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Abstract 

In this present study, the flow behaviour of magnetorheological fluid in valve and shear modes for 

damping system is modelled and analyzed. The fluid is modelled as viscoelastic fluid flowing 

between two parallel plates in pressure driven flow mode, and also as direct shear mode. In the 

work, the post-yield shear thinning or thickening behaviour of magnetorheological fluids are 

accounted for. The velocity and pressure distributions in the unsteady magnetorheological fluid flow 

between the electrodes of the damper are obtained by solving the momentum equation of the 

magnetorheological fluid flow using the Laplace transform method. There is an excellent agreement 

between the results of the present model and the results of the experimental studies. The adopted 

viscoelastic flow model describes that the rheological behaviour of the fluid is separated into distinct 

pre-yield and post-yield regimes.  The fluid flow velocity, velocity gradient, and shear stresses have 

all been shown to be enhanced by an increase in the pressure drop. The viscosity of the fluid 

increases with an increase in the volume fraction of particles in the fluid, which causes the resistance 

of the fluid to flow to increase and thereby, reduces the fluid flow velocity. Fluid flow velocity is 

decreased as a result of increasing magnetic field strength. The design of clutches, rotary brakes, 

dampers, shock absorbers, prosthetic devices, polishing and grinding tools, etc. will all benefit 

greatly from the adoption of the current model. 

Keywords: Magnetorheological fluid; Viscoelastic fluid; Flow characteristics; Analytical 

Investigation; Valve mode; Shear Mode; Damper system. 

 

1. Introduction 

Magnetorheological fluids are fluids that consist of small particles of iron (in the order of 

µm) magnetizable, suspended in oil, generally hydrocarbon. Also, some additives are added to the 
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fluid with objective to inhibit the deposit of iron particles, to promote its suspension, to modify 

viscosity and to diminish the consuming. One excellent characteristics of magnetorheological fluid 

is that its rheological characteristics changes when magnetic field is applied. The intensity of applied 

magnetic field is used to control the viscosity of the fluid. The special behavior of 

magnetorheological fluid has resulted in its vast of applications such as dampers, shock absorbers, 

rotary brakes, prosthetic devices, clutches, polishing and grinding devices, etc. Among these 

applications, magnetorheological fluid dampers, which utilize the advantages of 

magnetorheological fluids, are semi-active control devices that are widely used in the modern 

industry nowadays. A typical magnetorheological damper includes MR fluid, a pair of wires, a 

housing, a piston, a magnetic coil, and an accumulator as shown in Fig. 1. Here, the MR fluid is 

housed within the cylinder and flows through a small orifice. The magnetic coil is built in the piston 

or on the housing. When a current is supplied to the coil, the particles are aligned and the fluid 

changes from the liquid state to the semi-solid state within milliseconds. Consequently, a 

controllable damping force is produced. 

 

 

 
Figure 1. General configuration of a MR fluid damper 

 

The applications of magnetorheological fluids in most devices can be classified as having 

either fixed plates (pressure-driven flow mode) or relatively moveable plates (direct-shear mode and 

squeeze-film mode) as shown in Fig. 2b. Examples of pressure-driven flow mode devices include 

servo-valves, dampers, and shock absorbers and examples of direct-shear mode devices include 

clutches, brakes, low force dampers, magnetic brakes and clutches chucking and locking devices. 

The squeeze-film mode of operation also known as biaxial elongational flow mode appears in slow 

motion and/or high force applications. 

 

 
 

Figure 2. Basic operational modes for controllable magnetorheological fluid devices: (a) pressure 

driven flow mode, (b) direct shear mode, and (c) biaxial elongational flow mode.  
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The pressure-driven flow (valve) mode has the magnetorheological fluid in between two 

fixed magnetic plates. When the magnetic field is applied, magnetorheological particles align 

parallel to the applied magnetic field lines and resist the flow of the pressurized magnetorheological 

fluid.  

The direct-shear mode has the magnetorheological fluid in between one moving plate and 

another stationary plate. The relative motion between these plates causes “shearing” in the fluid 

between the plates. When the magnetic field is applied, magnetorheological particles align 

perpendicular to the pole plates while the shearing motion attempts to bend the particle chains along 

the flux lines. As the magnetic field intensity increases, the resistance to shearing offer by the 

magnetorheological fluid increases.  The squeeze-film mode, as the names implies works through 

squeezing the two magnetic pole plates together on a thin film of magnetorheological fluid. When 

the force is applied (as shown in Fig. 2) on the plates parallel to the direction of flux lines, it 

pressurizes the chain-like structures of magnetorheological fluid particles. The intensity of the 

induced field determines the ability of the magnetorheological fluid particle columns to resist 

buckling.  

The magnetorheological (MR) fluid flow behaviour has been modelled and analyzed. 

Stepanov et al. (2007) explored the impact of a homogeneous magnetic field on the viscoelastic 

behavior of magnetic elastomers while Chen et al. (2019) investigated the slip differential heat of 

magnetorheological fluids under shear mode operation. Meanwhile, Becnel et al. (2012) 

experimentally investigated the magnetorheological fluid properties at different shear rates. In a 

previous year, Lindler and Wereley (2003) presented a quasi-steady Bingham plastic analysis of an 

electrorheological flow mode bypass damper. In the preceding year, Lee et al. (2002) utilized 

Herschel–Bulkley model to analyse the performance of electrorheological and magnetorheological 

fluids in damper systems. Chen et al. (2004) examined the unsteady unidirectional flow of Bingham 

fluid between parallel plates under different volume flow rate conditions. Wang and Gordaninejad 

(2007) modelled the flow characteristics of field-controllable, electro-and magneto-rheological fluid 

dampers. Liao, 2011, studied different parametric models of MR dampers, dynamic models based 

on Bingham, bi-viscous model and the Bouc-Wen model. Omidbeygi (2012) studied the 

hydrodynamic properties of an MR fluid in a shear mode inside a rotational eccentric cylinder using 

the Herschel-Bulkley model. Good fluid consistency was obtained at high shear rates over a wide 

range of magnetic field strengths. Analytical and numerical comparisons were made to validate 

these results.  Goldasz (2012) analyzed the flow behavior of an MR fluid in a damper using the 

Bingham, bi-viscous, and Herschel-Bulkley models. The analytical results were compared with the 

experimental results, and the Herschel-Bulkley model produced results that were more consistent 

and had a smaller margin of error.  In Wang and Gordaninejad's work from 2006, they investigated 

three magnetorheological fluids at high shear levels. Gedik (2017) presented a comparative study 

of experimental and numerical methods on magnetorheological fluids in a circular pipe subjected to 

different magnetic field strengths.  

It has been shown that magnetorheological fluid modeling relies on a variety of models, 

including the Bingham, Herschel-Bulkley, Biviscous, and Hysteretic Biviscous models. These 

rheological models describe the behavior of MR fluids. Although, the application and mode type 

affect how MR fluid is modelled, the Bingham and Herschel-Bulkley models are the most widely 

used due to their simplicity compared to other models. It is more appropriate to use the Herschel-

Bulkley model in the case of high values in shear stress However, the Bingham Plastic model is 

thought to be the most accurate in explaining the relationship between the MR fluid's shear stress 

and magnetic field.  However, Weiss (1994) established the elastic-viscous behaviours of magneto-

rheological (MR) fluid and pointed out the viscoelastic properties of Magnetorheological Fluids. 

Yang et al. (2023) provided the magnetorheological and viscoelastic behaviours in an fe-based 

amorphous magnetic fluid. Viscoelastic behaviours of magnetorheological fluids were established 

in rheological studies by Li et al. (2017) and Felicia and Philip (2014). More broadly, Melzner and 

Odenbach (2002) used the term "magnetoviscoelastic effect" to imply changes in elastic 

characteristics as well as viscosity changes caused by the application of an external magnetic field. 
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According to Felicia and Philip (2014), the connection and breaking of the (chain-like) side chains 

and the (drop-like) dense clusters are the essential mechanisms underlying the change in the 

dynamic viscoelastic behaviours of ferrofluids. The intermediate scattering function of the colloidal 

suspensions was shown to be in control of the temporal relaxation of the viscoelasticity and transport 

coefficient (Avdeev et al, 2002).  

The Newtonian and Bingham plastic models have been widely utilized to describe the flow 

behaviour characteristics of magnetorheological fluids and was applied to the design of 

magnetorheological dampers. However, as the phenomenon of shear thinning or shear thickening 

exists in the flow of magnetorheological fluids, the Bingham-plastic may not be an accurate model 

to predict the behaviour of magnetorheological fluids. Therefore, Herschel-Bulkley model was also 

utilized to describe the flow properties of magnetorheological fluids. However, the viscosity 

associated with the Herschel-Buckley stress diverges to infinity as the strain rate approaches zero. 

This divergence makes the model difficult to implement in numerical simulations. A closer study 

of the behaviour of the fluid shows that the flow of magnetorheological fluids can be well modelled 

as viscoelastic fluids. Following the established elastic-viscous behaviours of magneto-rheological 

(MR) fluid and the viscoelastic properties of magnetorheological fluids, it is required that the flow 

characteristics of this fluid should be based on viscoelastic model. To be best of the authors’ 

knowledge, such study has not been presented analytically. Therefore, in this work, the flow 

behaviour of magnetorheological fluid in valve and shear modes for damping system is modelled 

and analyzed analytically using Laplace transforms method. The influences of various parameters 

of the model on the velocity, pressure and shear stress distributions are studied. 

 

2. Viscoelastic fluid Model for Magnetorheological Damper 

The magnetorheological fluids flow between two parallel plates under the influence of 

magnetic field as shown in the Fig. 2. It is assumed that the flow of the fluid is laminar, stable, 

incompressible, isothermal, and non-reacting chemically. The fluid conducts electrical energy as it 

flows unsteadily under magnetic force field. The fluid structure is everywhere in thermodynamic 

equilibrium and the plate is maintained at constant temperature. Following the assumptions, the 

governing equations for the flow of the viscoelastic fluid are given as 
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The flow is taking as two-directional, then  
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The wall is impermeable that the fluid cannot pass through the wall. So, the fluid cannot flow in the 

y-direction, then  
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The gravity is only in y-direction so, gravity in the x-direction is eliminated, 0xg =  

 

Therefore, the flow model equations reduce to  

0
u

x


=


                                                                                                                                                (7) 

 
2 2 2 2

2

1 22 2 2 2

nf

o

p

uu u p u u u u
u B u

t x x x y t x y K


   

           
+ = − + + + + − −    

            
                               (8)

 

0 y

p
g

y



= −


                                                                                                                                 (9) 

 

The flow is fully developed i.e., the velocity in the direction of flow does not change 
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Then the flow models reduce to 
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The initial condition  

00, , 0t u u y h= =    

 

The boundary conditions for the pressure driven flow mode 

 

0, 0, 0, 0t y u y h = =                                                                                                      (13a) 

0, , 0, 0t y h u y h = =                                                                                                               (13b) 

 

The boundary conditions for the direct shear mode 

 

0, 0, 0, 0t y u y h = =                                                                                                      (14a) 

0, , , 0t y h u U y h = =                                                                                                    (14b) 
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The pressure gradient in direction of flow is taken as constant. Applying Laplace transform method, 

we have 
2 2
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Arranging Eq. (15) 
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On solving Eq. (16), we have  
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The boundary conditions in Laplace transform domain for the pressure driven flow mode  

 

0, 0, 0, 0s y u y h = =                                                                                                    (18a)  

0, , 0, 0s y h u y h = =                                                                                                     (18b) 

The boundary conditions in Laplace transform domain for the direct shear mode 
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Applying the boundary conditions to Eq. (17), we have for the pressure driven flow mode  
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                                                                                                                                                     (21) 

For the direct shear mode 
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   

 

Then, we have  
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( )
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 
 
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
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 
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 
 +
 
 
 

 
+ + 

 
 +   

   
   + +

   
+ + + + +    

  
 +
 
 
 

                (22) 

Due to the complexity in finding the inverse Laplace transforms of Eqs. (21) and (22), a numerical 

evaluation of the inverse Laplace transform is carried out using Simon’s approach [4] given as 

 

( ) ( ) ( )
1

1
, , , 1

2

pa t N
n

p p

n p

e n
u y t u y a Re u y a i

t a



=

   
 = + + −        

                                                                            (23) 

 

Where for the pressure driven flow mode 
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 +

   
+ + ++ +        

     +   
 
 
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  
 + + +    
 

−   
+ +     

    
        + = 

          
+ + + + + +        +       

       
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   
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    +    

   
   − +

 
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   
+ + +     +   
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For the direct mode 
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It was suggested by Lee et al. [5] that the values of  pa t  in Eqs. (21) and (22) range between 4 and 

5. Because of absence of oscillating cosine and sine functions, Eqs. (22) and (23) converges more 

quickly because. The optimally value of pa t  is 4.7 [5] 
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Analysis of Shear Stress, Pressure Drop and Mass Flow Rate of the fluid 

 

The shear stresses at the lower and upper plates are given as 

 

0

0y

u

y
 

=


=


                                                                                                                                      (24) 

 

h

y h

u

y
 

=


=


                                                                                                                                     (25) 

 

The volume flow rate per unit width at normal section of the channel is given by 

 

0
( , )

L

Q u y t dy=                                                                                                                            (26) 

 

The pressure loss due to viscous drag at normal section of the channel is given by 

 
0 0

2

12 ( , )

L L

u y t
dp dy

h


= −                                                                                                                (27) 

 

Which is given as  

 
0

0 2

12
( , )L

L
p p u y t dy

h


− = −                                                                                                                      (28) 

 

Substituting Eq. (26) into Eq. (28), we arrived at viscous pressure loss as 

 

0 2

12
L

Q
p p

h


− =                                                                                                                                   (29) 

There are two independent sets of equations used to determine the magnetorheological 

damper force in the different modes. Pressure driven flow mode has two components to the pressure 

drop: pressure loss due to viscous drag which is given in Eq. (27), and pressure loss due to the field 

dependent yield stress. On the other hand, the pressure drop due to the increment of the yield stress 

of the MR fluid. The magnetic field-dependent yield stress pressure loss is given as 
2 ( )p y

MR

cL B
p

h


=                                                                                                                               (30) 

Where c is a coefficient that depends on flow velocity profile and has a value range from 2.0 

to 3.0, Lp is the length of the magnetic pole, h is the distance between the upper and lower plates, 

and τy(B) is the yield stress caused by the magnetic flux density B. Therefore, tg is the magnetic field 

dependent-yield stress. 

 

Therefore, the total pressure loss is given as  

 

2

2 ( )12 p y

total

cL BQ
p

h h


 = +                                                                                                                   (31) 

 

Alternatively, one can write 

 

3

12 p y

total

cLQL
p

w



 
 = +                                                                                                                         (32) 
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 is the fluid viscosity, Q is the flowrate, L is the plate length, w is the pole width,   is the fluid 

gap, and tg is the field dependent yield stress.  

 

The damper force is given by 

 

r
y

u A
F A





= +                                                                                                                                   (33) 

  

Where 

ru  is the relative velocity between the plates and A is the pole area. 

 

For the steady state model, we have  

 
2

2

2

1 1

1 1nf

o

p

u p
B u

y K x




 

  
+ − + = 

   

 

 

Using the boundary conditions, for the valve mode, we arrived at 

 

2 2

2 2 2

( )

( ) 1

nf nf

o o

p p

nf nf nf
o o o

p p p

p sinh B h y sinh B y
K K

xu y

B sinh B h sinh B h
K K K

 
 

  
  

     
   + − +              = + − 

       
+  + +                   

 

 

 

For the direct shear mode 

 

2 2 2

2 2 2 2

( )

( ) 1

nf nf nf

o o o

p p p

nf nf nf nf
o o o o

p p p p
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   
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       
   + − + +                   = + − + 
       

+  + + +                  

h


  
 

 

 

Analysis of Shear Stress, Pressure Drop and Mass Flow Rate of the fluid 

 

The shear stresses at the lower and upper plates in the valve mode are given as 

 

2

0

2

1
nf

o

p

nf

o

p

cosh B h
Kp

x
sinh B h

K




 




  
 − +      

=  
   

+   
   

                                                                                                                                      (24) 
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1
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o
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x
sinh B h
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


 




  
 + +      
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   
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                                                                                                                                     (25) 
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The shear stresses at the lower and upper plates in the direct shear mode are given as 

 

2 2 2
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       
  − + + +                   

= +  
     

+ +         
       

                                         (24) 
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                                           (25) 

 

 

 

The volume flow rate per unit width at normal section of the channel is given by 

 

0
( , )

L

Q u y t dy=                                                                                                                            (26) 

 

The pressure loss due to viscous drag at normal section of the channel is given by 

 
0 0

2

12 ( , )

L L

u y t
dp dy

h


= −                                                                                                                (27) 

 

Which is given as  

 
0

0 2

12
( , )L

L
p p u y t dy

h


− = −                                                                                                                      (28) 

 

Substituting Eq. (26) into Eq. (28), we arrived at viscous pressure loss as 

 

0 2

12
L

Q
p p

h


− =                                                                                                                                   (29) 

There are two independent sets of equations used to determine the magnetorheological 

damper force in the different modes. Pressure driven flow mode has two components to the pressure 

drop: pressure loss due to viscous drag which is given in Eq. (27), and pressure loss due to the field 

dependent yield stress. On the other hand, the pressure drop due to the increment of the yield stress 

of the MR fluid. The magnetic field-dependent yield stress pressure loss is given as 
2 ( )p y

MR

cL B
p

h


=                                                                                                                               (30) 

Where c is a coefficient that depends on flow velocity profile and has a value range from 2.0 

to 3.0, Lp is the length of the magnetic pole, h is the distance between the upper and lower plates, 

and τy(B) is the yield stress caused by the magnetic flux density B. Therefore, tg is the magnetic field 

dependent-yield stress. Therefore, the total pressure loss is given as  

 

2

2 ( )12 p y

total

cL BQ
p

h h


 = +                                                                                                                   (31) 
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Alternatively, one can write 

 

3

12 p y

total

cLQL
p

w



 
 = +                                                                                                                         (32) 

 

 is the fluid viscosity, Q is the flowrate, L is the plate length, w is the pole width,   is the fluid 

gap, and tg is the field dependent yield stress.  

 

The damper force is given by 

 

r
y

u A
F A





= +                                                                                                                                   (33) 

 

4. Results and Discussion 

The developed model solutions were simulated in MATLAB R2024a for the graphical 

visualizations of the flow behaviour of the MRF and for the studies of the significances of various 

parameters on the flow response of the MRF. The nonlinear flow behavior of magnetorheological 

fluid is demonstrated in the Fig. 3. 

 

 
Figure 3. Viscoelastic flow model description of the magnetorheological fluid. When the magnetic 

field strength is (a) 100 kA/m (b) 400 kA/m 

 

 The model simulation shown in the figure as previously stated that the rheological behaviour 

of the fluid is separated into distinct pre-yield and post-yield regimes. The velocity profile is divided 

into three regions where the region in the middle represents the plug/pre-yield region in which the 

shear stress is zero. However, other regions contain post-yield where shear stress distributions are 

linear. The maximum and the minimum shear stresses are observed on the inner surfaces of the 

upper and lower plates. This result establishes that the viscoelastic model provides good description 

of the fluid flow model as predicted in experimental studies as well as theoretical studies using 

Bingham plastic model and the Herschel–Bulkley plastic models. With the aid of Bingham plastic 

model and the Herschel–Bulkley plastic models, the past studies had shown that the phenomenon 

of shear thinning or shear thickening exists in the flow of magnetorheological fluids. The present 
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work which adopts viscoelastic fluid flow model, also accounts for the post-yield shear thinning or 

thickening behaviour of magnetorheological fluids as depicted in Fig. 3. 

Figs. 4-7 show the effect of pressure drop and magnetic field intensity on the MRF velocity 

distribution between the parallel plates. The figure shows pressure-driven/valve flow mode where 

the magnetorheological fluid is in between two fixed magnetic plates which produces magnetic flux. 

When the magnetic field is applied, magnetorheological particles align parallel to the applied 

magnetic field lines and resist the flow of the pressurized magnetorheological fluid. It is shown that 

an increase in the pressure drop enhances the fluid flow velocity.   

Also, as the magnetic field intensity increases, the resistance to flow by the 

magnetorheological fluid increases. Consequently, the flow velocity of the fluid increases. This 

shows that the flow and rheological characteristics of the fluid changes when magnetic field is 

applied. In fact, the intensity of applied magnetic field is used to control the viscosity of the fluid. 

Such an excellent characteristics and special behavior of magnetorheological fluid has led to its vast 

of applications such as dampers, shock absorbers, rotary brakes, prosthetic devices, clutches, 

polishing and grinding devices, etc.  It should be re-emphasized that the magnetic permeability is 

proportional to the volume fraction of particles. It is therefore reasonable to suppose that as the flux 

density increases, the tendency of the magnetic particles to align themselves along the lines of 

magnetic flux and create more resistance to the carrier fluid movement will increase. This obviously 

depict that as the volume fraction of particles increased, the fluid viscosity increases, in consequent, 

the resistance of the fluid to flow will increase.  

Therefore, higher forces will be needed to cause the MRF to flow as the volume fraction 

increases.  The post-yield region exhibited a highly steep slope in the stress-strain relationship. 

Because the volume fraction of particles was expected to increase more quickly under these 

conditions, the mechanisms also helped to explain why the slope was much steeper when the 

magnetic field intensity was high.  

 
 

  

(a) (b) 

Figure 4 Effect of pre-yield and post-yield on the velocity distribution in the parallel plates of 

shock absorber when the pressure drop is 0.25 N/m2 
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(a)                                                                                                                      (b) 

Figure 5 Effect of pre-yield and post-yield on the velocity distribution in the parallel plates of shock 

absorber when the pressure drop is 0.50 N/m2.When the magnetic field strength is (a) 100 kA/m (b) 

400 kA/m 

 

 
(a)                                                                                 (b) 

Figure 6 Effect of pre-yield and post-yield on the velocity distribution in the parallel plates of shock 

absorber when the pressure drop is 0.75 N/m2.When the magnetic field strength is (a) 100 kA/m (b) 

400 kA/m 

 

 
(a)                                                                                                                 (b) 

Figure 7 Effect of pre-yield and post-yield on the velocity distribution in the parallel plates of shock 

absorber when the pressure drop is 1.0 N/m2. When the magnetic field strength is (a) 100 kA/m (b) 

400 kA/m 
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Figure 8 Effect of pressure drop on the shear stress distribution in the parallel horizontal plates of 

the shock absorber 

 

It should be not that particle agglomeration may occur for high values of volume fractions 

that are close to the maximum packing density of the solid particles. As a result, some of the carrier 

fluid is trapped, which lowers the effective volume needed for the "free" carrier fluid to circulate. If 

this happened, the flow would encounter more resistance, and higher compressive stresses would 

be required to overcome this resistance. 

Fig. 8 shows the shear stress distribution between the parallel plates. The figure shows that 

there are three sections in the velocity profile; the plug/pre-yield zone, where the shear stress is zero, 

is represented by the middle region. Shear stress distributions in other locations, on the other hand, 

are linear due to post-yield. The inner surfaces of the upper and lower plates exhibit the maximum 

and least shear stresses, respectively. Also, the figure presents the impact of pressure drop on the 

shear stress distribution between the plates. When shear stress increases as the pressure drop is 

augmented. This is because an increased pressure drop causes increase in the flow velocity as well 

as the velocity gradient, which in consequently increases the shear stress of the fluid. 

Fig. 9 illustrates the significance of carrier (base fluid) and the magnetic field strength on 

yield stress of the magnetorheological fluid. In the figure, it is depicted that silicon oil, hydrocarbon 

oil and water as the carriers in the damper. It is shown that when the magnetic field strength is 

increased, the yield stress of the fluid also increases. In the base fluid applied, silicon displays the 

highest yield stress while water produces the lowest value of yield stress. Such a response is due to 

the viscosities, where silicon has the highest viscosity and water has the lowest.   

Fig. 10 and 11 show the validation of the present work with the experiment performed by 

the authors. The results of the model show an excellent agreement with the experimental results. 

Therefore, the present model will support the design of dampers, shock absorbers, rotary brakes, 

prosthetic devices, clutches, polishing and grinding devices, etc. 
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Figure 9 Effect of carrier fluid and magnetic field strength on the yield stress in the parallel 

horizontal plates  

 

 
Figure 10. Experimental validation of the model results of volume fraction of MRF against magnetic 

strength  

 

 
 

Figure 11. Experimental validation of the model results of shear yield strength against magnetic 

strength  
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5. Conclusion 

The flow behavior of a magnetorheological fluid in the shear and valve modes for a damper 

system has been modelled and examined in this paper. Both a pressure-driven flow mode and a 

direct shear mode were analyzed based on viscoelastic fluid model that is moving between two 

parallel plates. The momentum equation of the magnetorheological fluid flow was solved using the 

Laplace transform method to get the velocity and pressure distributions in the unsteady 

magnetorheological fluid flow between the electrodes of the damper. The solutions of the flow 

process are simulated, and parametric studies were also provided. The results of the model show an 

excellent agreement with the experimental results. The viscoelastic flow model describes that the 

rheological behaviour of the fluid is separated into distinct pre-yield and post-yield regimes.  It was 

established that an increase in the pressure drop enhances the fluid flow velocity, velocity gradient 

and shear stresses. When the volume fraction of particles increased, the fluid viscosity increases, in 

consequent, the resistance of the fluid to flow will increase which decreases the fluid flow velocity. 

The magnetic field intensity increases, the resistance to flow by the magnetorheological fluid 

increases which in turns decreases the flow velocity of the fluid. Therefore, the present model will 

be very useful in the design of dampers, shock absorbers, rotary brakes, prosthetic devices, clutches, 

polishing and grinding devices, etc. 
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