfus, G et al., 2008). The approach involves presenting 

data extracted and collected from literature research to build a comprehensive database. The ANN 

method has relatively high quantities of sand, water, and superplasticizers, influenced by the W/C 

and W/F ratios, while gravel and filler quantities are lower than other methods. The mixture 

generated by this method is random, as the database comprises information from 24 different 

sources, all representing experimental projects on SCC. The data underwent a filtering process to 

reduce anomalies and variations within the database. 

Based on simulations, the model allowed for studying the relationships and dependencies among 

the various components of concrete and its rheological properties. It produced acceptable results in 

mixture design. This approach can lead to more precise and faster SCC mixtures based on the 

fundamental properties characterizing their fresh state, particularly 'workability.' 

All tests recommended by regulations (AFGC., 2008) are validated and deemed acceptable, 

including the slump flow test (SF=72 cm), stability to the sieve test (π=3.4%), and the L-box test 

(H2/H1=0.80). The results of this model demonstrate that the ANN approach is a valuable and 

powerful tool for addressing a wide range of workability issues and predicting concrete properties 

compared to statistical and conventional methods. However, it is worth noting that the applicability 

of this approach may vary depending on the specific materials used in each concrete mixture 

(Sarıdemir, M et al., 2009). 

 

 

 

Conclusion 
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The study aimed to identify, understand, and assess the possible relationship between mixture design 

methods and rheological parameters of SCC, as well as determine the optimal approach to achieving 

these objectives. We developed three mixture design methods, each consisting of nine tests, to cover 

a wide range of rheological properties. The following conclusions were drawn from our analysis: 

• All three mixture design methods produced SCC that met European Requirements. However, the 

L-Box test for the Dreux-Gorisse method (H2/H1=0.75) has not yet been validated. 

Characterization tests confirmed the reliability of the paste volume calculated by all three 

methods. 

• A strong correlation was found between the spread and L-Box tests. Notably, the paste volume 

emerged as a key factor in achieving the L-Box test requirements, particularly when a mixture 

resulted in very fluid concrete (slump flow test greater than 65 cm). This indicates a significant 

correlation between paste volume and L-Box test results. 

• The correlation between paste volume and spread was more significant than that between 

superplasticizer dosage and the L-Box test, suggesting that superplasticizer indirectly influences 

flow through its effect on concrete rheology rather than directly impacting flow. 

• The relationships observed between the three tests underscore the importance of conducting all 

tests despite potential challenges, to minimize testing costs and ensure accurate characterization 

of concrete. However, each method requires a certain number of tests to characterize constituents 

or interactions effectively. 

• Regardless of the chosen method, laboratory testing is essential for concrete mixture design, as 

SCC does not conform to a theoretical formula. Factors such as aggregate type, shape, 

granulometry, fineness, chemical composition of admixtures and binders, and workability 

outcomes of combinations are all critical considerations. 
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