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Abstract  

We prove existence fixed point results of generalized multi-valued 𝑔- weak contraction mappings 

and multivalued mappings satisfying a Reich-type condition in ℱ- metric spaces. Our results 

generalized, extend and enrich recently fixed point existing in the literature. Examples and 

applications illustrating the main resuts are presented in the last section. 
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1. Introduction and preliminaries 

Recently, Jleli and Samet have introduced a new concept named ℱ -metric spaces as a 

generalization of the notion of the metric spaces [3]. The main objective of the present paper is to 

prove the common fixed point theorems for generalized multi-valued 𝑔 - weak contraction 

mappings in ℱ -metric spaces, and which presents a generalization of some previous theories such 

as [1], [4,5] and [7], which have been used in ℱ -metric spaces. It is worthy to mention that the 

obtained results will allow generalizing and unifying Nadler's multi-valued contraction mapping 

and many fixed point theorems for multivalued mappings. In ℱ-metric spaces. Furthermore, this 

paper will present some applications and examples to validate the proposed theorems. 

Firstly, a brief relocation of basic notions and facts on ℱ-metric spaces are exposed. Let's denote 

by  ℱ the set of functions   𝑓: ]0,∞[ → ℝ  such that 

 ( ℱ1)  𝑓 is non-decreasing, i.e., 0 < 𝑠 < 𝑡 implies  𝑓(𝑠) ≤ 𝑓(𝑡). 

 ( ℱ2)  For every sequence   (𝑡𝑛) ⊂ ]0,∞[, we have  

lim
𝑛→+∞

𝑡𝑛 = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 lim
𝑛→+∞

𝑓(𝑡𝑛) = −∞.  

 

 Definition 1.1 ([3, Definition 2.1])   Let 𝐸 be a nonempty set and  𝐷: 𝐸2 → ℝ+  be a given 

mapping. Suppose that there exists (𝑓, 𝑎) ∈ [0,∞[,  such that 

 (𝐷1)    ∀(𝑥, 𝑦) ∈ 𝐸2, 𝐷(𝑥, 𝑦) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑥 = 𝑦. 

 (𝐷2)    ∀(𝑥, 𝑦) ∈ 𝐸2, 𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥).   

 (𝐷3)     ∀(𝑥, 𝑦) ∈ 𝐸2  and for every  𝑁 ∈ ℕ, 𝑁 ≥ 2 and for all   (𝑣𝑖)𝑖=1
𝑁 ⊂ 𝐸 with ( ) ( )yxvv N ,,1 = ,   

we have   
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𝐷(𝑥, 𝑦) > 0  implies 𝑓(𝐷(𝑥, 𝑦)) ≤ 𝑓(∑ 𝐷(𝑣𝑖, 𝑣𝑖+1)𝑁−1
𝑖=1 ) + 𝑎 

Then  𝐷 is called an ℱ-metric on 𝐸 and the pair (𝐸, 𝐷) is called an ℱ -metric space. 

 Definition 1.2 ([8, Definition 1.3])   Let  Φ be the family of functions  𝜙 ∶ ℝ+ → ℝ+ satisfying 

1) 𝜙  is non-decreasing. 

2) The series   ∑ 𝜙𝑛(𝑡)  ∞
𝑘=0 converges for any  𝑡 > 0,  where  𝜙𝑛  is the  n-th iterate of 𝜙.  

 Lemma 1.1 ([8, Lemma 1.4])   Let  𝜙 ∈ Φ,  we have  𝜙(𝑡) < 𝑡  for all 𝑡 > 0.    

 Remark 1.1 If 𝜙 ∈ Φ, then 𝜙(0) = 0.  

If  𝜙(0) > 0,  by Lemma 1.1, we have 𝜙(𝜙(0)) < 𝜙(0).  Since   is non-decreasing, then     

 𝜙(0) ≤ 𝜙(𝜙(0)), which is a contradiction. Hence  𝜙(0) = 0.   

 Definition 1.3 ([2, Definition 5])   Let  (𝐸, 𝐷)  be an ℱ-metric space. Define:  

𝐷(𝑥, 𝐴) = 𝑖𝑛𝑓𝑦∈𝐴𝐷(𝑥, 𝑦) 

and                                                     𝐿(𝐴, 𝐵) = 𝑠𝑢𝑝𝑥∈𝐴𝐷(𝑥, 𝐵) 

where  𝑥 ∈ 𝐸 and 𝐴, 𝐵 ∈ 𝑃(𝐸). 

 Definition 1.4 ([2, Definition 6]) Let (𝐸, 𝐷)  be an ℱ -metric space and let 𝑀𝐹  be the set of all 

nonempty ℱ-closed and bounded subsets of 𝐸.  The ℱ -Hausdorff distance is defined by: 

                                            ∆(𝐴, 𝐵) = max(𝐿(𝐴, 𝐵), 𝐿(𝐵, 𝐴))                                           (𝟏. 𝟏) 

 Proposition 1.1 ([2, Proposition 3]) Let (𝐸, 𝐷) be an ℱ-metric space with continuous function 

𝑓 ∈ ℱand 𝑎 ≥ 0.  Then  (𝑀𝐹 , ∆)  is an ℱ-metric space. 

 Lemma 1.2 ([1, Lemma 1 in ℱ-metric space])   Let (𝐸, 𝐷)  be a ℱ-metric space with continuous 

𝑓 ∈ ℱ and   𝑎 ≥ 0.  Let  𝐴, 𝐵 ∈ 𝑀𝐹  and  𝑞 ∈ ℝ, 𝑞 > 1 be given. Then, for every  𝑎 ∈ 𝐴  there 

exists  𝑏 ∈ 𝐵  such that  

                                                        𝐷(𝑎, 𝑏) ≤ 𝑞∆(𝐴, 𝐵)                                              (𝟏. 𝟐)                                                       

 

 Proof   Let  𝑎 ∈ 𝐴  be, if  ∆(𝐴, 𝐵) = 0  then  𝑎 ∈ 𝐵  and (𝟏. 𝟐) holds for  𝑏 = 𝑎. 

If  ∆(𝐴, 𝐵) > 0,  choose  𝜖 = (𝑞 − 1)∆(𝐴, 𝐵),  there exists  𝑏 ∈ 𝐵 such that  

𝐷(𝑎, 𝑏) ≤ 𝐷(𝑎, 𝐵) + (𝑞 − 1)∆(𝐴, 𝐵) 

                                     ≤ ∆(𝐴, 𝐵) + (𝑞 − 1)∆(𝐴, 𝐵) = 𝑞∆(𝐴, 𝐵) 

 Remark 1.2   If  𝑓 ∈ ℱ  is continuous and satisfies ( ℱ1) then 

𝑓(𝑖𝑛𝑓(𝐴)) = 𝑖𝑛𝑓(𝑓(𝐴))  𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ⊂ ℝ+  𝑤𝑖𝑡ℎ  𝑖𝑛𝑓(𝐴) > 0. 

Definition 1.5 ([9] and [10, Definition 2.2])   Let 𝑔 be a self-map on ℱ-metric space (𝐸, 𝐷) and let   

𝑇: 𝐸 → 𝑃(𝐸)  be a multi-valued mapping. 

1) A point  𝑥 ∈ 𝐸   is a fixed point of 𝑔 (resp.𝑇) if 𝑔𝑥 = 𝑥(resp.𝑥 ∈ 𝑇𝑥) and the set of fixed 

points of 𝑔 (resp. 𝑇  ) is denoted by  𝐹(𝑔)  (resp. 𝐹(𝑇) ). 

2) A point   𝑥 ∈ 𝐸  is a coincidence point of 𝑔  and  𝑇  if 𝑔(𝑥) ∈ 𝑇𝑥) and the set of coincidence 

points of 𝑔  and  𝑇  is denoted by  𝐶(𝑔, 𝑇).  
3) A point  𝑥 ∈ 𝐸   is a common fixed point of 𝑔  and 𝑇  if  𝑥 = 𝑔(𝑥) ∈ 𝑇𝑥  and the set of 
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common fixed points of 𝑔  and 𝑇  is denoted by  𝐹(𝑔, 𝑇). 

 

2-Main Results 

 

 Lemma 2.1 Let  (𝑦𝑛)𝑛  be a sequence in a ℱ-metric space (𝐸, 𝐷), such that 

                               𝐷(𝑦𝑛+1, 𝑦𝑛) ≤ 𝜙(𝐷(𝑦𝑛, 𝑦𝑛−1))  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ,                               (𝟐. 𝟏)                                          

where  𝜙 ∈ Φ. Then  (yn)n  is an  ℱ- Cauchy sequence. 

 Proof   If  𝐷(𝑦1, 𝑦0) = 0,  then 

𝐷(𝑦2, 𝑦1) ≤  𝜙(𝐷(𝑦1, 𝑦0)) = 𝜙(0) = 0, 𝑠𝑜  𝑦2 = 𝑦1 = 𝑦0. 

We conclude that 𝑦𝑛 = 𝑦0   for all   𝑛 ∈ ℕ,  so  (𝑦𝑛)𝑛 is ℱ- Cauchy sequence. Now, we assume  

D(𝑦1, 𝑦0) > 0. In condition (𝟐. 𝟏) and  𝜙  is non-decreasing, we have 

𝐷(𝑦𝑛+1, 𝑦𝑛) ≤ 𝜙(𝐷(𝑦𝑛, 𝑦𝑛−1)) ≤ 𝜙2(𝐷(𝑦𝑛−1, 𝑦𝑛−2)) 

                                                       .≤ 𝜙𝑛(𝐷(𝑦1, 𝑦0)). 

So, 

                                𝐷(𝑦𝑛+1, 𝑦𝑛) ≤ 𝜙𝑛(𝐷(𝑦1, 𝑦0)), 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ∈ ℕ.                          (𝟐. 𝟐) 

By  (𝐷3)  and (𝟐. 𝟐),  for  𝑚 > 𝑛  such that 𝑦𝑛 ≠ 𝑦𝑚,  we have  

 

𝑓(𝐷(𝑦𝑛, 𝑦𝑚)) ≤ 𝑓 ( ∑ 𝐷(𝑦𝑘, 𝑦𝑘+1)
𝑚−1

𝑘=𝑛

) + 𝑎 ≤ 𝑓 ( ∑ 𝜙𝑘(𝐷(𝑦0, 𝑦1))

𝑚−1

𝑘=𝑛

) + 𝑎.   

 

Denote  

𝑆𝑛 = ∑ 𝜙𝑘(𝐷(𝑦0, 𝑦1)),     𝑛 ∈ ℕ.    

𝑛

𝑘=0

 

Then               

                                      𝑓(𝐷(𝑦𝑛, 𝑦𝑚)) ≤ 𝑓(𝑆𝑚−1 − 𝑆𝑛−1) + 𝑎                                  (𝟐. 𝟑)     

Since  𝜙 ∈ Φ,  we have 

∑ 𝜙𝑘(𝐷(𝑦0, 𝑦1)) < ∞.  

∞

𝑘=0

 

It follows that,  (𝑆𝑛)  is a convergent sequence. This yields that  (𝑆𝑛)  is a Cauchy sequence inℝ. 

By  ( ℱ2)  and (𝟐. 𝟑),  it follows that, 𝑙𝑖𝑚
𝑛,𝑚→∞

(𝑆𝑚−1 − 𝑆𝑛−1) = 0,   implies 

𝑙𝑖𝑚
𝑛,𝑚→∞

(𝑓(𝑆𝑚−1 − 𝑆𝑛−1) + 𝑎) = −∞, 
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then 𝑙𝑖𝑚
𝑛,𝑚→∞

𝑓(𝐷(𝑦𝑛, 𝑦𝑚)) = −∞.  𝑆𝑜  𝑙𝑖𝑚
𝑛,𝑚→∞

 𝐷(𝑦𝑛, 𝑦𝑚) = 0. 

 Remark 2.1 ([6, Lemma 1])    Let  (𝑦𝑛)𝑛  be a sequence in a ℱ-metric space (𝐸, 𝐷), such that             
  

                D(𝑦𝑛+1, 𝑦𝑛) ≤ 𝜆D(𝑦𝑛, 𝑦𝑛−1), for all n ∈ ℕ, 𝜆 ∈ ℝ, 0 < 𝜆 < 1                (𝟐. 𝟒) 

 Then (yn)n is an ℱ-Cauchy sequence.  Putting  𝜙(𝑡) = 𝜆𝑡,  where  𝜆 ∈ ]0,1[,  we get  𝜙 ∈ Φ. 

 Theorem 2.1   Let  𝑔  be a self-map on ℱ-metric space (𝐸, 𝐷)  with continuous 𝑓 ∈ ℱ and   𝑎 ≥

0  and let   𝑇: 𝐸 → 𝑀𝐹   be a multi-valued mapping such that     

                                                ∆(𝑇𝑥, 𝑇𝑦) ≤ 𝜙(𝐷(𝑔𝑥, 𝑔𝑦)).                                         (2.5) 

For all 𝑥, 𝑦 ∈ 𝐸, where 𝜙 ∈ Φ and 𝑇𝑥 ⊂ 𝑔(𝐸)
 for all 𝑥 ∈ 𝐸.  Suppose that the following assertions 

hold: 

a- For each 𝑥 ∈ 𝐸 the set 

𝐸𝑇(𝑥) = {𝑦 ∈ 𝑇𝑥;  𝐿(𝑇𝑥, 𝑔𝑥) ≤ 𝑞(D(𝑦, 𝑔𝑥))  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑞 > 1 } 

is nonempty. 

b- 𝑔(𝐸)  is a ℱ -complete subspace of 𝐸. Then 

1) The set  𝐶(𝑔, 𝑇)  is nonempty. 

2) If  𝑔𝑔𝑥 = 𝑔𝑥  for some  𝑥 ∈ 𝐶(𝑔, 𝑇)  then  𝑔  and 𝑇  have a common fixed point. 

 

 Proof   

1) Let  Ex 0
   be arbitrary and  .00 gxy =   Since  ( ),0 EgTx    there exists  ,1 Ex    such that  

𝑦1 = 𝑔𝑥1 ∈ 𝑇𝑥0.  If  𝛥(𝑇𝑥0,  𝑇𝑥1) = 0,  so  

𝑔𝑥1 ∈ 𝑇𝑥0 = 𝑇𝑥1. 

 If  𝛥(𝑇𝑥0,  𝑇𝑥1) > 0.  Since  𝐸𝑇(𝑥1)  is nonempty, there exists  𝑦2 ∈ 𝑇𝑥1  such that  

𝐿(𝑇𝑥1,  𝑔𝑥1) ≤ 𝑞𝐷(𝑦2,  𝑔𝑥1)   for some 𝑞 > 1. 

Then   

𝐷(𝑦2,  𝑔𝑥1) ≤ 𝐿(𝑇𝑥1,  𝑔𝑥1). 

Since  𝑦2 ∈ 𝑇𝑥1 ⊂ 𝑔(𝐸),  there exists  𝑥2 ∈ 𝐸,  such that  .122 Txgxy =   Then 

𝐷(𝑔𝑥2,  𝑔𝑥1) ≤ 𝐿(𝑇𝑥1,  𝑔𝑥1) ≤ 𝛥(𝑇𝑥1,  𝑇𝑥0) ≤   𝜙(𝐷(𝑔𝑥1,  𝑔𝑥0)). 

We continue with the same process. If  𝛥(𝑇𝑥1,  𝑇𝑥2) = 0,  so  

𝑔𝑥2 ∈ 𝑇𝑥1 = 𝑇𝑥2. 

Now, if  𝛥(𝑇𝑥1,  𝑇𝑥2) > 0. Since 𝐸𝑇(𝑥2) is nonempty, there exists 𝑦3 ∈ 𝑇𝑥2 such that  

𝐿(𝑇𝑥2,  𝑔𝑥2) ≤ 𝑞𝐷(𝑦3,  𝑔𝑥2)   for some 𝑞 > 1. 

Then   

𝐷(𝑦3,  𝑔𝑥2) ≤ 𝐿(𝑇𝑥2,  𝑔𝑥2) 

Since  𝑦3 ∈ 𝑇𝑥2 ⊂ 𝑔(𝐸), there exists 𝑥3 ∈ 𝐸, such that 𝑦
3

= 𝑔𝑥3 ∈ 𝑇𝑥2. Then 
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𝐷(𝑔𝑥3,  𝑔𝑥2) ≤ 𝐿(𝑇𝑥2,  𝑔𝑥2) ≤ 𝛥(𝑇𝑥2,  𝑇𝑥1) ≤   𝜙(𝐷(𝑔𝑥2,  𝑔𝑥1)). 

Continuing in this fashion, we produce a sequence  (𝑦𝑛)𝑛  of points of 𝐸 such that          

𝑦𝑛+1 = 𝑔𝑥𝑛+1 ∈ 𝑇𝑥𝑛   and 

𝐷(𝑦𝑛+1,  𝑦𝑛) ≤ 𝐿(𝑇𝑥𝑛,  𝑔𝑥𝑛) ≤ 𝛥(𝑇𝑥𝑛,  𝑇𝑥𝑛−1) ≤   𝜙(𝐷(𝑦𝑛,  𝑦𝑛−1)). ∀𝑛 ∈ N∗. 

By Lemma 2.1, it follows that  (𝑔𝑥𝑛)𝑛  is a ℱ-Cauchy sequence in a complete ℱ-metric space  

(𝑔(𝐸),  𝐷), hence there exists  𝑥 ∈ 𝐸  such that 

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔𝑥. 

We show that  𝑔𝑥 ∈ 𝑇𝑥.  If  𝑔𝑥 ∉ 𝑇𝑥 , since  𝑇𝑥  is closed, this implies  𝐷(𝑔𝑥,  𝑇𝑥) > 0. In 

condition (2.5) and by Remark 1.2, we have 

𝑓(𝐷(𝑔𝑥,  𝑇𝑥)) ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝐷(𝑔𝑥𝑛+1,  𝑇𝑥)) + 𝑎

                       ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝛥(𝑇𝑥𝑛,  𝑇𝑥)) + 𝑎.

                           ≤ 𝑓 (𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝜙(𝐷(𝑔𝑥𝑛,  𝑔𝑥))) + 𝑎

                   ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝐷(𝑔𝑥𝑛,  𝑔𝑥)) + 𝑎

 

Taking limit as  𝑛 → +∞,  we get  𝑓(𝐷(𝑔𝑥,  𝑇𝑥)) ≤ −∞,  which is a contradiction, hence  

𝐷(𝑔𝑥,  𝑇𝑥) = 0. Since 𝑇𝑥 is closed, then 𝑔𝑥 ∈ 𝑇𝑥. 

2) If  𝑔𝑔𝑥 = 𝑔𝑥,  for some  𝑥 ∈ 𝐶(𝑔,  𝑇),  In condition (2.5), we have 

 

𝛥(𝑇𝑔𝑥,  𝑇𝑥) ≤ 𝜙(𝐷(𝑔𝑔𝑥,  𝑔𝑥)) = 0. 

Then  𝑇𝑔𝑥 = 𝑇𝑥,  for some  𝑥 ∈ 𝐶(𝑔,  𝑇).  Let  𝑦 = 𝑔𝑥,  then  𝑦 = 𝑔𝑦  and 

  𝑦 = 𝑔𝑥 ∈ 𝑇𝑥 = 𝑇𝑔𝑥 = 𝑇𝑦.  So  .Tygyy =   

 Example 2.1   Le t 𝐸 = [1, +∞[ be endowed with the ℱ -metric 𝐷 given by 

𝐷(𝑥,  𝑦) = |𝑥 − 𝑦|,    𝑥,  𝑦 ∈ 𝐸. 

With  𝑓(𝑥) = ln𝑥  and  𝑎 = 0.  Define  𝑔  and  𝑇  on  𝐸   by  

𝑔  :   𝐸 → 𝐸,                               𝑇  :   𝐸 → 𝑀𝐹

     𝑥 → 𝑔(𝑥) =
𝑥 + 2

2
,                𝑥 → 𝑇(𝑥) = [1,  

3 + √𝑥

2
]  .  

 

Then 

𝛥(𝑇𝑥,  𝑇𝑦) = max (sup
𝑧∈𝑇𝑥

𝐷(𝑧,  𝑇𝑦),   sup
𝑤∈𝑇𝑦

𝐷(𝑤,  𝑇𝑥))

                                                      = |
√𝑥 − √𝑦

2
| ≤

|𝑥 − 𝑦|

4
=

1

2
𝐷(𝑔𝑥,  𝑔𝑦) ,    for all 𝑥,  𝑦 ∈ 𝐸.

 

Putting   𝜙(𝑡) =
𝑡

2
,  𝑡 ≥ 0,  then 𝜙 ∈ 𝛷,  and we get  

𝛥(𝑇𝑥,  𝑇𝑦) ≤ 𝜙(𝐷(𝑔𝑥,  𝑔𝑦)),     for all 𝑥,  𝑦 ∈ 𝐸. 
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Obviously, 𝑇𝑥 ⊂ 𝑔(𝐸), 𝐸𝑇(𝑥) ≠ ∅, ∀𝑥 ∈ 𝐸 and  𝑔(𝐸) = [
3

2
, +∞[  is a ℱ-complete subspace of 𝐸.  

Thus all conditions in Theorem 2.1 are satisfied. Then 

1)  𝑔(𝑥) ∈ 𝑇𝑥 , for all  𝑥 ∈ 𝐶(𝑔,  𝑇) = [1,  
3+√5

2
] . 

2) We have  𝑔𝑔𝑥 = 𝑔𝑥,  for  𝑥 = 2 ∈ 𝐶(𝑔,  𝑇),  then 𝑔 and  𝑇 have a common fixed point  𝑥 =

2 = 𝑔(2) ∈ 𝑇2 = [1,  
3+√2

2
] .  

 Theorem 2.2   Let  𝑔 be a self-map on ℱ -metric space  (𝐸,  𝐷)  with continuous 𝑓 ∈ ℱand 𝑎 ≥ 0 

and let 𝑇  :   𝐸 → 𝑀𝐹 be a multi-valued mapping such that     

                        ∆ (𝑇 𝑥, 𝑇 𝑦) ≤  𝛼𝐷 (𝑔𝑥, 𝑔𝑦) +  𝛽𝐷 (𝑔𝑥, 𝑇 𝑥) +  𝛿𝐷 (𝑔𝑦, 𝑇 𝑦) ,                  (2.6) 

for  all 𝑥, 𝑦 ∈ 𝐸 , with 𝛼,  𝛽,  𝛿 ∈ ℝ+ such that  𝛼 + 𝛽 + 𝛿 < 1, where  𝑇𝑥 ⊂ 𝑔(𝐸), for all 𝑥 ∈ 𝐸. If 

a) 𝑔(𝐸) is a ℱ-complete subspace of 𝐸. 
b) The real number  𝛿 is chosen in order that  𝑓(𝑡) > 𝑓(𝛿𝑡) + 𝑎 for all  𝑡 > 0, where     𝑓 ∈

ℱand a  are given by (𝐷3). Then 

1) The set 𝐶(𝑔,  𝑇) is nonempty. 

2) If  𝑔𝑔𝑥 = 𝑔𝑥 for some𝑥 ∈ 𝐶(𝑔,  𝑇), then 𝑔 and 𝑇 have a common fixed point. 

 Proof  

1)  If 𝛼 = 𝛽 = 𝛿 = 0, it is clear, that there exists 𝑥 ∈ 𝐸, such that  𝑔𝑥 ∈ 𝑇𝑥. Now if there is at 

least one non-zero of  𝛼,  𝛽,  𝛿. Let 𝑥0 ∈ 𝐸 be arbitrary and 𝑦0 = 𝑔𝑥0. Since  𝑇𝑥0 ⊂ 𝑔(𝐸), there 

exists 𝑥1 ∈ 𝐸,  such that  

𝑦1 = 𝑔𝑥1 ∈ 𝑇𝑥0. 

If 𝛥(𝑇𝑥0,  𝑇𝑥1) = 0, we have  

𝑔𝑥1 ∈ 𝑇𝑥0 = 𝑇𝑥1. 

Now, if  𝛥(𝑇𝑥0,  𝑇𝑥1) > 0, choose  𝑞 ∈ ℝ,  1 < 𝑞 <
1

𝛼+𝛽+𝛿
.  By Lemma 1.2, there exists  𝑦2 ∈

𝑇𝑥1  such that  

𝐷(𝑦1,  𝑦2) ≤ 𝑞𝛥(𝑇𝑥0,  𝑇𝑥1). 

 Since  𝑇𝑥1 ⊂ 𝑔(𝐸), there exists 𝑥2 ∈ 𝐸, such that 𝑦2 = 𝑔𝑥2. In condition (2.6), we have  

𝐷(𝑔𝑥1,  𝑔𝑥2) ≤ 𝑞𝛥(𝑇𝑥0,  𝑇𝑥1)

≤ 𝑞(𝛼𝐷(𝑔𝑥0,  𝑔𝑥1) + 𝛽𝐷(𝑔𝑥0,  𝑇𝑥0) + 𝛿𝐷(𝑔𝑥1,  𝑇𝑥1))

≤ 𝑞(𝛼𝐷(𝑔𝑥0,  𝑔𝑥1) + 𝛽𝐷(𝑔𝑥0,  𝑔𝑥1) + 𝛿𝐷(𝑔𝑥1,  𝑔𝑥2))

 

So,  

𝐷(𝑔𝑥1,  𝑔𝑥2) ≤ 𝜆𝐷(𝑔𝑥0,  𝑔𝑥1),     where  0 < 𝜆 =
𝑞(𝛼 + 𝛽)

1 − 𝑞𝛿
< 1. 

We continue with the same process, if 𝛥(𝑇𝑥1,  𝑇𝑥2) = 0, we have  

𝑔𝑥2 ∈ 𝑇𝑥1 = 𝑇𝑥2. 

If  𝛥(𝑇𝑥1,  𝑇𝑥2) > 0,  we have  

𝐷(𝑔𝑥2,  𝑔𝑥3) ≤ 𝜆𝐷(𝑔𝑥1,  𝑔𝑥2),    where  0 < 𝜆 =
𝑞(𝛼 + 𝛽)

1 − 𝑞𝛿
< 1.   
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 We obtain a sequence  (𝑦𝑛)𝑛  in  𝐸  such that  𝑦𝑛+1 = 𝑔𝑥𝑛+1 ∈ 𝑇𝑥𝑛 , and  

𝐷(𝑦𝑛,  𝑦𝑛+1) ≤ 𝜆𝐷(𝑦𝑛−1,  𝑦𝑛),   ∀𝑛 ∈ N∗,   0 < 𝜆 < 1. 

By Remark 2.1, it follows that(𝑔𝑥𝑛)𝑛 is a ℱ -Cauchy sequence in a complete ℱ -metric space 

(𝑔(𝐸),  𝐷),  hence there exists  𝑥 ∈ 𝐸 such that 

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔𝑥. 

We show that 𝑔𝑥 ∈ 𝑇𝑥. If 𝑔𝑥 ∉ 𝑇𝑥. Since 𝑇𝑥 is closed, this implies 𝐷(𝑔𝑥,  𝑇𝑥) > 0. In 

condition (2.6) and by Remark 1.2, we have 

𝑓(𝐷(𝑔𝑥,  𝑇𝑥)) ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝐷(𝑔𝑥𝑛+1,  𝑇𝑥)) + 𝑎

≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝛥(𝑇𝑥𝑛,  𝑇𝑥)) + 𝑎.

≤ 𝑓 (
𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝛼𝐷(𝑔𝑥𝑛,  𝑔𝑥)

+𝛽𝐷(𝑔𝑥𝑛,  𝑇𝑥𝑛) + 𝛿𝐷(𝑔𝑥,  𝑇𝑥)
) + 𝑎

 

Since 𝑓 is continuous, taking limit as 𝑛 → +∞, we have 

𝑓(𝐷(𝑔𝑥,  𝑇𝑥)) ≤ 𝑓(𝛿𝐷(𝑔𝑥,  𝑇𝑥)) + 𝑎. 

Which is a contradiction with respect condition (𝑏). Hence, we obtain 𝐷(𝑔𝑥,  𝑇𝑥) = 0. Since 

𝑇𝑥  is closed, then 𝑔𝑥 ∈ 𝑇𝑥. 

2) If 𝑔𝑔𝑥 = 𝑔𝑥, for some 𝑥 ∈ 𝐶(𝑔,  𝑇). In condition (2.6), we have 

 
𝛥(𝑇𝑔𝑥,  𝑇𝑥) ≤ 𝛼𝐷(𝑔𝑔𝑥,  𝑔𝑥) + 𝛽𝐷(𝑔𝑔𝑥,  𝑇𝑔𝑥) + 𝛿𝐷(𝑔𝑥,  𝑇𝑥) = 𝛽𝐷(𝑔𝑥,  𝑇𝑔𝑥)

≤ 𝛽𝛥(𝑇𝑥,  𝑇𝑔𝑥).
 

Then  

𝛥(𝑇𝑔𝑥,  𝑇𝑥) ≤ 𝛽𝛥(𝑇𝑥,  𝑇𝑔𝑥) < 𝛥(𝑇𝑥,  𝑇𝑔𝑥). 

Consequently, 𝛥(𝑇𝑔𝑥,  𝑇𝑥) < 𝛥(𝑇𝑔𝑥,  𝑇𝑥),  which is a contradiction.  

 So,    𝛥(𝑇𝑔𝑥,  𝑇𝑥) = 0. 

Then,  𝑇𝑔𝑥 = 𝑇𝑥, for some 𝑥 ∈ 𝐶(𝑔,  𝑇).  

Let  𝑦 = 𝑔𝑥, then 𝑦 = 𝑔𝑦 and  𝑦 = 𝑔𝑥 ∈ 𝑇𝑥 = 𝑇𝑔𝑥 = 𝑇𝑦. So  𝑦 = 𝑔𝑦 ∈ 𝑇𝑦. 

 Example 2.2   Let 𝐸 = [1, +∞[ be endowed with the ℱ -metric 𝐷given by 

 

𝐷(𝑥,  𝑦) = |𝑥 − 𝑦|,    𝑥,  𝑦 ∈ 𝐸. 

With 𝑓(𝑥) = ln𝑥 and  𝑎 = 0. Define 𝑔 and 𝑇 on 𝐸 by  

𝑔  :   𝐸 → 𝐸,                               𝑇  :   𝐸 → 𝑀𝐹

     𝑥 → 𝑔(𝑥) =
𝑥 + 1

2
,                𝑥 → 𝑇(𝑥) = [1,  

2 + √𝑥 + 3

4
]  .  

 

For all  𝑥 ∈ 𝐸,  we have  
2+√𝑥+3

4
≤

𝑥+1

2
,  then  
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𝛥(𝑇𝑥,  𝑇𝑦) =
|√𝑥 + 3 − √𝑦 + 3|

4

𝐷(𝑔𝑥,  𝑇𝑥) = inf
𝑧∈𝑇𝑥

𝐷(𝑔𝑥,  𝑧)  = |
2𝑥 − √𝑥 + 3

4
|

  𝐷(𝑔𝑦,  𝑇𝑦) = inf
𝑧∈𝑇𝑦

𝐷(𝑔𝑦,  𝑧)  = |
2𝑦 − √𝑦 + 3

4
| .

 

Then  

𝛥(𝑇𝑥,  𝑇𝑦) = |
√𝑥 + 3 − √𝑦 + 3

4
| ≤

|𝑥 − 𝑦|

16

                                              ≤    
13

32
𝐷(𝑔𝑥,  𝑔𝑦) +

𝐷(𝑔𝑥,  𝑇𝑥)

4
+

𝐷(𝑔𝑦,  𝑇𝑦)

4
.   

 

Putting   𝛼 =
13

32
,  𝛽 = 𝛿 =

1

4
.   We get  

𝛥(𝑇𝑥,  𝑇𝑦) ≤  
13

32
𝐷(𝑔𝑥,  𝑔𝑦) + 

1

4
𝐷(𝑔𝑥,  𝑇𝑥) +   

1

4
𝐷(𝑔𝑦,  𝑇𝑦),     for all 𝑥,  𝑦 ∈ 𝐸. 

Obviously,  𝑇𝑥 ⊂ 𝑔(𝐸), ∀𝑥 ∈ 𝐸, and  𝑔(𝐸) = [1, +∞[ is a ℱ-complete. 

Thus all conditions in Theorem 2.2 are satisfied. Then 

1)  𝑔(𝑥) ∈ 𝑇𝑥 , for  𝑥 = 1 ∈ 𝐸 . 

2) We have 𝑔𝑔𝑥 = 𝑔𝑥, for  𝑥 = 1 ∈ 𝐶(𝑔,  𝑇), then 𝑔 and 𝑇 have a common fixed point                    

𝑥 = 1 = 𝑔(1) ∈ 𝑇1 = [1] . 
 Theorem 2.3   Let 𝑔 be a self-map on ℱ-metric space (𝐸,  𝐷) with continuous 𝑓 ∈ ℱ and  𝑎 ≥ 0 

and let   𝑇 : 𝐸 → 𝑀𝐹 be a multi-valued mapping such that     

                                       ∆ (𝑇𝑥, 𝑇𝑦) ≤  𝛼𝐷 (𝑔𝑥, 𝑔𝑦) +  𝐿𝐷 (𝑔𝑦, 𝑇𝑥),                          (2.7) 

for all 𝑥,  𝑦 ∈ 𝐸, with  𝛼 ∈ ]0,  1[ and  𝐿 ≥ 0, where 𝑇𝑥 ⊂ 𝑔(𝐸), for all 𝑥 ∈ 𝐸. If 𝑔(𝐸) is a  ℱ -

complete subspace of 𝐸, then 

1) The set 𝐶(𝑔,  𝑇) is nonempty. 

2) If 𝑔𝑔𝑥 = 𝑔𝑥 for some 𝑥 ∈ 𝐶(𝑔,  𝑇), then 𝑔 and 𝑇 have a common fixed point. 

 Proof   

1) Let 𝑥0 ∈ 𝐸 be arbitrary and  𝑦0 = 𝑔𝑥0. Since 𝑇𝑥0 ⊂ 𝑔(𝐸), there exists 𝑥1 ∈ 𝐸,such that 𝑦1 =
𝑔𝑥1 ∈ 𝑇𝑥0. If 𝛥(𝑇𝑥0,  𝑇𝑥1) = 0, we have  𝑔𝑥1 ∈ 𝑇𝑥0 = 𝑇𝑥1. Now, if 𝛥(𝑇𝑥0,  𝑇𝑥1) > 0, 
choose  𝑞 ∈ ℝ,  1 < 𝑞 < 1/𝛼.  By Lemma 1.2, there exists 𝑦2 ∈ 𝑇𝑥1 such that                        

𝐷(𝑦1,  𝑦2) ≤ 𝑞𝛥(𝑇𝑥0,  𝑇𝑥1). In condition (2.7), we have  

𝐷(𝑦1,  𝑦2) ≤ 𝑞𝛥(𝑇𝑥0,  𝑇𝑥1) ≤ 𝑞(𝛼𝐷(𝑔𝑥0,  𝑔𝑥1) + 𝐿𝐷(𝑔𝑥1,  𝑇𝑥0))

≤ 𝜆𝐷(𝑔𝑥0,  𝑔𝑥1),       0 < 𝜆 = 𝛼𝑞 < 1.
 

Since 𝑇𝑥1 ⊂ 𝑔(𝐸), there exists 𝑥2 ∈ 𝐸, such that 𝑦2 = 𝑔𝑥2. Then  

𝐷(𝑔𝑥1,  𝑔𝑥2) ≤ 𝜆𝐷(𝑔𝑥0,  𝑔𝑥1),      0 < 𝜆 = 𝛼𝑞 < 1. 

We continue with the same process, if 𝛥(𝑇𝑥1,  𝑇𝑥2) = 0, we have  

𝑔𝑥2 ∈ 𝑇𝑥1 = 𝑇𝑥2. 
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If  𝛥(𝑇𝑥1,  𝑇𝑥2) > 0, we have  

𝐷(𝑔𝑥2,  𝑔𝑥3) ≤ 𝜆𝐷(𝑔𝑥1,  𝑔𝑥2),    0 < 𝜆 = 𝛼𝑞 < 1.   

 We obtain a sequence  (𝑦𝑛)𝑛 
 in E such that 𝑦𝑛+1 = 𝑔𝑥𝑛+1 ∈ 𝑇𝑥𝑛,  and  

𝐷(𝑦𝑛,  𝑦𝑛+1) ≤ 𝜆𝐷(𝑦𝑛−1,  𝑦𝑛),   ∀𝑛 ∈ N∗,   0 < 𝜆 < 1. 

By Remark 2.1, it follows that (𝑔𝑥𝑛)𝑛 is a ℱ -Cauchy sequence in a complete ℱ -metric space 

(𝑔(𝐸),  𝐷), hence there exists 𝑥 ∈ 𝐸 such that  

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔𝑥. 

We show that 𝑔𝑥 ∈ 𝑇𝑥, If  𝑔𝑥 ∉ 𝑇𝑥. Since  𝑇𝑥 is closed, this implies 𝐷(𝑔𝑥,  𝑇𝑥) > 0. In 

condition (2.7) and by Remark 1.2, we have 

𝑓(𝐷(𝑔𝑥,  𝑇𝑥)) ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝐷(𝑔𝑥𝑛+1,  𝑇𝑥)) + 𝑎

                         ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝛥(𝑇𝑥𝑛,  𝑇𝑥)) + 𝑎.

                                                          ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝛼𝐷(𝑔𝑥𝑛,  𝑔𝑥) + 𝐿𝐷(𝑔𝑥,  𝑇𝑥𝑛)) + 𝑎

                                                              ≤ 𝑓(𝐷(𝑔𝑥,  𝑔𝑥𝑛+1) + 𝛼𝐷(𝑔𝑥𝑛,  𝑔𝑥) + 𝐿𝐷(𝑔𝑥,  𝑔𝑥𝑛+1)) + 𝑎.

 

Taking limit as 𝑛 → +∞, we get  𝑓(𝐷(𝑥,  𝑇𝑥)) ≤ −∞,  which is a contradiction, hence  

𝐷(𝑔𝑥,  𝑇𝑥) = 0.  Since  𝑇𝑥 is closed, then  𝑔𝑥 ∈ 𝑇𝑥. 

2) If  𝑔𝑔𝑥 = 𝑔𝑥,  for some  𝑥 ∈ 𝐶(𝑔,  𝑇).  In condition (2.7), we have 

𝛥(𝑇𝑔𝑥,  𝑇𝑥) ≤ 𝛼𝐷(𝑔𝑔𝑥,  𝑔𝑥) + 𝐿𝐷(𝑔𝑥,  𝑇𝑥) = 0. 

Then 𝑇𝑔𝑥 = 𝑇𝑥, for some  𝑥 ∈ 𝐶(𝑔,  𝑇).  

Let 𝑦 = 𝑔𝑥, then 𝑦 = 𝑔𝑦 and                               

𝑦 = 𝑔𝑥 ∈ 𝑇𝑥 = 𝑇𝑔𝑥 = 𝑇𝑦. 

So  𝑦 = 𝑔𝑦 ∈ 𝑇𝑦. 

 Theorem 2.4   Let (𝐸,  𝐷) be a complete ℱ -metric space with continuous  𝑓 ∈ ℱ and 𝑎 ≥ 0 and 

let   𝑇  :   𝐸 → 𝑀𝐹   be a multi-valued mapping. If     

                                   ∆ (𝑇𝑥, 𝑇𝑦) ≤  𝑔(𝐷 (ℎ𝑥, ℎ𝑦))𝐷(ℎ𝑥, ℎ𝑦),                                  (2.8) 

for all 𝑥,  𝑦 ∈ 𝐸, with 𝑔  : ℝ+ → ℝ+ is a increasing function and  0 ≤ 𝑔(𝑡) < 1, for each  𝑡 > 0, 

where  𝑇𝑥 ⊂ ℎ(𝐸), for all 𝑥 ∈ 𝐸. If  ℎ(𝐸) is a ℱ -complete subspace of 𝐸, then 

1) The set 𝐶(ℎ,  𝑇) is nonempty. 

2) If ℎℎ𝑥 = ℎ𝑥 for some 𝑥 ∈ 𝐶(ℎ,  𝑇), then ℎ and 𝑇 have a common fixed point. 

 Proof   

1) Let 𝑥0 ∈ 𝐸 be arbitrary and 𝑦0 = 𝑔𝑥0. Since  𝑇𝑥0 ⊂ ℎ(𝐸),there exists 𝑥1 ∈ 𝐸,such that  𝑦1 =
ℎ𝑥1 ∈ 𝑇𝑥0. If  𝛥(𝑇𝑥0,  𝑇𝑥1) = 0, we have  ℎ𝑥1 ∈ 𝑇𝑥0 = 𝑇𝑥1. Now, if 𝛥(𝑇𝑥0,  𝑇𝑥1) > 0, then  

 𝑔(𝐷(ℎ𝑥0,  ℎ𝑥1)) > 0. Choose  𝑞 ∈ R,  1 < 𝑞 <
1

𝑔(𝐷(ℎ𝑥0, ℎ𝑥1))
. By Lemma 1.2, there exists 𝑦2 ∈

𝑇𝑥1  such  that  𝐷(𝑦1,  𝑦2) ≤ 𝑞𝛥(𝑇𝑥0,  𝑇𝑥1). In condition (2.8), we have  

𝐷(𝑦1,  𝑦2) ≤ 𝑞𝛥(𝑇𝑥0,  𝑇𝑥1) ≤ 𝑞 (𝑔(𝐷(ℎ𝑥0,  ℎ𝑥1)) 𝐷(ℎ𝑥0,  ℎ𝑥1))

≤ 𝜆𝐷(ℎ𝑥0,  ℎ𝑥1),      0 < 𝜆 = 𝑞𝑔(𝐷(ℎ𝑥0,  ℎ𝑥1)) < 1
 

Since 𝑇𝑥1 ⊂ ℎ(𝐸), there exists 𝑥2 ∈ 𝐸, such that 𝑦2 = ℎ𝑥2. Then  
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𝐷(ℎ𝑥1,  ℎ𝑥2) ≤ 𝜆𝐷(ℎ𝑥0,  ℎ𝑥1),      0 < 𝜆 < 1. 

Again, if 𝛥(𝑇𝑥1,  𝑇𝑥2) = 0, we have  𝑦2 = ℎ𝑥2 ∈ 𝑇𝑥1 = 𝑇𝑥2. If  

𝛥(𝑇𝑥1,  𝑇𝑥2) > 0, 

then  𝑔(𝐷(ℎ𝑥1,  ℎ𝑥2)) > 0, By Lemma 1.2, there exists 𝑦3 ∈ 𝑇𝑥2  such that               

𝐷(𝑦2,  𝑦3) ≤ 𝑞𝛥(𝑇𝑥1,  𝑇𝑥2). Since𝑔 is a increasing function and  

𝐷(ℎ𝑥1,  ℎ𝑥2) ≤ 𝜆𝐷(ℎ𝑥0,  ℎ𝑥1) < 𝐷(ℎ𝑥0,  ℎ𝑥1). 

Then  

𝐷(𝑦2,  𝑦3) ≤ 𝑞𝛥(𝑇𝑥1,  𝑇𝑥2) ≤ 𝑞 (𝑔(𝐷(ℎ𝑥1,  ℎ𝑥2)) 𝐷(ℎ𝑥1,  ℎ𝑥2))

≤ 𝑞 (𝑔(𝐷(ℎ𝑥0,  ℎ𝑥1)) 𝐷(ℎ𝑥1,  ℎ𝑥2)) = 𝜆𝐷(ℎ𝑥1,  ℎ𝑥2) .
 

Since 𝑇𝑥2 ⊂ ℎ(𝐸), there exists 𝑥3 ∈ 𝐸, such that 𝑦3 = ℎ𝑥3. Then  

𝐷(ℎ𝑥2,  ℎ𝑥3) ≤ 𝜆𝐷(ℎ𝑥1,  ℎ𝑥2),      0 < 𝜆 < 1. 

 We obtain a sequence  (𝑦𝑛)𝑛  in  𝐸 such that  𝑦𝑛+1 = ℎ𝑥𝑛+1 ∈ 𝑇𝑥𝑛 , 𝑛 ∈ ℕ  and   

𝐷(𝑦𝑛,  𝑦𝑛+1) ≤ 𝜆𝐷(𝑦𝑛−1,  𝑦𝑛),   ∀𝑛 ∈ ℕ∗,   0 < 𝜆 < 1. 

By Remark 2.1, it follows that (𝑦𝑛)𝑛 is a ℱ -Cauchy sequence in a complete ℱ-metric space 

(ℎ(𝐸),  𝐷),  hence there exists 𝑥 ∈ 𝐸 such that  lim
𝑛→∞

ℎ𝑥𝑛 = ℎ𝑥.  We show that  ℎ𝑥 ∈ 𝑇𝑥, If  

ℎ𝑥 ∉ 𝑇𝑥. Since  𝑇𝑥  is closed, this implies 𝐷(ℎ𝑥,  𝑇𝑥) > 0. In condition (2.8) and by Remark 

1.2, we have 

𝑓(𝐷(ℎ𝑥,  𝑇𝑥)) ≤ 𝑓(𝐷(ℎ𝑥,  ℎ𝑥𝑛+1) + 𝐷(ℎ𝑥𝑛+1,  𝑇𝑥)) + 𝑎

                         ≤ 𝑓(𝐷(ℎ𝑥,  ℎ𝑥𝑛+1) + 𝛥(𝑇𝑥𝑛,  𝑇𝑥)) + 𝑎.

                                                       ≤ 𝑓 (𝐷(ℎ𝑥,  ℎ𝑥𝑛+1) + 𝑔(𝐷(ℎ𝑥𝑛,  ℎ𝑥)) 𝐷(ℎ𝑥𝑛,  ℎ𝑥)) + 𝑎

                          ≤ 𝑓(𝐷(ℎ𝑥,  ℎ𝑥𝑛+1) + 𝐷(ℎ𝑥𝑛,  ℎ𝑥)) + 𝑎.

 

Taking limit as 𝑛 → +∞, we get 𝑓(𝐷(ℎ𝑥,  𝑇𝑥)) ≤ −∞, which is a contradiction, hence 

𝐷(ℎ𝑥,  𝑇𝑥) = 0. Since 𝑇𝑥  is closed, then ℎ𝑥 ∈ 𝑇𝑥. 

2) If ℎℎ𝑥 = ℎ𝑥, for some 𝑥 ∈ 𝐶(ℎ,  𝑇). In condition (2.8), we have 

 

𝛥(𝑇ℎ𝑥,  𝑇𝑥) ≤ 𝑔(𝐷(ℎℎ𝑥,  ℎ𝑥)) 𝐷(ℎℎ𝑥,  ℎ𝑥) = 0. 

Then 𝑇ℎ𝑥 = 𝑇𝑥, for some 𝑥 ∈ 𝐶(ℎ,  𝑇). Let 𝑦 = ℎ𝑥, then 𝑦 = ℎ𝑦 and 𝑦 = ℎ𝑥 ∈ 𝑇𝑥 = 𝑇ℎ𝑥 = 𝑇𝑦. 
So,  𝑦 = ℎ𝑦 ∈ 𝑇𝑦. 

 Example 2.3   Let 𝐸 = ℝ+ be endowed with the ℱ -metric 𝐷 given by 

 

𝐷(𝑥,  𝑦) = |𝑥 − 𝑦|,    𝑥,  𝑦 ∈ 𝐸. 

With 𝑓(𝑥) = ln𝑥 and 𝑎 = 0. Define 𝑔 and 𝑇 on 𝐸 by  

ℎ  :   𝐸 → 𝐸,                               𝑇  :   𝐸 → 𝑀𝐹

     𝑥 → ℎ(𝑥) =
𝑥 + 3

2
,                𝑥 → 𝑇(𝑥) = [0,  

4 + √𝑥 + 1

2
]  .  
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Let 𝑔 be a mapping on ℝ+ defined by  

𝑔  : ℝ+ → ℝ+

       𝑡 → 𝑔(𝑡) =
𝑡 + 1

𝑡 + 2

   

Then g is a increasing function and 0 ≤ 𝑔(𝑡) < 1.  We obtain  

𝛥(𝑇𝑥,  𝑇𝑦) =
|√𝑥 + 1 − √𝑦 + 1|

2
,      𝐷(ℎ𝑥,  ℎ𝑦) =

|𝑥 − 𝑦|

2

𝑔(𝐷(ℎ𝑥,  ℎ𝑦)) =
|𝑥 − 𝑦| + 2

|𝑥 − 𝑦| + 4
≥

1

2

 

Then  

𝛥(𝑇𝑥,  𝑇𝑦) = |
√𝑥 + 1 − √𝑦 + 1

2
| ≤

|𝑥 − 𝑦|

4
=

1

2
𝐷(ℎ𝑥,  ℎ𝑦)

≤ 𝑔(𝐷(ℎ𝑥,  ℎ𝑦)) 𝐷(ℎ𝑥,  ℎ𝑦).

 

We get  

𝛥(𝑇𝑥,  𝑇𝑦) ≤ 𝑔(𝐷(ℎ𝑥,  ℎ𝑦)) 𝐷(ℎ𝑥,  ℎ𝑦),     for all 𝑥,  𝑦 ∈ 𝐸. 

Obviously, 𝑇𝑥 ⊂ ℎ(𝐸), ∀𝑥 ∈ 𝐸,and  ℎ(𝐸) = [
3

2
, +∞[ is a ℱ -complete subspace of 𝐸 . 

Thus all conditions in Theorem 2.4 are satisfied. Then 

1)  ℎ(𝑥) ∈ 𝑇𝑥, for  all 𝑥 ∈ 𝐶(ℎ,  𝑇) = [0,  3]. 
2) We have ℎℎ𝑥 = ℎ𝑥, for 𝑥 = 3 ∈ 𝐶(ℎ,  𝑇), then ℎand 𝑇 have a common fixed point               

𝑥 = 3 = ℎ(3) ∈ 𝑇3 = [0,  3].   
 

We present the following consequences of Theorems 2.1, 2.2, 2.3, 2.4 respectively. 

 Theorem 2.5   Let ( )DE,  be a complete ℱ -metric space with continuous 𝑓 ∈ ℱ and 𝑎 ≥ 0.     

Let (𝑀𝐹 ,  𝛥)  be ℱ -metric space. Suppose  𝑇  :   𝐸 → 𝑀𝐹 is a multi-valued mapping such that     

                                                 ∆ (𝑇𝑥, 𝑇𝑦) ≤  𝜙 (𝐷 (𝑥, 𝑦)),                                                         (2.9) 

for all 𝑥,  𝑦 ∈ 𝐸, where  𝜙 ∈ Φ. Suppose that the following assertion hold: 

For each 𝑥 ∈ 𝐸, the set 

𝐸𝑇(𝑥) = {𝑦 ∈ 𝑇𝑥;    𝐿(𝑇𝑥,  𝑥) ≤ 𝑞𝐷(𝑦,  𝑥)   for some 𝑞 > 1} 

is nonempty. Then, there exists an element 𝑥 in 𝐸, such that  𝑥 ∈ 𝑇(𝑥). 

 Proof   Putting  𝑔 = 𝐼𝐸 in Theorem 2.1, we get the result. 

 Theorem 2.6 ([6, Proposition 4])   Let (𝐸,  𝐷) be a complete ℱ -metric space with continuous 𝑓 ∈

ℱ and   𝑎 ≥ 0. Furthermore, let 𝑀𝐹 be the set of all nonempty ℱ -closed and bounded subsets of 𝐸 

and let  𝛥  be the ℱ -Hausdorff distance which turns (𝑀𝐹,  𝛥)  into an  ℱ -metric space. Suppose  

𝑇  :   𝐸 → 𝑀𝐹  and  0 < 𝑘 < 1  are such that  

                                                       ∆ (𝑇𝑥, 𝑇𝑦) ≤  𝑘𝐷 (𝑥, 𝑦),                                           (2.10) 

for every 𝑥,  𝑦 ∈ 𝐸. Then, there exists an element 𝑥 ∈ 𝐸, such that 𝑥 ∈ 𝑇(𝑥). 
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 Proof   Putting  𝑔 = 𝐼𝐸 , and  𝛼 ∈ ]0,  1[, 𝐿 = 0  in Theorem 2.3, we get the result. 

 Theorem 2.7 ([7])   Let (𝐸,  𝐷) be a complete ℱ -metric space with continuous 𝑓 ∈ ℱ and  𝑎 ≥ 0  

and let   𝑇  :   𝐸 → 𝑀𝐹 be a multi-valued mapping. If     

                     ∆ (𝑇𝑥, 𝑇𝑦) ≤  𝛼𝐷(𝑥, 𝑦) +  𝛽𝐷(𝑥, 𝑇𝑥) +  𝛿𝐷(𝑦, 𝑇𝑦),                             (2.11) 

for all 𝑥,  𝑦 ∈ 𝐸, with  𝛼,  𝛽,  𝛿 ∈ ℝ+ such that 𝛼 + 𝛽 + 𝛿 < 1. Then, there exists an element 𝑥 in  

𝐸,such that  𝑥 ∈ 𝑇(𝑥)  if the following condition is satisfied: The real number 𝛿 is chosen in order 

that  𝑓(𝑡) > 𝑓(𝛿𝑡) + 𝑎 for all  𝑡 > 0, where  𝑓 ∈ ℱ and  𝑎  are given by  (𝐷3). 

 Proof   Putting   𝑔 = 𝐼𝐸    in Theorem 2.2, we get the result. 

 Theorem 2.8 ([1, Theorem 3 in ℱ -metric space])   Let (𝐸,  𝐷) be a complete ℱ -metric space 

with continuous 𝑓 ∈ ℱ and  𝑎 ≥ 0  and let 𝑇  :   𝐸 → 𝑀𝐹   be a multi-valued mapping. If     

                                               ∆ (𝑇𝑥, 𝑇𝑦) ≤  𝛼𝐷(𝑥, 𝑦) +  𝐿𝐷(𝑦, 𝑇𝑥),                          (2.12) 

for all 𝑥,  𝑦 ∈ 𝐸, with  𝛼 ∈ ]0,  1[ and  𝐿 ≥ 0. Then,  there exists an element 𝑥 in 𝐸, such that 𝑥 ∈

𝑇(𝑥) . 

 Proof   Putting   𝑔 = 𝐼𝐸 in Theorem 2.3, we get the result. 

 Theorem 2.9 ([4, in ℱ -metric space])   Let (𝐸,  𝐷) be a complete ℱ -metric space with 

continuous 𝑓 ∈ ℱ and 𝑎 ≥ 0  and let  𝑇  :   𝐸 → 𝑀𝐹 be a multi-valued mapping. If     

                                                  𝛥(𝑇𝑥,  𝑇𝑦) ≤ 𝑔(𝐷(𝑥, 𝑦)) 𝐷(𝑥, 𝑦),                              (2.13) 

for all  𝑥,  𝑦 ∈ 𝐸, with  𝑔  : ℝ+ → ℝ+ is a increasing function and  0 ≤ 𝑔(𝑡) < 1, for each    𝑡 >

0. Then, there exists an element 𝑥 in 𝐸 such that  𝑥 ∈ 𝑇(𝑥) . 

 Proof   Putting   ℎ = 𝐼𝐸   in Theorem 2.4, we get the result. 

  

3-Application 

  

Definition 3.1   We say that   𝜓  : ℝ+ → ℝ+ is a sub additive function if 

∫ 𝜓(𝑡)𝑑𝑡 ≤ ∫ 𝜓(𝑡)𝑑𝑡 + ∫ 𝜓(𝑡)𝑑𝑡
𝜇

0

𝜀

0

𝜀+𝜇

0

 

for all 𝜀 > 0 and all 𝜇 > 0. 

Let  𝑌 be the set of functions  𝜓  : ℝ+ → ℝ+ satisfying the following conditions: 

1- 𝜓  is a Lebesgue integrable which is non negative and satisfies  ∫ 𝜓(𝑡)𝑑𝑡 > 0
𝜀

0
 for each  𝜀 > 0. 

2- 𝜓  is a sub additive. 

3- If 𝑓 ∈ ℱ a continuous function, there exists a continuous function 𝑓1 ∈ ℱ such that    

𝑓(𝜀) = 𝑓1 (∫ 𝜓(𝑡)𝑑𝑡
𝜀

0

) , ∀𝜀 > 0. 

 

 Remark 3.1   The set 𝑌 ≠ ∅. There exists 𝜓 ∈ 𝑌such that  𝜓(𝑡) =
1

1+𝑡
,  𝑡 ≥ 0. 
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If 𝑡 = 0, it's clear, if 𝑡 > 0, then  ∫ 𝜓(𝑡)𝑑𝑡
𝜀

0
= ln(1 + 𝜀) > 0, and  

∫ 𝜓(𝑡)𝑑𝑡
𝜀+𝜇

0

= ∫
1

1 + 𝑡
𝑑𝑡

𝜀+𝜇

0

= ln(1 + 𝜀 + 𝜇)

                                              ≤ ln(1 + 𝜀) (1 + 𝜇) = ln(1 + 𝜀) + ln(1 + 𝜇)

             ≤ ∫ 𝜓(𝑡)𝑑𝑡 + ∫ 𝜓(𝑡)𝑑𝑡
𝜇

0

𝜀

0

.

 

 

Let  𝑓 ∈ ℱ be, we define  𝑓1  :  ]0, ∞[ → ℝ, by   

𝑓1(𝑥) = 𝑓(−1 + exp(𝑥)). 

We have  

𝑓1 (∫ 𝜓(𝑡)𝑑𝑡
𝜀

0

) = 𝑓1(ln(1 + 𝜀)) = 𝑓 (−1 + exp(ln(1 + 𝜀))) = 𝑓(𝜀), 

it’s clear that 𝑓1 is non-decreasing, and if 𝑓 is continuous, then 𝑓1 is continuous. Now, for every 

sequence  (𝑠𝑛) ⊂ ]0, ∞[, we have  

lim
𝑛→+∞

𝑠𝑛 = 0 if and only if lim
𝑛→+∞

(−1 + exp(𝑠𝑛)) = 0

 if and only if lim
𝑛→+∞

𝑓1(𝑠𝑛) = lim
𝑛→+∞

𝑓(−1 + exp(𝑠𝑛)) = −∞.
 

 

 Lemma 3.1   Let (𝐸,  𝐷) be an ℱ -metric space with (𝑓,  𝑎) ∈ ℱ × [0, ∞[, and let                

𝐷̂  :   𝐸 × 𝐸 → [0, ∞[  be a mapping given by   

𝐷̂(𝑥,  𝑦) = ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝑦)

0

, 

for all 𝑥,  𝑦 ∈ 𝐸, where   𝜓 ∈ 𝑌. There exists a function  𝑓1 ∈ ℱ such that  (𝐸, 𝐷̂)  is a ℱ -metric 

space with (𝑓1,  𝑎) ∈ ℱ × [0, ∞[ 

 Proof   Let   𝜓 ∈ 𝑌, there exists a continuous function 𝑓1 ∈ ℱ such that  

𝑓(𝜀) = 𝑓1 (∫ 𝜓(𝑡)𝑑𝑡
𝜀

0

) , ∀𝜀 > 0. 

 

For all   (𝑥,  𝑦) ∈ 𝐸2, we have 

1) 𝐷̂(𝑥,  𝑦) = 0  if and only if  𝐷(𝑥,  𝑦) = 0  if and only if  𝑥 = 𝑦. 
2) 𝐷̂(𝑥,  𝑦) = 𝐷̂(𝑦,  𝑥). 
3) For every 𝑁 ∈ ℕ,  𝑁 ≥ 2 and for all  (𝑣𝑖)𝑖=1

𝑁 ⊂ 𝐸  with  (𝑣1,  𝑣𝑁) = (𝑥,  𝑦), we obtain  
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𝐷̂(𝑥,  𝑦) > 0,   𝑡ℎ𝑒𝑛  𝐷(𝑥,  𝑦) > 0 

so,  𝑓1 (𝐷̂(𝑥,  𝑦)) = 𝑓1 (∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝑦)

0

) = 𝑓(𝐷(𝑥,  𝑦))

              ≤ 𝑓 (∑ 𝐷(𝑣𝑖,  𝑣𝑖+1)

𝑁−1

𝑖=1

) + 𝑎

                            = 𝑓1 (∫ 𝜓(𝑡)𝑑𝑡
∑ 𝐷(𝑣𝑖, 𝑣𝑖+1)

𝑁−1

𝑖=1

0

) + 𝑎

                               ≤ 𝑓1 (∑ ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑣𝑖, 𝑣𝑖+1)

0

𝑁−1

𝑖=1

) + 𝑎

                       = 𝑓1 (∑ 𝐷̂(𝑣𝑖 ,  𝑣𝑖+1)

𝑁−1

𝑖=1

) + 𝑎.

 

Then 𝐷̂ is an ℱ-metric on 𝐸 with (𝑓1,  𝑎) ∈ ℱ × [0, ∞[ 
 Lemma 3.2   Let  (𝐸,  𝐷)  be an ℱ -metric space with continuous function 𝑓 ∈ ℱ and 𝑎 ≥ 0, and 

let   𝛥̂ :  𝑀𝐹 × 𝑀𝐹 → [0, ∞[  be a mapping is defined by   

𝛥̂(𝐴,  𝐵) = ∫ 𝜓(𝑡)𝑑𝑡
𝛥(𝐴, 𝐵)

0

, 

for all 𝐴,  𝐵 ∈ 𝑀𝐹 , where   𝜓 ∈ 𝑌, and 𝛥 is a  ℱ -metric space with (𝑓,  𝑎) ∈ ℱ × [0, ∞[,  given by 

(1.1). There exists a continuous function  𝑓
1

∈ ℱ such that  (𝑀𝐹 ,   𝛥̂)  is a ℱ -metric space with                                

(𝑓1,  𝑎) ∈ ℱ × [0, ∞[ and 

𝛥̂(𝐴,  𝐵) = max (𝐿̂(𝐴,  𝐵),   𝐿̂(𝐵,  𝐴)) ,    ∀𝐴,  𝐵 ∈ 𝑀𝐹 , 

where  

𝐿̂(𝐴,  𝐵) = sup
𝑥∈𝐴

𝐷̂(𝑥,  𝐵) 

 

 Proof   By Lemma 3.1, (𝑀𝐹,  𝛥̂)  is a ℱ -metric space with continuous function  𝑓1 ∈ ℱ and  𝑎 ≥

0,  and 𝐷̂ is defined by  

𝐷̂(𝑥,  𝑦) = ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝑦)

0

, 

then  

𝐷̂(𝑥,  𝐵) = inf
𝑦∈𝐵

𝐷̂(𝑥,  𝑦) = inf
𝑦∈𝐵

∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝑦)

0

= ∫ 𝜓(𝑡)𝑑𝑡
inf

𝑦∈𝐵
𝐷(𝑥, 𝑦)

0

= ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝐵)

0

.

 

Thus, we have  
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𝛥̂(𝐴,  𝐵) = ∫ 𝜓(𝑡)𝑑𝑡
𝛥(𝐴, 𝐵)

0

= ∫ 𝜓(𝑡)𝑑𝑡
max(𝐿(𝐴, 𝐵), 𝐿(𝐵, 𝐴))

0

     = max (∫ 𝜓(𝑡)𝑑𝑡
𝐿(𝐴, 𝐵)

0

,  ∫ 𝜓(𝑡)𝑑𝑡
𝐿(𝐵, 𝐴)

0

)

                   = max (∫ 𝜓(𝑡)𝑑𝑡
sup
𝑥∈𝐴

𝐷(𝑥, 𝐵)

0

, ∫ 𝜓(𝑡)𝑑𝑡
sup
𝑥∈𝐵

𝐷(𝑥, 𝐴)

0

)

                    = max (sup
𝑥∈𝐴

∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝐵)

0

,  sup
𝑥∈𝐵

∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑥, 𝐴)

0

)

= max (sup
𝑥∈𝐴

𝐷̂(𝑥,  𝐵),  sup
𝑦∈𝐵

𝐷̂(𝑥,  𝐴))

= max (𝐿̂(𝐴,  𝐵),   𝐿̂(𝐵,  𝐴))

 

 

 Theorem 3.1   Let 𝑔 be a self-map on ℱ -metric space (𝐸,  𝐷) with continuous function 𝑓 ∈ ℱ 

and   𝑎 ≥ 0 and let   𝑇  :   𝐸 → 𝑀𝐹 be a multi-valued mapping such that.  

                                        ∫ 𝜓(𝑡)𝑑𝑡
𝛥(𝑇𝑥, 𝑇𝑦)

0 ≤  𝜙 (∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑔𝑥,𝑔 𝑦)

0
) ,                           (3.1) 

For all 𝑥,  𝑦 ∈ 𝐸, with  𝜙 ∈ 𝛷, where  𝜓 ∈ 𝑌 and  𝑇𝑥 ⊂ 𝑔(𝐸), for all 𝑥 ∈ 𝐸. Suppose that the 

following assertions hold: 

a- For each  𝑥 ∈ 𝐸, the set 

𝐸𝑇(𝑥) = {𝑦 ∈ 𝑇𝑥;    𝐿(𝑇𝑥,  𝑔𝑥) ≤ 𝑞𝐷(𝑦,  𝑔𝑥)   for some 𝑞 > 1} 

is nonempty. 

b- If 𝑔(𝐸)  is a ℱ -complete subspace of 𝐸, then 

1) The set 𝐶(𝑔 ∩ 𝑇) is nonempty. 

2) If  𝑔𝑔𝑥 = 𝑔𝑥  for all 𝑥 ∈ 𝐶(𝑔 ∩ 𝑇),  then 𝑔 and 𝑇 have a common fixed point. 

 Proof   The inequality (3.1) becomes 

 

𝛥̂(𝑇𝑥,  𝑇𝑦) ≤ 𝜙 (𝐷̂(𝑔𝑥,  𝑔𝑦)) 

By Lemmas 3.1 and 3.2, 𝐷̂ is an ℱ -metric on 𝐸,  and 𝛥̂ is an ℱ -metric on 𝑀𝐹 . Now the proof 

follows directly from theorem 2.1. 

 Theorem 3.2   Let 𝑔 be a self-map on ℱ -metric space (𝐸,  𝐷) with continuous function 𝑓 ∈ ℱ 

and   𝑎 ≥ 0  and let 𝑇 :  𝐸 → 𝑀𝐹 be a multi-valued mapping such that     

                                     
∫ 𝜓(𝑡)𝑑𝑡

𝛥(𝑇𝑥, 𝑇𝑦)

0 ≤ 𝛼 ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑔𝑥,𝑔 𝑦)

0

+𝛽 ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑔𝑥,𝑇𝑥)

0 + 𝛿 ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑔𝑦,𝑇 𝑦)

0 , 

                            (3.2) 

for all 𝑥,  𝑦 ∈ 𝐸, with 𝛼,  𝛽,  𝛿 ∈ ℝ+ such that  𝛼 + 𝛽 + 𝛿 < 1, where  𝜓 ∈ 𝑌 and  𝑇𝑥 ⊂ 𝑔(𝐸),  for 

all  𝑥 ∈ 𝐸. If 

a)  𝑔(𝐸) is a  ℱ -complete subspace of 𝐸. 
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b) The real number 𝛿 is chosen in order that 𝑓(𝑡) > 𝑓(𝛿𝑡) + 𝑎 for all   where  𝑓 ∈ ℱ and  𝑎  

are given by (𝐷3).  Then 

1) The set 𝐶(𝑔,  𝑇) is nonempty. 

2) If 𝑔𝑔𝑥 = 𝑔𝑥  for some 𝑥 ∈ 𝐶(𝑔,  𝑇), then 𝑔 and 𝑇 have a common fixed point. 

 Proof   The inequality (3.2) becomes 

𝛥̂(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝐷̂(𝑔𝑥,  𝑔𝑦) + 𝛽𝐷̂(𝑔𝑥,  𝑇𝑥) + 𝛿𝐷̂(𝑔𝑦,  𝑇𝑦). 

By Lemmas 3.1 and 3.2, 𝐷̂ is an ℱ -metric on 𝐸, and 𝛥̂ is an ℱ –metric on 𝑀𝐹 Now the proof 

follows directly from theorem 2.2. 

 Theorem 3.3   Let𝑔 be a self-map on ℱ -metric space (𝐸,  𝐷)  with continuous function 𝑓 ∈ ℱ 

and   𝑎 ≥ 0  and let  𝑇 :  𝐸 → 𝑀𝐹 be a multi-valued mapping such that 

                    ∫ 𝜓(𝑡)𝑑𝑡
𝛥(𝑇𝑥, 𝑇𝑦)

0 ≤ 𝛼 ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑔𝑥,𝑔 𝑦)

0 + 𝐿 ∫ 𝜓(𝑡)𝑑𝑡
𝐷(𝑔𝑥,𝑇𝑥)

0                   (3.3) 

   For all𝑥,  𝑦 ∈ 𝐸, with 𝛼 ∈ ]0,  1[and 𝐿 ≥ 0,where 𝜓 ∈ 𝑌 and 𝑇𝑥 ⊂ 𝑔(𝐸), for all 𝑥 ∈ 𝐸. If 𝑔(𝐸)  

is a ℱ-complete subspace of 𝐸, then 

• The set 𝐶(𝑔,  𝑇) is nonempty. 

• If 𝑔𝑔𝑥 = 𝑔𝑥  for some 𝑥 ∈ 𝐶(𝑔,  𝑇), then 𝑔 and 𝑇 have a common fixed point. 

 Proof   The inequality (3.3) becomes 

𝛥̂(𝑇𝑥,  𝑇𝑦) ≤ 𝛼𝐷̂(𝑔𝑥,  𝑔𝑦) + 𝐿𝐷̂(𝑔𝑦,  𝑇𝑥). 

By Lemmas 3.1 and 3.2, 𝐷̂ is an ℱ -metric on 𝐸, and 𝛥̂ is an ℱ -metric on 𝑀𝐹.  Now the proof 

follows directly from theorem 2.3. 

 Theorem 3.4   Let  (𝐸,  𝐷) be a complete ℱ -metric space with continuous function 𝑓 ∈ ℱ and 

𝑎 ≥ 0  and let 𝑇 :  𝐸 → 𝑀𝐹 be a multi-valued mapping. If 

                    ∫ 𝜓(𝑡)𝑑𝑡
𝛥(𝑇𝑥, 𝑇𝑦)

0 ≤ 𝑔 (∫ 𝜓(𝑡)𝑑𝑡
𝐷(ℎ𝑥,ℎ 𝑦)

0
) . ∫ 𝜓(𝑡)𝑑𝑡

𝐷(ℎ𝑥,ℎ 𝑦)

0 ,                  (3.4) 

   for all 𝑥,  𝑦 ∈ 𝐸,  with  𝑔  : ℝ+ → ℝ+  is a increasing function and 0 ≤ 𝑔(𝑡) < 1, for each  𝑡 >

0,  where  𝜓 ∈ 𝑌 and  𝑇𝑥 ⊂ ℎ(𝐸), for all  𝑥 ∈ 𝐸. If ℎ(𝐸) is a ℱ -complete subspace of  𝐸, then 

1) The set 𝐶(ℎ,  𝑇) is nonempty. 

2) If  ℎℎ𝑥 = ℎ𝑥 for some 𝑥 ∈ 𝐶(ℎ,  𝑇), then ℎ and 𝑇 have a common fixed point. 

 Proof   The inequality (3.4) becomes 

𝛥̂(𝑇𝑥,  𝑇𝑦) ≤ 𝑔 (𝐷̂(ℎ𝑥,  ℎ𝑦)) 𝐷̂(ℎ𝑥,  ℎ𝑦). 

By Lemmas 3.1 and 3.2, 𝐷̂ is an ℱ -metric on 𝐸, and 𝛥̂  is an ℱ -metric on𝑀𝐹 . Now the proof 

follows directly from theorem 2.4. 
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