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Abstract 

This study investigates the growing scientific and industrial interest in the dynamics of fluids around 

bodies, with a particular focus on thermal fluctuations. These phenomena are prevalent in various 

scenarios, such as oil extraction platforms, power transmission lines, and fluid-structure 

interactions, necessitating a comprehensive understanding of vortex generation, heat transfer, and 

fluid dynamic forces. We employ the Immersed Boundary Method (IBM) to simulate two-

dimensional, incompressible flows around stationary and rotating heated (isothermal) cylinders. 

Using a computational framework developed in C/C++, we analyze the effects of variations in 

cylinder rotation rates on flow dynamics and thermal distributions. This study involves multiple 

simulations to evaluate the stability of the method and extract relevant parameters, including drag, 

lift coefficients and Nusselt numbers, along with velocity, pressure, vorticity, and temperature fields. 

Through systematic comparison with existing literature, we aim to validate our findings and 

contribute to the continuous improvement of numerical accuracy in this domain. By elucidating 

these complex phenomena, our research aims to provide valuable insights for practical applications 

in industrial and engineering contexts. The objective of this work is to analyze the combination of 

heat transfer phenomena with rotation in isothermal cylinders and their thermofluid-structure 

interaction. To achieve this, a low computational cost C/C++ code (in terms of memory and 

computational resources) was developed. Furthermore, numerical simulations indicated that with an 

increase in the Reynolds number, there is an increase in the drag coefficient, highlighting the 

significant influence of the pressure distribution downstream of the cylinder. This pressure 

distribution is strongly affected by vortex formation and detachment, thereby validating the 

methodology. 
Keywords: Immersed Boundary Method, Isothermal Rotating Cylinder, Numerical Simulation, 

Incompressible Newtonian Flow. 
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Resumo 

Este estudo investiga o crescente interesse científico e industrial na dinâmica dos fluidos ao redor 

dos corpos, com foco particular nas flutuações térmicas. Esses fenômenos são predominantes em 

vários cenários, como plataformas de extração de petróleo, linhas de transmissão de energia e 

interações fluido-estrutura, necessitando de uma compreensão abrangente da geração de vórtices, 

transferência de calor e forças dinâmicas de fluidos. Empregamos o Método de Fronteira Imersa 

(IBM) para simular fluxos bidimensionais e incompressíveis em torno de cilindros aquecidos 

(isotérmicos) estacionários e rotativos. Utilizando uma estrutura computacional desenvolvida em 

C/C++, analisamos os efeitos das variações nas taxas de rotação dos cilindros na dinâmica do fluxo 

e nas distribuições térmicas. Este estudo envolve múltiplas simulações para avaliar a estabilidade 

do método e extrair parâmetros relevantes, incluindo coeficientes de arrasto, sustentação e número 

de Nusselt, juntamente com campos de velocidade, pressão, vorticidade e temperatura. Através da 

comparação sistemática com a literatura existente, pretendemos validar os nossos resultados e 

contribuir para a melhoria contínua da precisão numérica neste domínio. Ao elucidar esses 

fenômenos complexos, nossa pesquisa visa fornecer informações valiosas para aplicações práticas 

em contextos industriais e de engenharia. O objetivo deste trabalho é analisar a combinação dos 

fenômenos de transferência de calor com rotação em cilindros isotérmicos e sua interação 

termofluido-estrutura. Para isso, foi desenvolvido um código C/C++ de baixo custo computacional 

(em termos de memória e recursos computacionais). Além disso, simulações numéricas indicaram 

que com o aumento do número de Reynolds, há um aumento no coeficiente de arrasto, destacando 

a influência significativa da distribuição de pressão a jusante do cilindro. Esta distribuição de 

pressão é fortemente afetada pela formação e desprendimento de vórtices, validando assim a 

metodologia.  

Palavras-chave: Método da Fronteira Imersa, Cilindro Rotativo Isotérmico, Simulação Numérica, 

Escoamento Newtoniano Incompressível. 

 

 

1. Introduction 

 

A fluid can be conceptualized as a substance that undergoes continuous deformation when 

subjected to shear stress, regardless of its magnitude. Fluids play crucial roles across diverse 

domains, including natural phenomena and industrial processes, whether in isolation, as mixtures 

of different fluids, and/or in interaction with solid surfaces. Consequently, comprehending fluid 

dynamics within each application domain is of paramount importance. 

Much of the research in fluid dynamics involves flows with intricate geometries, spanning 

applications in aerodynamics, bioengineering, hydraulic machines, porous media, and beyond. Prior 

to the advent of computers, the costs associated with experimental studies were largely confined to 

wind tunnels and field research. However, with the rise of computers and their high-capacity data 

processing and storage capabilities, aimed at tackling extensive calculations and numerical analyses, 

the costs linked to these investigations decreased, rendering numerical experiments more feasible 

and reliable. Yet, despite the undeniable strides in mathematical science, obtaining analytical 

solutions for nonlinear differential equations remains elusive, except in cases of highly simplified 

scenarios. Consequently, endeavors to analyze real-world fluid flow situations, beyond the realm of 

pure experimentation, continue to face the challenges posed by intricate technical requirements and 

the necessity for robust computational resources. 
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Mathematicians, physicists, engineers, and other researchers continually pioneer novel 

numerical simulation techniques, aiming to bridge the gap between numerical results and 

experimental findings. Computational Fluid Dynamics (CFD), in particular, leverages increasingly 

robust numerical methods and techniques to yield more precise results. However, tackling complex 

geometries remains a formidable challenge in CFD. Additionally, when boundaries are mobile, their 

motion disrupts flow dynamics, and conversely, flow dynamics affect boundary movement, 

compounding the complexity of the problem.  

In methods relying on numerical meshes, the selection of an appropriate mesh is contingent upon 

the specific problem under investigation. Consequently, an algorithm designed, for instance, to 

handle curvilinear meshes may not be suitable for orthogonal meshes. Certain techniques utilize 

meshes that conform to the topology of the domain, such as adhering to a surface or a body of 

interest, known as adaptive meshes (referred to as Body-Fitted Mesh). 

Numerous industrial challenges hinge on intricate geometries, posing complexities for 

computational modeling. Employing adaptive unstructured meshes to represent such intricate 

geometries can lead to intricate discretized formulations, escalating computational expenses and 

sometimes rendering numerical solutions impracticable. The mesh must intricately conform to both 

the object of study and the domain, with its generation often presenting nontrivial obstacles and 

potential errors between its constituent nodes. In the context of block discretization, inadequately 

constructed couplings between disparate domains may engender physical inconsistencies. 

In addition to geometric complexity, another challenge arises in problems involving mobile 

and/or deformable bodies. Various proposals in the literature aim to address this class of problems, 

although none are universally definitive. Some methodologies rely on adaptive meshes to 

characterize such geometries, incorporating remeshing techniques for mobile and/or deformable 

bodies. Alternatively, other approaches are grounded in the concept of the Immersed Boundary 

Method. The latter offers certain advantages, such as the ability to simulate complex geometries 

within fixed orthogonal meshes, obviating the necessity for domain remeshing. In studies involving 

complex geometries immersed in flow, it is common to previously use a simpler geometry. This is 

usual for validating/improving methodologies or for a better understanding of flow dynamics. 

There are still few studies regarding the flow around rotating circular cylinders with heating, 

with their examination initially addressed in the work of Badr and Dennis (1985). In this study, the 

authors investigated laminar flow with heat transfer by convection from a rotating circular cylinder 

immersed in a uniform flow. The analysis of phenomena resulting from the combination of rotation 

and heating, such as those found in flow meters, is rarely found in the literature due to the 

complexities involved in analyzing all parameters, including Reynolds, Strouhal, and Nusselt. 

Furthermore, works addressing flow around heated rotating cylinders are even scarcer compared to 

studies on flow around rotating cylinders without heating. Below are mentioned some relevant 

studies that investigate heat transfer, boundary layer, and natural and mixed convection in heated 

rotating cylinders. 

Badr and Dennis (1985) considered the problem of heat-transfer by convection from an 

isothermal circular cylinder rotating around its own axis, immersed in a forced uniform flow. The 

authors reported that the temperature fields are strongly influenced by the cylinder rotation speed. 

They found that the total heat transfer coefficient tends to decrease as the cylinder speed increases. 

They attributed this to the presence of a layer of rotating fluid around the cylinder that separates the 

cylinder from the main stream flow. 

Paramane and Sharma (2009) developed a numerical study focused on heat transfer by forced 

convection through a rotating circular cylinder with a constant rotation speed α, varying between 0 

and 6. The flow transitions were shown for different Reynolds numbers and the different rotation 

rates. A block-structured mesh was used with a total number of 43.076 volumes. An elliptical mesh 

generation was used in the third block, where the cylinder is located. The authors verified and 

concluded that the decrease in the Nusselt number with the increase in rotational speed can be 

explained based on the fact that the fluid retained inside the vortex acts as a “buffer zone” for heat 

transfer between the cylinder and the free current and thus limits heat transfer. 
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Page et al. (2011) investigated the thermal behavior of a set of aligned cylinders subject to 

natural convection, with the objective of maximizing the heat transfer rate. A numerical method was 

used to solve the equations that describe the temperature and flow fields. The spacing between the 

aligned cylinders was optimized for each flow regime along with the cylinder rotation speed. The 

results also showed that there is an increase in the heat transfer rate of rotating cylinders compared 

to stationary cylinders. The results were compared with others available in the literature, showing 

convergence and precision. 

Sharma and Dhiman (2012) developed research related to heat transfer by forced convection in 

a rotating circular cylinder for Prandtl number (Pr) values ranging from 0.7 to 100, in steady state. 

The methodology used was the second order Upwind Method, to approximate the convective terms 

of the equation of motion, while the diffusive term was discretized using the Centered Difference 

Method. Experimental results were presented for uniform heat conduction, for different values of 

the Prandtl number, for two fluids, water and ethylene glycol (automotive antifreeze). The 

commercial mesher GAMBIT was used and numerical calculations were performed using FLUENT 

for different conditions of Reynolds number, Prandtl number and rotation rates. The mesh near the 

surface of the cylinder was fine enough to resolve the boundary layer region. The isothermal patterns 

were presented, analyzed and compared with other results available in the literature, obtaining good 

numerical convergence. 

Elghnam (2014) presented an experimental study of the dynamics of a flow over a rotating 

cylinder. Numerical calculations were performed using the FLUENT code based on the Finite 

Volume Method. The author aimed to analyze the flow dynamics by obtaining isothermal lines 

around the rotating cylinder, as well as the temperature distribution around the cylinder. The results 

of the heat transfer analysis were obtained as a function of dimensionless parameters, which are: 

Nusselt number (𝑁𝑢), Reynolds number (𝑅𝑒) and Grashof number (𝐺𝑟). Experimental 

measurements were performed in the range of 1.880 to 6.220 Reynolds numbers and 14.285 to 

714.285 Grashof numbers, while numerical calculations were performed for Reynolds numbers 

ranging between 0 to 100.000 and Grashof numbers in the range of 100 to 1.000.000. A 

computational mesh generated by GAMBIT was used. For Reynolds numbers greater than 8.000, 

heat transfer rates were independent of the Grashof number (for 𝐺𝑟 ≤ 100.000). Both Grashof and 

Reynolds numbers influenced the rate of heat transfer. Furthermore, the effects of rotation on heat 

transfer were presented in terms of isothermal patterns, streamlines and Nusselt numbers. For the 

rotating circular cylinder, the maximum and minimum values shift in the direction of rotation. The 

difference between the maximum and minimum values of the Nusselt number decreased with 

increasing Reynolds number. For high Reynolds values, this difference tended to disappear and the 

Nusselt number became constant. As a result, it was found that the dependence of the Nusselt 

number on the Grashof number decreased as the value of the Reynolds number increased, and with 

the increase of this number for high values of Reynolds, this dependence disappeared. 

Santos and Sales (2023) present an immersed boundary method for analyzing fluid-body 

interactions in two-dimensional (2D) flows around complex geometries, focusing on heat transfer 

and turbulence. The method uses a Eulerian mesh for the fluid and a Lagrangian mesh for the 

immersed body, ensuring non-slip conditions and accounting for heat exchange. The Navier-Stokes 

and energy equations are solved using Smagorinsky (LES) and Spalart-Allmaras (URANS) 

turbulence models. A computational code was implemented to calculate the lift, drag and Nusselt 

coefficients, with results compared to previous studies at different Reynolds numbers. This research 

advances the understanding of fluid-body interactions in complex geometries and thermofluid 

dynamics. 

The following section describes the fundamentals of the Fronteira Imersa methodology, relevant 

to the physical-mathematical understanding of the method. 
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2. Theoretical Foundations 

 

2.1 Introduction to the Immersed Boundary Methodology 

 Key physical phenomena in fluid mechanics find expression through mathematical modeling, 

typically comprising a set of nonlinear partial differential equations known as the conservation laws 

of fluid mechanics. These laws encompass the conservation of momentum, mass, and energy, 

collectively portraying the influences of forces on fluid dynamics and the associated energy 

exchanges across various flow regions. For Newtonian fluids, the viscous stress term can be 

correlated with the velocity field's deformation rates, enabling the description of flow dynamics 

through the Navier-Stokes equations. Advancements in high-performance computing and numerical 

techniques have facilitated the solution of numerous fluid mechanics problems. 

 In this work, the Immersed Boundary Method is used to model the presence of solid bodies 

immersed in a two-dimensional flow of an incompressible fluid. A force source term �⃗� introduced 

in the Navier-Stokes equations is used to model the solid-fluid interface. Similarly, the heating of 

the immersed body is modeled by an energy source term 𝑄. Thus, the methodology is based on a 

mixed formulation, with one mesh for the fluid (fixed Eulerian mesh) and another for the fluid-solid 

interface (Lagrangian mesh).  

 A particular code in C/C++ language was used to solve two-dimensional flows over mobile 

immersed bodies with heat transfer by forced convection. Flows around a stationary and rotating 

heated cylinder were simulated for different Reynolds numbers and different rotations. The 

computer program called IBM-Code is based on the explicit solution of the Navier-Stokes and 

Energy equations using the Euler method. Spatial discretizations were made using Centered Finite 

Differences. To correct pressure, the MSIP (Modified Strongly Implicit Procedure) method, 

proposed by Schneider and Zedan (1981), was used to solve linear systems. The vorticity, 

temperature, pressure and velocity fields and the drag and lift coefficients, the Nusselt number and 

the Strouhal number were obtained. 

 Next, the formulation that describes the Immersed Frontier Method used in the present work is 

presented. 

 

2.2 Formulation for the fluid 

The non-dimensionalized governing equations were written with the following assumptions: 

• Laminar flow; 

• Two-dimensional; 

• Newtonian fluid; 

• Incompressible flow, with constant properties. The buoyancy term, based on the 

Boussinesq approximation, does not appear, since in the present work only cases of 

forced convection are studied; 

• Source terms in the energy and momentum equations based on the Immersed Frontier 

Method; 

• Viscous dissipation and compression work are negligible in the energy equation. 

 

In the present work, the calculation domain is modeled by a fixed Cartesian mesh that represents 

the fluid, as shown in Fig. 2.1. The equations of conservation of mass, motion and energy for 

incompressible flows of Newtonian fluids can be written in a dimensionless form, as follows: 

 

∇⃗⃗⃗ . �⃗⃗� = 0 , 
 

(2.1) 

[
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗�. ∇⃗⃗⃗)�⃗⃗�] =  −∇⃗⃗⃗𝑝 + (𝑅𝑒)−1 ∇2 �⃗⃗� + �⃗� , 

 

(2.2) 
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𝜕𝜃

𝜕𝑡
+ �⃗⃗�. ∇⃗⃗⃗𝜃 =  (𝑅𝑒 𝑃𝑟)−1 ∇2𝜃 + 𝑄 , 

 
(2.3) 

where 𝑝 is the pressure and �⃗⃗� is the velocity vector. The term �⃗� is the Eulerian force field. This 

force source term �⃗� models the existence of the interface immersed in the flow. Just as the source 

term �⃗�  “visualizes” the body in the flow, the Eulerian energy term 𝑄 is responsible for making the 

flow “feel” the presence of the heated solid interface, being non-zero in Eulerian meshes close to 

the Lagrangian mesh. The product between 𝑅𝑒 (Reynolds) and 𝑃𝑟 (Prandtl) is known as the Péclet 

number and 𝜃 is the dimensionless temperature of the immersed interface. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both the force term �⃗� and the energy term 𝑄 are obtained with the aid of the Dirac Delta 

function, being given by 

�⃗�( �⃗� , 𝑡) =  ∫ 𝑓(�⃗�𝑘, 𝑡)

⬚

Γ

𝛿(�⃗� − �⃗�𝑘) 𝑑�⃗�𝑘  , 

 

(2.4) 

𝑄( �⃗� , 𝑡) =  ∫ 𝑞 ( �⃗�𝑘 , 𝑡)𝛿(�⃗� − �⃗�𝑘) 𝑑�⃗�𝑘  
⬚

Γ

, 

 

(2.5) 

where 𝑓(�⃗�𝑘, 𝑡) is the Lagrangian force density, calculated over the interface points, �⃗� is the position 

of a Eulerian fluid particle and �⃗�𝑘 is the position of a Lagrangian point on the interface and 𝑞 is the 

source of heating at the Lagrangian point �⃗�𝑘 at the immersed boundary. The Eqs. (2.4) and (2.5) 

model the interaction between the immersed boundary and the fluid, through the calculation of the 

force and energy field in the region where the immersed object is located. In the developed model, 

there are no constants to be adjusted, as in the models proposed by Peskin (1977) and Goldstein 

(1993), in addition, it is not necessary to use highly sophisticated algorithms to interpolate variables 

between two meshes or locate meshes neighboring this interface. This model allows representing 

the presence of the interface by solving the equations of motion and energy at each point of the 

Lagrangian mesh. 

As the discretization of the Dirac Delta Function is not possible, it is replaced using a known 

distribution/interpolation function. This function aims to exchange information between the two 

meshes (Eulerian and Lagrangian), regarding pressure, speed, force and energy. The Eq. (2.6) shows 

the discrete formulation of the Eulerian force calculation, using this distribution/interpolation 

function 

�⃗� 

�⃗�𝑘 

x 

y 

Fig 2.1- Illustrative representation of Eulerian (for the domain) and Lagrangian (for the 

interface) meshes for an immersed body with arbitrary geometry. ∆𝑆 is the distance 

between the Lagrangian points. 
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�⃗� (�⃗�) =  ∑𝐷𝑖𝑗( �⃗� −  �⃗�𝑘)𝑓(�⃗�𝑘, 𝑡)∆𝑠
2(�⃗�𝑘) ,

𝑘

 (2.6) 

where ∆s(x⃗⃗k) is the distance between two Lagrangian points, represented in Fig. 2.1. The 𝐷𝑖𝑗 is the 

distribution/interpolation function that in the present work has properties of a Gaussian function. 

Similarly, 𝑄 has the function of modeling the temperature field, being given by 

𝑄 (�⃗�, 𝑡) =  ∑𝐷𝑖𝑗( �⃗� −  �⃗�𝑘) 𝑞(�⃗�𝑘, 𝑡)∆𝑠
2(�⃗�𝑘) .

𝑘

 (2.7) 

 

The proposed formulation used by Peskin (1977) and McQueen (1994), with the distribution 

function 𝐷𝑖𝑗 represented by 

𝐷𝑖𝑗(�⃗�𝑘) =  
𝑔1  [ 

𝑥𝑘 − 𝑥𝑖
ℎ

 ] 𝑔1 [ 
𝑦𝑘 − 𝑦𝑗
ℎ

 ]

ℎ2
 , 

where, 

𝑔1(𝑟) =  {

𝑔2(𝑟), 𝑖𝑓 ‖𝑟‖ < 1 
1

2
− 𝑔2(2 − ‖𝑟‖), 𝑖𝑓 1 <  ‖𝑟‖ < 2  ,

0, 𝑖𝑓 ‖𝑟‖ > 2

 

 

on what 𝑔2(𝑟) =  
3−2‖𝑟‖+ √1+4‖𝑟‖−4‖𝑟‖2

8
 , and 𝑟 represents [

𝑥𝑘− 𝑥𝑖

ℎ
 ] or [

𝑦𝑘− 𝑦𝑗

ℎ
 ]. The term ℎ is the 

size of the Eulerian mesh and (𝑥𝑖, 𝑦𝑖) are the coordinates of a Eulerian point �⃗� of the domain (Γ). 

This function is of the Gaussian type, for more details, Peskin and McQueen (1995). The force 

values �⃗� and 𝑄 will be null throughout the calculation domain, with the exception of those close to 

the immersed interface, where they virtually model the presence of the heated immersed body, even 

though it has a complex geometry or is in motion. 

In the next section, we present the formulation for the fluid-body interface, which plays an 

important role in the numerical simulation of fluid-body interactions in Computational Fluid 

Dynamics (CFD). This aspect involves defining how the fluid and body domains interact, ensuring 

adequate physical-mathematical representation of the boundary conditions, accounting for the 

phenomena of interest. 

 

3. Formulation for the fluid-body interface  

 

In the present work, an alternative model is used to calculate the density of the Eulerian force 

�⃗�( �⃗� , 𝑡) and 𝑄(�⃗�, 𝑡). The model used allows the calculation of  �⃗�( �⃗� , 𝑡) based on fluid-body 

interaction. This model is an alternative to models that use ad-hoc constants to evaluate the 

Lagrangian force. The model dynamically evaluates the force that the fluid exerts on the solid 

surface immersed in the flow and the thermal exchange between them.  

The Lagrangian force 𝑓(�⃗�, 𝑡) and the thermal source 𝑞(�⃗�, 𝑡) were evaluated separately, that is, 

for the Lagrangian force, a momentum balance was carried out on a fluid particle located near the 

fluid-body interface, while for the thermal source, the dimensionless energy equation was applied, 

which shows the iteration between the particle-fluid and the interface, as shown in Fig. 3.1, taking 

into account all terms of the Navier-Stokes equation. In this way, the density of the Lagrangian force 

can be expressed by Eq. (3.1). 
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The principle of conservation of momentum and energy is applied to any fluid particle that 

makes up a flow. These conservation principles must also be applied to fluid particles that are in 

contact with the fluid-body interface. Therefore, taking the particle illustrated in Fig. 3.1, through 

which an immersed interface is passing, we arrive at the following formulations: 

 

𝑓 (�⃗�𝑘, 𝑡) =  
𝜕�⃗�  (�⃗�𝑘, 𝑡)

𝜕𝑡⏟      
𝑓𝑎

+ ∇⃗⃗⃗ . (�⃗⃗�(�⃗�𝑘, 𝑡)�⃗⃗�(�⃗�𝑘, 𝑡))⏟            
𝑓𝑖

−
1

𝑅𝑒
∇2�⃗⃗�(�⃗�𝑘, 𝑡)⏟        

𝑓𝑣

+ ∇⃗⃗⃗𝑝(�⃗�𝑘 , 𝑡)⏟      
𝑓𝑝

 , 

 

(2.8) 

𝑞(�⃗�𝑘, 𝑡) =  
𝜕𝜃

𝜕𝑡
 (�⃗�𝑘, 𝑡) + ∇⃗⃗⃗ . (�⃗⃗�(�⃗�𝑘, 𝑡) 𝜃(�⃗�𝑘, 𝑡)) − 

1

𝑅𝑒 𝑃𝑟
 ∇2𝜃 (�⃗�𝑘, 𝑡) , (2.9) 

 

the terms on the right side of Eq. (3.1) are respectively called acceleration force 𝑓𝑎(�⃗�𝑘, 𝑡), inertial 

force 𝑓𝑖  (𝑥 𝑘, 𝑡), viscous force 𝑓𝑣(𝑥 𝑘, 𝑡), and pressure force 𝑓𝑝(𝑥 𝑘, 𝑡), Eq. (3.1) can be rewritten in 

simplified form in Eq. (3.2) below, given by 

𝑓(�⃗�𝑘, 𝑡) =  𝑓𝑎(�⃗�𝑘, 𝑡) + 𝑓𝑖 (�⃗�𝑘, 𝑡) + 𝑓𝑣(�⃗�𝑘, 𝑡) + 𝑓𝑝(�⃗�𝑘, 𝑡) , (2.10) 

 

it is important to note that these terms are calculated at the interface points, through interpolations 

of the pressure, velocity and temperature fields calculated in the Eulerian mesh. 

 

3.1 The Indicator Function 

An indicator variable 𝐼 (�⃗�, 𝑡) is calculated with the purpose of identifying the position of the 

immersed body. It can also be used when it is necessary to exclude the region internal to the body, 

in the variable interpolation process. The indicator function used in the present work was proposed 

by Unverdi and Tryggvason (1992). It is an interface monitoring method, where the function is 

calculated over the entire domain or part of it, with the assignment of a unit value for points internal 

to the interface, and zero for external points and values between 0 and 1 for points of transition, i.e., 

points on the interface.  

This function is based on a function �⃗�(�⃗�, 𝑡) and can be expressed by 

 

∇⃗⃗⃗ 𝐼 (�⃗�, 𝑡) =  �⃗�(�⃗�, 𝑡) , 
 

(3.1) 

and the second member of the equality of Eq. (3.1) is given by 

 

�⃗�(�⃗�, 𝑡) =  ∑𝐷𝑖𝑗  (�⃗� −  �⃗�𝑘) �⃗⃗�(�⃗�𝑘) ∆𝑆 (�⃗�𝑘)

𝑘

 , (3.2) 

where �⃗⃗�(�⃗�𝑘) is the vector normal to the surface. 

𝑓(�⃗�𝑘 , 𝑡) 

Interface 

�⃗�𝑘  

Figure 3.1 – Control volume located over a Lagrangian fluid particle.  

𝑞(�⃗�𝑘 , 𝑡) 
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Now, applying the divergent operator in Eq. (3.1), the Laplacian of the indicator function is 

obtained, being represented by 

 

∇⃗⃗⃗2 𝐼 (�⃗�, 𝑡) =  ∇⃗⃗⃗ �⃗� (�⃗�, 𝑡) ,  
 

(3.3) 

in this way, after solving the Poisson equation, Eq. (3.6), the field of the indicator function is 

obtained 𝐼 (�⃗�, 𝑡) across the entire domain of calculation. To solve the linear system resulting from 

the discretization of Eq. (3.6), the MSIP (Modified Strongly Implicit Procedure) method was used. 

 

3.2 Calculation of velocities, pressure and temperature 

 

The derivatives of velocity, pressure and temperature are calculated by interpolating the 

velocity, pressure and temperature fields from the Eulerian mesh to Lagrangian points, which are 

not necessarily coincident with the Eulerian nodes. These calculations must take into account that 

the velocity of the fluid over the interface must be equal to the velocity at the interface, to guarantee 

the non-slip/slip condition. The velocity and pressure derivatives are calculated using the velocity 

and pressure fields obtained in Eq. (3.3) and the temperature is obtained using Eq. (3.2). Among 

several interpolation possibilities, we chose to interpolate �⃗⃗�(�⃗�𝑘, 𝑡) and 𝑝(�⃗�𝑘, 𝑡) at points close to 

the interface, as illustrated in Fig. 3.2. The interpolation method is shown next. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the interpolation process, the distribution/interpolation function 𝐷𝑖𝑗 was used to obtain 

the velocities, pressures and temperatures, already mentioned previously, by Eq. (2.8). In order to 

reduce computational cost, this function is evaluated only in a square region close to the point 𝑥 𝑘, 

therefore, for Eulerian points very far from the point 𝑥 𝑘 analyzed, this function is null. The use of 

points internal to the interface, during the interpolation procedure, is physically coherent, since the 

internal flow is also solved by the Navier-Stokes equations. This in turn, being contrary to external 

flow, acts to recover the non-slip/slip condition. Figs. 3.3 (a) and (b), show an illustrative scheme 

of the interpolation procedure of the two velocity components, on auxiliary point 𝑥 𝑘. 

  

Figure 3.2 – Points used in the speed 

interpolation scheme. 
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Figure 3.3 – Illustrative diagram of the velocity interpolation procedure at point 3: (a) for the u 

component and (b) for the v component. 

 

 

Starting from each point 𝑥 𝑘 of the interface, two straight lines are drawn parallel to the system 

of coordinate axes, towards the outside of the interface. In each direction, two distant points are 

marked ∆𝑥 and 2∆𝑥 of the interface. This distance is necessary in order to prevent two auxiliary 

points from being allocated within the same Eulerian volume. Meshes that are at a distance greater 

than 2∆𝑥 of the Lagrangian point, do not contribute to the interpolation. For the calculation in time 

advance, a discretization is made expressed by  
𝑢𝑘−𝑢𝑓𝑘

∆𝑡
 and 

𝑣𝑘−𝑣𝑓𝑘

∆𝑡
, where 𝑢𝑘 and 𝑣𝑘 represent the 

interface velocities, 𝑢𝑓𝑘 and 𝑣𝑓𝑘 the velocities of the fluid over the interface, taking into account the 

velocities internal and external to the interface over the Eulerian mesh. Similarly, the temperature 

of the fluid at the interface is equal to the temperature of the solid, at each instant of time, being 

expressed by 
𝜃𝑘−𝜃𝑓𝑘

∆𝑡
, where 𝜃𝑘 is the temperature at the interface and 𝜃𝑓𝑘 the temperature of the 

fluid at the interface position. 

The general equation for obtaining the velocity at Lagrangian points �⃗⃗�(�⃗�𝑘) = (𝑢𝑓𝑘, 𝑣𝑓𝑘) and at 

auxiliary points, it can be expressed by 

 

�⃗⃗� (�⃗�𝑘) =  ∑𝐷𝑖𝑗(�⃗�𝑖
𝑖

− �⃗�𝑘) �⃗⃗�(�⃗�𝑖) , (3.4) 

 

on what �⃗⃗� (�⃗�𝑘) are the Lagrangian velocities, calculated at the auxiliary points and at the point �⃗�𝑘 

by interpolation of Eulerian velocities  �⃗⃗�(�⃗�𝑖). 
For flow simulations over rotating cylinders, the tangential velocity components of the 

Lagrangian points can be calculated, according to the imposed angular velocity. The simulations 

were carried out for different values of specific rotation and some Reynolds numbers, aiming to 

identify variations in the aerodynamic coefficients, Strouhal and Nusselt numbers. In this case, the 

rotation is carried out only with the projection of the tangential velocity, obtained through the 

imposed angular velocity, in the 𝑥 and 𝑦 components of the velocity, at each Lagrangian point, as 

shown in Fig. 3.4. 
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To calculate the derivatives of pressure and temperature at each Lagrangian point, it was 

necessary to obtain the value of pressure and temperature at the interface, at the point �⃗�𝑘. To 

calculate pressure and temperature, an auxiliary point (P) was used, which is in a normal position at 

a distance ∆𝑥 from the Lagrangian point. It can be seen in Fig. 3.5 that the pressure and temperature 

at this auxiliary point (P) belong to a Eulerian cell, both being transported to the interface. The 

process of obtaining pressure and temperature at the interface was also calculated using auxiliary 

points (1, 2, 3 and 4), calculating the respective derivatives in the 𝑥 and 𝑦 directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The general equations for obtaining the pressure and temperature at points 1, 2, 3 and 4 are 

given by 

𝑝 (�⃗�𝑘) =  ∑𝐷𝑖,𝑗(�⃗�𝑖
𝑖,𝑗

− �⃗�𝑘) 𝑝(�⃗�𝑖) , (3.5) 

𝜃(�⃗�𝑘) =  ∑𝐷𝑖,𝑗(�⃗�𝑖
𝑖,𝑗

− �⃗�𝑘) 𝜃(�⃗�𝑖) , (3.6) 

where 𝑝(�⃗�𝑖) and 𝜃(�⃗�𝑖) are, respectively, the pressures and temperatures in the Eulerian mesh to be 

interpolated, 𝑝(�⃗�𝑘) and 𝜃(�⃗�𝑘) are the Lagrangian pressures and temperatures calculated at points 1, 

Figure 3.5 - Illustrative diagram of the interpolation procedure to obtain pressure and 

temperature. 

     𝑥𝑘,𝑦𝑘 𝑢𝑘 

𝑣𝑘 
𝑉𝑡 

Lagrangian point 

C
yl

in
d

er
 

Figure 3.4 - Illustrative diagram of the projection of tangential velocity. 



The Journal of Engineering and Exact Sciences – jCEC 

12 

2, 3 and 4. It was considered that the pressure gradient in the normal direction is zero and, therefore, 

the pressure at point �⃗�𝑘 is equal to the pressure at point P. This point was used to calculate the 

pressure and temperature on the surface and is schematized in Fig. 3.5.  

The derivatives for calculating the pressure force are obtained using the Finite Difference 

Method, according to Eqs. (3.7) and (3.8): 

 
𝜕𝑝

𝜕𝑥
=  
𝑝2 − 𝑝1
𝑥2 − 𝑥1

  , 

 

(3.7) 

 
𝜕𝑝

𝜕𝑦
=  
𝑝4 − 𝑝3
𝑦4 − 𝑦3

 . 

 

(3.8) 

Now, to calculate the temperature at each time step on the immersed boundary, 𝜃(�⃗�𝑘) was 

used and is interpolated according to Eq. (3.6). After interpolating the velocities, pressure and 

temperature at the interface and at the auxiliary points, the derivatives that make up the terms for 

calculating the Lagrangian source terms in the 𝑥 and 𝑦 directions are determined, with second-order 

Lagrange polynomials. Generically denoting the components of velocity or temperature by 𝜙, the 

calculation of the first and second derivatives in the 𝑥 and 𝑦 directions, respectively, can be 

represented by 
𝜕𝜙

𝜕𝑥
= 
(𝑥𝑖 − 𝑥𝑘) + (𝑥𝑖 − 𝑥2)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥𝑘)
 𝜙1 +

(𝑥𝑖 − 𝑥𝑘) + (𝑥𝑖 − 𝑥1)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥𝑘)
𝜙2 +

(𝑥𝑖 − 𝑥1) + (𝑥𝑖 − 𝑥2)

(𝑥𝑘 − 𝑥1)(𝑥𝑘 − 𝑥2)
 𝜙𝑘  , 

 
(3.9) 

𝜕2𝜙

𝜕𝑥2
= 

2𝜙1

(𝑥1−𝑥2)(𝑥1−𝑥𝑘)
+

2𝜙2

(𝑥2−𝑥1)(𝑥2−𝑥𝑘)
+

2𝜙𝑘

(𝑥𝑘−𝑥1)(𝑥𝑘−𝑥2)
. 

 
(3.10) 

And the derivatives in the 𝑦 direction are given by 
𝜕𝜙

𝜕𝑦
= 
(𝑦𝑖 − 𝑦𝑘) + (𝑦𝑖 − 𝑦4)

(𝑦3 − 𝑦4)(𝑦3 − 𝑦𝑘)
 𝜙3 +

(𝑦𝑖 − 𝑦𝑘) + (𝑦𝑖 − 𝑦3)

(𝑦4 − 𝑦3)(𝑦4 − 𝑦𝑘)
𝜙4 +

(𝑦𝑖 − 𝑦3) + (𝑦𝑖 − 𝑦4)

(𝑦𝑘 − 𝑦3)(𝑦𝑘 − 𝑦4)
 𝜙𝑘 , 

 
(3.11) 

𝜕2𝜙

𝜕𝑦2
= 

2𝜙3
(𝑦3 − 𝑦4)(𝑦3 − 𝑦𝑘)

+
2𝜙4

(𝑦4 − 𝑦3)(𝑦4 − 𝑦𝑘)
+

2𝜙𝑘
(𝑦𝑘 − 𝑦3)(𝑦𝑘 − 𝑦4)

 , 

 

(3.12) 

where 𝜙1, 𝜙2, 𝜙3 and 𝜙4 are obtained through the interpolation of the closest Eulerian variables, as 

previously mentioned. The coordinates of the auxiliary points 1, 2, 3 and 4, and the coordinates of 

the point �⃗�𝑘, are respectively the pairs, (𝑥𝑘, 𝑦𝑘), (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) and (𝑥4, 𝑦4). The points 

1, 2, 3 and 4 are located outside the interface, so that the force calculation is independent of the flow 

properties inside it. The distance between points 1, 2, 3 and 4, as previously stated, is fixed at ∆𝑥. 

Therefore, the calculations of inertial, viscous force and pressure are independent of the flow inside 

the interface. The same is true for the energy equation. 

 The acceleration force, which is one of the terms of the total Lagrangian force, first installment 

of Eq. (2.8), was obtained through an approximation according to the expression 

𝑓𝑎 = 
𝜕�⃗⃗�𝑘
𝜕𝑡

=  
�⃗⃗�𝑘 − �⃗⃗�𝑓𝑘

∆𝑡
 , 

 

(3.13) 

on what �⃗⃗�𝑘 represents the interface velocity vector and �⃗⃗�𝑓𝑘 represents the fluid velocity vector at the 

same interface position. This acceleration force is called forcing acceleration and represents the 

portion with the greatest influence in the calculation of the total Lagrangian force, and can be 

interpreted as the portion that guarantees the non-slip/sliding condition. Similarly, the time 

derivative of temperature is given by 
𝜕𝜃𝑘

𝜕𝑡
= 

𝜃𝑓𝑘− 𝜃𝑘

∆𝑡
.  
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An important calculation is that of the norm 𝐿2, which provides a difference between the fluid 

velocity at the interface �⃗⃗�𝑓𝑘 and the interface velocity itself �⃗⃗�𝑘. Strictly speaking, physically, the 

norm must be null, so that the non-slip/slip condition is satisfied, however, a small variation occurs 

due to the imposition being made explicitly, both for the non-slip/slip conduction. as for the 

temperature imposed at the interface. The value of the norm 𝐿2 is given by Eq. (3.14), and a value 

around 10−3 is considered acceptable, according to Vedovoto (2007):  

𝐿2 = 
√∑ [(𝑢𝑘 − 𝑢𝑓𝑘)

2
− (𝑣𝑘 − 𝑣𝑓𝑘)

2
]

𝑛𝑝ℓ
, 

(3.14) 

where 𝑛𝑝ℓ is the number of Lagrangian points on the immersed interface. 

3.3 Dimensionless Parameters and Nondimensionalization of Equations 

Some dimensionless parameters that characterize the forced flow over a heated rotating 

cylinder are presented below, such as the pressure coefficient, the Strouhal number and the drag and 

lift coefficients, the Reynolds number and the Nusselt number. The pressure coefficient is defined 

as 𝐶𝑝 = 
(𝑝−𝑝∞)

0,5𝜌𝑈∞
2 , where 𝑝∞ is the pressure of the free stream, far from the immersed interface. The 

dimensionless time scale is defined as 𝑇 = 
𝑈∞ 𝑡

𝑑
. The drag force on a body submerged in a fluid 

arises from the pressure distribution and the shear stress distribution along the body. The drag 

coefficient is defined as 𝐶𝐷 = 
𝐹𝑑

1
2
 𝜌 𝑈∞

2  𝑑
 , where 𝐹𝑑 is the drag force per unit length, calculated using 

the Lagrangian force component ( N/m3), in the direction of flow.  

The drag force can be calculated using the x component of the Lagrangian force, in the flow 

direction, as 𝐹𝑑 = −  ∫ 𝑓𝑥  𝑑𝑠
𝐿

0
, where 𝑓𝑥 is the 𝑥 component of the Lagrangian force, acting on the 

fluid and 𝑑𝑠 is the length element at which the point  �⃗�𝑘 is centered, and 𝐿 is the length of the 

interface. The negative sign is due to the fact that drag and lift are due to the forces exerted by the 

fluid on the immersed interface.  

The lift force arises from the oscillation of the vortices formed downstream of the cylinder. 

Analogously to the drag coefficient, the lift coefficient is defined by 𝐶ℓ = 
𝐹ℓ

0,5 𝜌 𝑈∞
2  𝑑

, where 𝐹ℓ is the 

support force, which is calculated by the 𝑦 component of the Lagrangian force, transverse to the 

main flow direction, as 𝐹ℓ = − ∫ 𝑓𝑦 𝑑𝑠
𝐿

0
, where 𝑓𝑦 is the 𝑦 component of the Lagrangian force.  

Another important dimensionless parameter is the Strouhal number, which is defined as the 

dimensionless frequency of vortex shedding 𝑆𝑡 =  
𝑓 𝑑

𝑈∞
 , where 𝑓 is the dimensional frequency of 

formation and detachment of vortices. This frequency can be obtained by the Fast Fourier Transform 

(FFT) of the lift coefficient signal (not discussed in this work).  

Another parameter is the Nusselt number, which, physically analyzed, is a quantity used to 

determine the heat transfer coefficient by convection through conduction, based on dimensional 

analysis, in which it is used to determine parameters through similarity relationships. Thus, it is 

common to express the Nusselt number in dimensionless form as 𝑁𝑢 =  
ℎ.𝑑

𝑘𝑓
, where ℎ is the heat-

transfer coefficient, and 𝑑 is an interface length, where for complex shapes it is defined as the 

volume of the body divided by its surface area, and 𝑘𝑓 is the thermal conductivity of the fluid. The 

local Nusselt number was obtained by the temperature gradient in the direction normal to the 

interface by 𝑁𝑢 = 
𝜃𝑝2− 𝜃𝑝

∆𝑛
, where ∆𝑛 =  ∆𝑥. 

The average of this number can be determined around the immersed surface, with the 

average of the Nusselt number calculated around the surface of the immersed cylinder using the 

following mathematical formulation 
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𝑁𝑢 =  
1

𝜋 𝑑
 ∫ 𝑁𝑢 (�⃗�𝑘, 𝑡)𝑑𝑠

⬚

𝛤

 . 

 

(3.15) 

 

The non-dimensionalization of the equations is done with the aim of obtaining the parameters 

involved above. The Navier-Stokes equations for incompressible flows can be made from 

dimensionless quantities, according to Hughes et al. (1999): 
 

u =  
u′ 

U∞
 , v =  

v′ 

U∞
,  𝑝 =  

𝑝

𝜌 U0
2,  x =  

x′ 

d
,  y =  

y′ 

d
, 𝜃 =  

T− T∞

Tc− T∞
· 

where, u′ , v′  are the dimensional velocities; u, v are the dimensionless velocities; U∞ is the uniform 

velocity at the domain entry, and T∞ is the fluid temperature away from the cylinder. 

3.4 Geometric parameters for an immersed circular cylinder 

The entire process of modeling the immersed interface involves determining the coordinates of 

the points that make up the interface and some geometric parameters such as the normal and the 

distance between points. Next, this process is detailed for an immersed circular cylinder. First, the 

central position of the interface is defined, that is, the coordinates 𝐶𝑥 and 𝐶𝑦 from the center of the 

cylinder. For a circular interface, the initial coordinates of the Lagrangian points are determined 

through the angle between consecutive points, which is kept constant. For a given number of 

Lagrangian points (𝑛𝑝ℓ𝑘), there is the angle ∆𝜃, Fig. 3.6, calculated as follows 

∆𝜃 =  
2𝜋

𝑛𝑝ℓ𝑘
 , 

 
(3.16) 

and 

𝜃𝐾+1 = 𝜃𝐾 + ∆𝜃 . 

 
(3.17) 

The initial coordinates of the points are 

𝑥𝑘 = 𝐶𝑥 + 𝑅 cos (𝜃𝑘) , 
 

(3.18) 

𝑦𝑘 = 𝐶𝑦 + 𝑅 𝑠𝑒𝑛 (𝜃𝑘), 

 
(3.19) 

where, 𝑅  is the radius of the cylinder, 𝑥𝑘 and 𝑦𝑘 are the coordinates, x and y from the point 𝑘; 𝐶𝑥  

and 𝐶𝑦 are the coordinates x and y from the center of the circular interface. In order to calculate the 

Lagrangian force field it is necessary to know the geometric parameters of the circular interface. 

The normal vector is calculated over each point, which has components in the 𝑥 and 𝑦 direction of 

the Cartesian mesh, and the arc length, centered over each point, as illustrated in Fig. 3.6 (a) and 

(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3.6 – Schematic representation of normal vectors over a Lagrangian point (a) and 

representation of the arc length and angles of two consecutive points (b). 
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The interface can be modeled through a parametric vector equation of the type 

 

�⃗⃗�(𝑝) =  𝑔(𝑝)𝑖 + ℎ(𝑝)𝑗 . 
 

(3.20) 

To calculate the components 𝑔(𝑝) and ℎ(𝑝), Lagrange interpolating polynomials of degree 𝑛 

are used over a set of 𝑛 + 1 points. Therefore, we have: 

 

𝑔𝑛(𝑝) =  ∑𝐿𝑘(𝑝)𝑥𝑘(𝑝𝑘)

𝑛

𝑘=0

 , 

 

(3.21) 

ℎ𝑛(𝑝) =  ∑𝐿𝑘(𝑝)𝑦𝑘(𝑝𝑘)

𝑛

𝑘=0

 , 

 

(3.22) 

where, 

𝐿𝐾(𝑝) =  ∏  
𝑝 − 𝑝𝑗

𝑝𝑘 − 𝑝𝑗

𝑛

𝑗=0
𝑗≠𝑘

 , 
(3.23) 

the points 𝑥𝑘(𝑝𝑘) and 𝑦𝑘(𝑝𝑘) are the coordinates of the interface points, which can be defined by 
{ 𝑥𝑘(𝑝𝑘), 𝑦𝑘(𝑝𝑘)}, with 𝑘 = 0, … , 𝑛 and 𝑝𝑘 = 𝑘. One can, therefore, calculate the normal and arc 

length by the following expressions, respectively: 

 

�⃗⃗�(�⃗�𝑘) =  
−ℎ′ 𝑖 + 𝑔′ 𝑗

√(ℎ′)2 + (𝑔′)2 
 , 

 

(3.24) 

𝑑𝑠(�⃗�𝑘) =  
1

4
(√𝑔′ 2(�⃗�𝑘−1) + ℎ′ 2(�⃗�𝑘−1) + 2√𝑔′ 2(�⃗�𝑘) + ℎ′ 2(�⃗�𝑘)

+ √𝑔′ 2(�⃗�𝑘+1) + ℎ′ 2(�⃗�𝑘+1)) , 

 

(3.25) 

where (‘) is the derivative with respect to the parameter 𝑝.  A Eulerian mesh stability criterion was 

used, so that 0,9 ≤  
∆𝑠

∆𝑥
 ≤ 1,1; where ∆𝑠 is the distance between two consecutive Lagrangian points, 

and ∆𝑥 the size of the Eulerian mesh. This range of values allows for greater numerical stability. In 

this work, a 4th degree Lagrange polynomial was used and therefore, a series of 5 points to calculate 

the geometric parameters. An example can be given of calculating the components 𝑔(𝑝) and ℎ(𝑝) 
for point 2, as illustrated in Fig. 3.7, using five points (𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4) this way 

𝑔4
′ (𝑝2) =

[𝑥0(𝑝0) −  8𝑥1(𝑥1) +  8𝑥3(𝑝3) − 𝑥4(𝑝4)]

12
 , 

 

(3.26) 

ℎ4
′ (𝑝2) =

[𝑦0(𝑝0) −  8𝑦1(𝑥1) +  8𝑦3(𝑝3) − 𝑦4(𝑝4)]

12
  , 

 

(3.27) 

being 𝑥0(𝑝0), 𝑦0(𝑝0),  𝑥1(𝑝1),  𝑦1(𝑝1),  𝑥3(𝑝3),  𝑦3(𝑝3), 𝑥4(𝑝4) and 𝑦4(𝑝4) the coordinates of the 

Lagrangian points, 𝑝0,  𝑝1, 𝑝3,  𝑝4, respectively. 

The Eqs. (3.26) and (3.27) are substituted into Equations (3.24) and (3.25) to determine the 

geometric parameters of the Lagrangian point of point 2, Fig. 3.7. The same procedure is done for 

all points (𝑥𝑘, 𝑦𝑘), so that the components of the normal can be obtained. In the present work, the 

rotational movement of the cylinder does not change the distance ∆𝑠 (�⃗�𝑘) between the Lagrangian 
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points, as they all move with the same angular velocity. In simulations where the interface deforms, 

values must be recalculated at each instant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – Illustration of the five points used to calculate the normal �⃗⃗� and arc length ∆𝑠 at point 

2. 

 

4. Numerical method 

 

When conducting mathematical modeling pertaining to physical engineering problems, 

differential equations emerge as a crucial tool for decoding and understanding these phenomena. 

Typically, exact solutions for flows are confined to simplified scenarios due to the prevalence of 

nonlinear equations in mathematical models. Consequently, numerical methods serve as invaluable 

complements to experiments, bridging the gap between numerical and experimental results. 

 The numerical analysis of a flow hinges upon determining variable fields of interest at discrete 

points. Discretization methods aim to substitute differential equations with a set of algebraic 

equations, yielding the values of interest at discrete points across the flow domain. This process 

yields a system of equations to be solved at each domain point where the problem's solution is 

sought. Upon solving this system, an approximate solution to the problem emerges. As the number 

of mesh points increases, the solution to the discretized equations converges towards the exact 

solution of the differential equation. 

The IBM-Code, developed in C/C++, comprises subroutines dedicated to solving individual steps 

of the solution method independently. The main program, responsible for variable declaration, 

orchestrates all subroutine calls. Through a data file, users can specify initial boundary conditions 

and select the interface type (such as a circular cylinder) immersed in the flow. Eulerian variables 

are represented as matrices matching the dimensions of the Eulerian mesh, while Lagrangian 

variables are represented as vectors. The program's architecture facilitates data file saving at any 

point, enabling the resumption of interrupted calculations due to power outages. 

Conservation equations are discretized using Finite Differences, involving the approximation of 

partial differential equation derivatives via Taylor Series truncation. Solving the nonlinear equations 

of momentum conservation for incompressible flows entails coupling pressure and velocity fields. 

Among various methods, the Fractional Step Method, initially proposed by Chorin (1968) and 

further refined by Kim and Moin (1985), demonstrates promising results in terms of numerical 

convergence and mass conservation. Only one iteration per time step is required for the velocity 

fields to satisfy continuity. 

In this study, the Centered Finite Difference Method was employed for discretization on a non-

uniform mesh, while the first-order Euler Method was utilized for temporal discretization. The 

Navier-Stokes and energy equations were solved explicitly. The discretized pressure correction 

expression yields a linear system, tackled using the MSIP Method (Modified Strongly Implicit 

Procedure), pioneered by Schneider and Zedan (1981). 
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Below, the research provides a concise overview of the fractional step method and the temporal 

discretization employed, drawing parallels with the equation of motion. 

 

4.1 The Fractional Step Method 

 

The Fractional Step Method represents a numerical procedure for coupling pressure and velocity 

fields. Its role is to numerically solve the Navier-Stokes and continuity equations, coupling them to 

provide final velocity and pressure fields. Like many numerical solution methods for the Navier-

Stokes equations, the basic principle involves a two-step process: a predictor and a corrector. 

The predictor step is straightforward, utilizing discretized derivatives. An uncorrected velocity 

field is obtained from fields taken at previous time steps. The corrector step, on the other hand, 

ensures mass conservation by solving a Poisson equation for pressure correction terms.  

After these two steps are applied, new (real) velocity and pressure fields are obtained. This 

procedure progresses in time, meaning that the final fields for a given time step act as initial fields 

for the next time step. With the estimated velocity fields and pressure correction, a linear system is 

formed and solved using the MSIP method. 

The Eq. (2.2), in indexical form, for the velocity in the current iteration is rewritten as: 

 

[
𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+
𝜕(𝑢𝑖𝑢𝑗)

𝑛

𝜕𝑥𝑗
] =  −

𝜕𝑝𝑛+1

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
+
1

𝑅𝑒
(
𝜕𝑢𝑖

𝑛

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝑛

𝜕𝑥𝑖
) + 𝐹𝑖

𝑛 , 

 

(3.28) 

where 𝑛 + 1 represents the current iteration. Approximations of the velocity components  (𝑢
𝑖
) 

which are carried out using the pressure, velocity and force fields, calculated in the previous 

iteration, are given by 

[
𝑢𝑖
𝑛+1

− 𝑢𝑖
𝑛

∆𝑡
+
𝜕(𝑢𝑖𝑢𝑗)

𝑛

𝜕𝑥𝑗
] =  −

𝜕𝑝𝑛

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
+
1

𝑅𝑒
(
𝜕𝑢𝑖

𝑛

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝑛

𝜕𝑥𝑖
) + 𝐹𝑖

𝑛 , 

 

(3.29) 

the notation 𝑢𝑖 indicates approximate/estimated velocity 

 

Now, subtracting Eq. (3.28) from Eq. (3.29), we obtain: 

𝑢𝑖
𝑛+1

− 𝑢𝑖
𝑛+1

∆𝑡
=  −

1

𝜌
 
𝜕(𝑝𝑛+1 − 𝑝𝑛)

𝜕𝑥𝑖
 .  

 

(3.30) 

 

Then, applying the divergent 
𝜕

𝜕𝑥𝑖
 on both sides of Eq. (3.30), we have: 

𝜕

𝜕𝑥𝑖
 [
𝑢𝑖
𝑛+1

− 𝑢𝑖
𝑛+1

∆𝑡
] =  

𝜕

𝜕𝑥𝑖
[−
1

𝜌
 
𝜕(𝑝𝑛+1 − 𝑝𝑛)

𝜕𝑥𝑖
] ,  

 

(3.31) 

or yet, 

1

∆𝑡
 [
𝜕𝑢𝑖

𝑛+1

𝜕𝑥𝑖
− 
𝜕𝑢𝑖

𝑛+1

𝜕𝑥𝑖
] =  

1

𝜌
 
𝜕

𝜕𝑥𝑖
(
𝜕𝑝′

 𝑛+1

𝜕𝑥𝑖
) ,  

 

(3.32) 

where 𝜕𝑝′ 𝑛+1 is the pressure correction, written as: 

𝑝′𝑛+1 = 𝑝𝑛+1 − 𝑝𝑛 . 
 

(3.33) 

 

Calculating the divergence is important because it expresses the conservation of mass. For the 

flow of an incompressible fluid, the value of the divergence is used (in numerical methods) as a 
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guarantee of the conservation of mass throughout the computational domain. The velocity field must 

satisfy the continuity equation. With this condition defined, the second term on the left side of Eq. 

(3.32), namely, (
𝜕𝑢𝑖

𝑛+1

𝜕𝑥𝑖
) will be cancelled. Therefore, Eq. (3.32) can be rewritten as follows: 

1

∆𝑡
 
𝜕𝑢𝑖

𝑛+1

𝜕𝑥𝑖
= 
1

𝜌
 
𝜕2𝑝′ 𝑛+1

𝜕𝑥𝑗  𝜕𝑥𝑗
 . (3.34) 

 

Rearranging the terms of Eq. (3.34), Poisson's equation for pressure correction (𝑝′) is obtained 

whose source term is the divergence of the approximate/estimated speed, and can be written in the 

following forms: 

 
𝜕2𝑝′ 𝑛+1

𝜕𝑥𝑗 𝜕𝑥𝑗
= 

𝜌

∆𝑡
 
𝜕𝑢𝑖

𝑛+1

𝜕𝑥𝑖
 , (3.35) 

or 

∇2𝑝′ 𝑛+1 = 
𝜌

∆𝑡
 ( ∇⃗⃗⃗ .  𝑢

𝑛+1
) . 

 
(3.36) 

 

Therefore, the approximate/estimated velocity field is obtained through Eq. (3.28) and the 

pressure correction field, through the resolution of the linear system, generated by the discretization 

of Eq. (3.35) or Eq. (3.36). From Equation (3.30), the corrected speed for the current iteration is 

calculated, given by 

𝑢𝑖
𝑛+1 = 𝑢 𝑖

 𝑛+1
− 
∆𝑡

𝜌
 
𝜕𝑝′ 𝑛+1

𝜕𝑥𝑖
 . 

 

(3.37) 

It is important to comment that a predominant advantage of using the Fractional Step Method 

arises from the method's own deduction, it is the guarantee of low Continuity residues (
𝜕𝑢𝑖

𝑛+1

𝜕𝑥𝑖
≅ 0) 

right after the system solution. This allows for faster temporal advancement, that is, a quick and 

direct passage to the next instant of time. Regarding explicit temporal advances, care was taken in 

assigning values for time increments. Large increments are strong conditions for instability in the 

code. In this context, the calculations were initialized with steps of 10−6s, which were gently 

elevated to values of 10−4s. Regarding the equations presented in the previous item, they were 

discretized using the Centered Differences method in space, more details, can be seen at Santos 

(2014). 

 

5. Results 

 

Using the Immersed Frontier Method implemented in the IBM-Code, it was possible to carry 

out simulations of two-dimensional flows around a heated body immersed in the flow. Simulations 

of flows around a heated cylinder with constant temperature and rotation. They were performed for 

Reynolds numbers ranging from 80 to 200. The cylinder was maintained at a constant dimensionless 

temperature equal to 1 (𝜃 = 1), while the fluid has an initial temperature 𝜃 = 0. The specific 

rotation value (𝛼) was varied from 0 to 4.0 in order to analyze its influence on heat transfer and 

force coefficients. Then the results were compared with the literature, including the experiments 

carried out by Carvalho (2003). The vorticity, temperature and pressure fields, the lift and drag 

coefficients, the Strouhal number and the Nusselt number are presented for different Reynolds 

numbers and specific rotations.  

The present work was restricted to simulating flows around a heated cylinder of diameter 𝑑 

immersed in an incompressible fluid with constant properties. The simulations were carried out with 

the rotary movement of the cylinder, and with this, it was possible to numerically validate the 

methodology and carry out an analysis of the influence of rotation on the thermal field. 
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For all simulations, a rectangular domain of dimensions 55d × 30d was used, (Fig. 5.1), since 

a previous analysis of its dimensions and also the refinement of the mesh was already carried out in 

the work of Lima and Silva (2003). These dimensions were determined numerically to minimize the 

influences of the domain on the flow around the cylinder and at the same time, minimize the 

unnecessary number of nodes. The central coordinates of the cylinder are 16.5𝑑 × 15𝑑 in 𝑥 and 𝑦. 

 

 

Figure 5.1 – Diagram illustrating the dimensions of the calculation domain. 

 

 

A non-uniform mesh of 318 x 164 points was used in order to better capture the effects of 

rotation along with a total of 201 points for the Lagrangian mesh. The mesh is uniform in the 

cylinder region, maintaining a minimum of 30 meshes inside. The time step used in the calculation 

process is in the range from 1,0 x 10-6 s (minimum) to 1,0 x 10-4 s (maximum), is calculated 

dynamically with the Friedrichs – Lewy stability criterion, better known as the CFL criterion, 

necessary for time-explicit solutions. Then, numerical simulations were carried out for the 

respective Reynolds numbers varying the 80 ≤ 𝑅𝑒 ≤ 200, for different values of 𝛼. Flow analyzes 

were carried out for different angular velocities, imposed clockwise and counterclockwise, for the 

respective Reynolds numbers already mentioned above. The temperature difference between the 

cylinder and the fluid was kept constant. The flow develops from left to right, with a uniform 

velocity profile imposed at the domain entrance and a damping function at the domain exit to prevent 

the return of vortices at the exit. The Prandtl number was kept constant at 0.7 (air) for all simulations.  

For the lateral boundaries of the domain, free boundary conditions were used, that is, zero 

derivative of the velocities. At the entrance to the domain, a uniform velocity profile was imposed 

(𝑈∞) and at the exit, zero derivative for the velocities. The boundary conditions are given by (a) 

Input: 𝑢 = 𝑈∞ and 𝑣 = 0; (b) Output: 
𝜕𝑢

𝜕𝑥
= 

𝜕𝑣

𝜕𝑥
= 0; (c) Lower and upper border: 

𝜕𝑢

𝜕𝑦
= 

𝜕𝑣

𝜕𝑦
= 0. For 

pressure, the boundary conditions used were of the Neumann type at the entrance and Dirichlet at 

the exit and on the sides of the domain, as shown in the following expression: (a) domain entry: 
𝜕𝑃

𝜕𝑥
= 0; and (b) output and lower and upper borders: 𝑝 = 0. For temperature, the conditions are 

analogous to velocity, that is: (a) domain entry: 𝜃 = 0; and output and sides: 
𝜕𝜃

𝜕𝑥
= 0; 

𝜕𝜃

𝜕𝑦
= 0.  

All simulations were carried out until the regime was established, that is, in all simulations a 

time of approximately 48h was spent for the established flow regime to be reached, which was 

verified through the graphs of the force coefficients in function of time. The computer used has an 

Intel(R) Core (TM) i5-2400 CPU 3.10 GHz processor with 4.00 GB with a 64-bit operating system. 

The simulations with different rotations were started with a stationary cylinder and after 

approximately t = 0.05s the rotation started. This procedure was adopted to ensure the calculated 

force field was already capable of reproducing the immersed cylinder before rotation began. Some 
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results show the distribution of the variable over the surface of the cylinder. By convection, the 

angle 𝜃 was adopted, which defines the positions of the points on the body and varies 

counterclockwise, starting from the upstream stagnation point, as shown in Fig. 5.2. 

 

 

Figure 5.2 – Illustrative diagram for varying the angle 𝜃 on the cylinder. 

 

5.1 Visualization of flow fields 

 

Next, in Figs. 5.3 and 5.4, at different moments of time, the vorticity fields (which provide a 

considerable notion about the movement of fluids) are presented, for Reynolds (𝑅𝑒) numbers equal 

to 100 and 200, respectively, around a stationary and rotating (non-isothermal) cylinder. The right 

column (column (a)) represents the different time instants for the simulation with specific rotation 

𝛼 = -1,5 (counter-clockwise). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Vorticity fields for 𝑅𝑒 = 100. The left column (a) represents the stationary cylinder 

with 𝛼 = 0. The right column (b) represents the rotating cylinder for 𝛼 = −1.5. 
 

 

In flow with a stationary cylinder, the initial moments are marked by the appearance of a 

recirculation bubble behind the cylinder. This region where the fluid is "trapped" increases 

constantly (T = 50) until a maximum length. Then the process of detachment of the first vortices 

begins. 
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Figure 5.4 – Vorticity fields for 𝑅𝑒 = 200. The left column (a) represents the stationary cylinder 

with 𝛼 = 0.  

The right column (b) represents the rotating cylinder for 𝛼 = −1.5. 
 

It is known that the process of generation and shedding of vortices occurs due to the 

instabilities of the shear layers, which in turn depend on the geometry of the body and the Reynolds 

number. Due to the approximation that occurs in the opposing shear layers, this causes vortices to 

be generated and transported downstream, causing the process to repeat itself periodically in an 

alternating manner, in the case of the stationary cylinder. It can be seen in Figs. 5.3 and 5.4 that the 

stationary cylinder has an elongated wake, with vortex shedding starting after approximately T = 

80. 

The rotation anticipates the detachment, destabilizing the flow, causing the Von Kármán wake 

to appear in the initial moments. For these values of Reynolds 100 and 200 and 𝛼 =  −1.5, vortex 

shedding is not inhibited and the wake tilts downwards, in the direction of rotation. Visually, it is 

observed that with an increase in the Reynolds number, this causes the vortices to detach closer to 

the cylinder, reducing drag due to the fact that the vortices hit with more intensity behind the 

cylinder. 

 

5.2 Qualitative Comparison 

 

In Figure 5.5 they are compared with the experimental results obtained by Carvalho (2003) for 

𝑅𝑒 = 115 and different values of 𝛼, with the results obtained in this work. The cylinder rotates 

clockwise. The results of the numerical simulations for the same Reynolds number, and the same 

rotations, are presented in the right column of Fig. 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Qualitative comparison between the experimental result of Carvalho (2003). In the 

right column, the numerical results of the present work; in the left column (laboratory experiment) 

for 𝑅𝑒 = 115 with different specific rotations. 
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A good similarity can be noted between the numerical results of the present work and the 

experimental results of Carvalho (2003). The wake formed downstream has a similar inclination in 

both studies, in addition, for values of 𝛼 ≤  1.56, the consecutive vortices close to the cylinder also 

have similar distances. The critical 𝛼 value for 𝑅𝑒 = 115 was 𝛼 =  2.02, while the experimental 

one was between 2.02 and 2.27. For more details, see Santos (2014).  

In Fig. 5.6, the instantaneous temperature isolines (left column) and the current lines (right 

column) for Re = 200 are presented. In the figure below, the time instant (T=120) and the value of 

𝛼 are fixed. 

 

 

 

 

 

 

 

Figure 5.6 – Temperature isolines (left column) and streamlines (right column) for 𝑅𝑒 = 200, with 

𝛼 = 1. 

 

This figure illustrates the effect of rotation on the thermal field and velocity field. The streamline 

fields prove that the increase in α tends to increase the region close to the cylinder where the fluid 

is trapped. The volume of this insulation fluid directly interferes with the heat transfer close to the 

cylinder and consequently with the Nusselt number distributions. Rotation changes the shape of the 

temperature isolines and also their orientation, as the belt tends to rotate in the same direction as the 

cylinder rotation. One can also observe a change in the position of the stagnation point at (𝜃 = 0°). 
The increase in 𝛼 causes this point to move in the opposite direction to the rotation, which is seen 

in the graphs of the local distributions of the Nusselt number and the pressure coefficient. 

Next, the results of the aerodynamic and pressure coefficients are presented, as well as the 

Strouhal and Nusselt numbers. Firstly, graphs of the evolution over time of the coefficients 

presented in different ways are shown. Then, the local distributions on the cylinder surface and the 

average values obtained are shown. 

 

5.3 Results of drag, lift coefficients and Nusselt numbers 

 

Table 5.1 below presents some of the results obtained in the present work for the average values 

(time averages) of the drag coefficients, for Reynolds numbers equal to 80, 100 and 200 simulated 

numerically, compared with the numerical data from Ren et al. (2013), Liu and Ding (2015), Lima 

and Silva (2003) and Ye et al. (1999), for the stationary case, that is, for 𝛼 =  0. 

 

 

 

 

 

 

 

 

Table 5.1 – Comparison between the average values of the drag coefficients for Re = 80, Re = 100 

and Re = 200. 

 

  

Authors Present 

Work 

Ren et 

al. 

(2013) 

Liu 

and 

Ding 

(2015) 

Lima 

and 

Silva 

(2003) 

Ye et 

al. 

(1999) 
Re 

80 1.395 - - 1.40 1.37 

100 1.368 1.346 1.350 1.390 - 

200 1.348 - - 1.390 - 
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Table 5.2 shows the results obtained in the present work for the average Nusselt in comparison 

with some results obtained by Baranyi (2003) and Mahir et al. (2008), Paramane and Sharma (2009) 

and Shrivastava et al. (2012). Several correlations can be obtained for the average Nusselt number, 

in Incropera et al. (6th edition, pg. 267, 2008) the empirical correlation adopted in the present work 

was that of Hilpert, which considers global average conditions, being represented by 

�̅�𝑢 = 𝑐 𝑅𝑒𝐷
𝑚 𝑃𝑟

1
 3 

where, 𝑅𝑒𝐷 : 40 – 40.000,   𝑐 = 0,683 and  𝑚 = 0,466. 
 

 

 

 

 

 

 

 

 

 

Table 5.2 – Comparison between results for the average Reynolds number and Strouhal number, 

for 𝛼 =  0. 

 

A good agreement is observed in the values obtained, with differences of around 3%, which 

confirms the validity of the method for the stationary and non-stationary cases. In this way, these 

calculations with immersed geometries were validated with regard to the choice of mesh refinement 

and domain dimensions, so as not to influence the obtained values of the aerodynamic coefficients. 

Next, the results of the temporal evolution of the coefficients and the Nusselt number are 

presented. 

 

5.4 Temporal evolution of coefficients and dimensionless numbers 

 

The Figure 5.7 shows the evolution of the drag coefficient as a function of dimensionless time 

(T), for Reynolds numbers equal to 𝑅𝑒 = 80 and 200, for different values of 𝛼. For the simulations 

with the stationary cylinder (𝛼 = 0), the time taken to reach an established flow regime was longer. 

The increase in rotation caused the shedding of vortices to be brought forward and consequently the 

periodic regime was reached earlier. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 – Temporal evolution of the drag coefficient for (a) 𝑅𝑒 = 80 and (b) 𝑅𝑒 = 200 for 

different values of 𝛼. 

 

 

Furthermore, with rotation the oscillations of the Cd are larger to the point where the vortices 

are inhibited, where they disappear. The higher the Reynolds number, the greater the Cd oscillations 
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and therefore, the greater the critical α value necessary to completely inhibit the process of 

generation and detachment of vortices. A single simulation with 𝛼 = 4.0 and Re = 200 was 

performed and it was observed that a significant increase in drag occurred.  

The Fig. 5.8 shows that for this value of 𝛼 = 4.0 the velocity field close to the cylinder is 

greatly affected. There is a region where the fluid recirculates around the cylinder, increasing the 

contribution of the drag force. Further investigations in this rotation range for other Reynolds 

numbers should be carried out. 

In the following figure, the simulation of the evolution of the lift coefficient as a function of 

dimensionless time is presented, for different Reynolds numbers and different specific rotations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 – Temporal evolution of the lift coefficient for (a) 𝑅𝑒 = 80 and 𝑅𝑒 = 200, for different 

values of α. 

 

It is possible to clearly observe the increase in the lift coefficient with the increase in α. For the 

stationary case, 𝐶𝑙 fluctuations also exist and increase with increasing 𝑅𝑒, but the scale adopted in 

Fig. 5.8 does not allow 𝐶𝑙 variations at 𝛼 = 0 to be visualized. For the lowest Reynolds values (Re 

= 80) these oscillations are intermittent and of low frequency. The 𝐶𝑙 oscillations increase with 𝛼 ≤
 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and also with the Reynolds number, however, the average values of the lift coefficient 𝐶𝑙 
are the same for a given value of 𝛼.  

The Figure 5.9 shows the temporal evolution of the number of 𝑁𝑢 for all simulated cases. For 

the stationary cylinder, the Nusselt number is maximum at the point 𝜃 = 0°, in front of the cylinder, 

and minimum at the back at 𝜃 = 180°. The rotation effect caused the symmetry shown in the 𝛼 = 0 

curves to be lost. As 𝛼 increases, the minimum point is displaced in the direction of rotation. It is 

also observed that the maximum Nusselt variation tends to increase with the increase in the 

Reynolds number. The temporal evolution of the Nusselt number is presented in Fig. 5.9. 
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Figure 5.9 - Nusselt number around the cylinder for different 𝑅𝑒 and different 𝛼. 

 

 

It is observed that the curves are similar to those of the drag coefficient, however, the increase 

in Nusselt is more pronounced with the increase in α. The Nusselt number is strongly influenced by 

the flow dynamics. 

The amplitudes of the oscillations are also increased with 𝛼, but to a lesser extent than those of 

the drag coefficient. Mean Nusselt values decreased with increasing 𝛼 to values of 0 ≤ 𝛼 ≤ 2.0. The 

rotational movement creates a region close to the cylinder where the fluid is trapped, preventing the 

cylinder from exchanging heat with the fluid in the free stream. This behavior was also verified in 

the works of Chou and Kalina (1982) and Badr and Dennis (1985). This zone of recirculating fluid 

is called the “buffer” zone and is responsible for restricting heat exchange with the colder fluid, 

causing the Nusselt value to decrease. For 𝑅𝑒 = 200 and 𝛼 = 4.0 there was an increase in Nusselt, 

when compared to 𝛼 = 2.0. For this rotation rate the recirculation zone behind the cylinder 

disappears, as can be seen in Fig. 5.6, however a greater influence of the free current on the cylinder 

is verified and is possibly the reason for the increase in Nu for 𝛼 = 4.0. 

The following figure shows an instantaneous distribution for all simulated cases. For the 

stationary cylinder, the Nusselt number is maximum at the point  𝜃 ≅ 0° at the front of the cylinder 

and minimum at the back at 𝜃 ≅ 180°, proving that the temperature is minimum and maximum at 

these points. With the increase in the number of Re, the number of Nu starts to present two minimum 

points, close to 𝜃≅150° and 𝜃≅250°, in the rear part of the cylinder. In these regions there are fluid 

recirculation bubbles that form and break away all the time. The rotation effect caused the symmetry 

shown in the 𝛼 = 0 curves to be lost. It is also observed that the maximum Nusselt variation tends 

to increase with the increase in the Reynolds number. 
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Figure 5.10 – Comparison of the local Nusselt number distribution over the cylinder surface for 

different Reynolds numbers and different values of α. 

 

In Fig. 5.11, which represents the relationship between the lift coefficient as a function of the 

specific rotation and the Reynolds number, the polynomial function used for the average value of 

the lift coefficient was 𝐶ℓ̅ = 0,7105𝛼
2 + 1,497𝛼 + 0,2122 for 0 <  𝛼 < 4,0, also obtaining a 

proportional increase in the lift coefficient, in the present work resulting in 𝐶ℓ̅ = 2,7092𝛼, compared 

to the increase relationship given by Kang et al. (1999) which went from 𝐶ℓ̅ = 2,475𝛼 to 0 <  𝛼 <
2,0. Resulting in a numerical agreement. 

 
 

Figure 5.11 – Lift coefficient as a function of different values of α and Reynolds, (a) and (b). 
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It can be observed that despite the differences found between the Cd and Cl values, compared 

to Kang et al. (1999), both data sets show the same trend. In fact, in both cases, with the increase in 

specific rotation, the lift coefficient increases continuously, providing, at the same time, a drop in 

the drag coefficient. 

 

6. Conclusions 

 

Flow phenomena over circular cylinders, with or without heating, and with or without rotational 

movement, hold significant potential for various applications, notably in engineering. However, 

these potential applications remain largely unexplored. Such flows offer opportunities for devices 

capable of achieving high lift coefficients and for the active control of flow boundary layers. The 

methodology employed in this study is rooted in the conservation equations of momentum, mass, 

and energy, which describe the physics of practical flows. 

This research builds upon previous work by Santos (2014), aiming to advance the application of 

this methodology to flow problems over heated obstacles subject to forced convection. A 

computational code was developed in C/C++ to simulate flows around stationary and rotating 

circular cylinders with heating. The obtained results include the vorticity field, temperature 

distribution, and various flow parameters such as average drag, lift, pressure coefficients, Strouhal, 

and Nusselt numbers. These results were compared with experimental and numerical data to validate 

the methodology for moving boundary problems and to assess the effect of forced convection heat 

transfer at Reynolds numbers below 250. 

The existing literature on this subject is limited, with most studies focusing solely on drag and 

lift coefficients. Few studies investigate thermal effects alongside the behavior of Strouhal and 

Nusselt numbers as functions of Reynolds number (Re) and specific rotation (α). A deeper 

understanding of the flow characteristics around heated rotating cylinders could unveil practical 

applications. 

This study employs a two-dimensional thermofluid dynamic analysis to comprehensively 

explore the flow phenomena. It evaluates the thermal impact of the cylinder on the flow, the 

generation of vortices, and the dynamics of Von Kármán wake formation and suppression across a 

range of Reynolds numbers (80 ≤ Re ≤ 250) and specific rotations (0 < α < 4.0). The influence of 

rotation on reducing drag and increasing lift is observed, alongside the distribution of the thermal 

field near the cylinder. The temporal evolution of drag and lift coefficients, vortex shedding 

frequency (Strouhal number), and Nusselt number are analyzed. 

With rotational movement, the vortex wake is displaced relative to the horizontal flow line, a 

displacement that increases with higher specific rotation values. As rotation increases, the oscillation 

amplitude of fluid dynamic coefficients tends toward zero, indicating a reduction in vortex 

generation. Conversely, average drag coefficients decrease while lift coefficients increase with 

rotation. Additionally, it is noted that the Strouhal number exhibits little influence at low specific 

rotation values but is dependent on Reynolds number. Quantitative results demonstrate good 

numerical agreement with findings in the literature. 
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