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Abstract

We prove existence fixed point results of generalized multi-valued g- weak contraction mappings
and multivalued mappings satisfying a Reich-type condition in F- metric spaces. Our results
generalized, extend and enrich recently fixed point existing in the literature. Examples and
applications illustrating the main resuts are presented in the last section.
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1. Introduction and preliminaries
Recently, Jleli and Samet have introduced a new concept named F -metric spaces as a

generalization of the notion of the metric spaces [3]. The main objective of the present paper is to
prove the common fixed point theorems for generalized multi-valued g - weak contraction
mappings in F -metric spaces, and which presents a generalization of some previous theories such
as [1], [4,5] and [7], which have been used in F -metric spaces. It is worthy to mention that the
obtained results will allow generalizing and unifying Nadler's multi-valued contraction mapping
and many fixed point theorems for multivalued mappings. In F-metric spaces. Furthermore, this
paper will present some applications and examples to validate the proposed theorems.

Firstly, a brief relocation of basic notions and facts on F-metric spaces are exposed. Let's denote
by F the set of functions f:]0,0[ - R such that

(F,) fisnon-decreasing,i.e., 0 <s < timplies f(s) < f(t).
(F,) Forevery sequence (t,) < ]0,oo[, we have

lim t, = 0if and only lir_{l f(t,) = —oo.
n—->+oo

n—o+w

Definition 1.1 ([3, Definition 2.1]) Let E be a nonempty setand D:E? — R, be agiven
mapping. Suppose that there exists (f,a) € [0, o[, such that

(Dy) V(x,y) € E? D(x,y) =0if and only x = y.
(D) V(x,y) €E? D(x,y) = D(y,x).
(D3) V(x,y) € E? andforevery N € N,N >2and forall (v)Y, c E with (v,,v, )=(x,Y),

we have
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D(x,y) > 0 implies f(D(x,y)) < f(Z D(v;, vi41)) + @
Then D is called an F-metric on E and the pair (E, D) is called an F -metric space.
Definition 1.2 ([8, Definition 1.3]) Let & be the family of functions ¢ : R, —» R, satisfying

1) ¢ isnon-decreasing.
2) Theseries Y-, ¢™(t) converges forany t > 0, where ¢™ isthe n-th iterate of ¢.
Lemma 1.1 ([8, Lemma 1.4]) Let ¢ € @, we have ¢(t) <t forall t > 0.

Remark 1.1 If ¢ € @, then ¢(0) = 0.
If ¢(0) > 0, by Lemma 1.1, we have ¢(¢(0)) < ¢(0). Since ¢ is non-decreasing, then
#(0) < ¢(¢(0)), which is a contradiction. Hence ¢(0) = 0.
Definition 1.3 ([2, Definition 5]) Let (E,D) be an F-metric space. Define:
D(x,A) = infyeaD(x,y)
and L(A,B) = sup,eaD(x,B)
where x € E and A, B € P(E).

Definition 1.4 ([2, Definition 6]) Let (E,D) be an F -metric space and let M be the set of all
nonempty F-closed and bounded subsets of E. The F -Hausdorff distance is defined by:

A(A, B) = max(L(A, B),L(B,4)) (1.1)

Proposition 1.1 ([2, Proposition 3]) Let (E, D) be an F-metric space with continuous function
f eFanda = 0. Then (Mg, A) isan F-metric space.

Lemma 1.2 ([1, Lemma 1 in F-metric space]) Let (E,D) be a F-metric space with continuous
feFand a=0. Let A,B€ Mpand q € R,q > 1 be given. Then, forevery a € A there
exists b € B such that

D(a,b) < qA(4, B) (1.2)

Proof Let a € A be, if A(A,B) =0 then a € B and (1.2) holds for b = a.
If A(A,B) >0, choose € = (q — 1)A(A, B), there exists b € B such that
D(a,b) < D(a,B) + (q —1)A(A,B)
< A(A,B)+ (q —1)A(A,B) = qA(A,B)
Remark 1.2 If f € F is continuous and satisfies ( F,) then
f(inf(4A) = inf(f(4)) for all A c R, with inf(4) > 0.

Definition 1.5 ([9] and [10, Definition 2.2]) Let g be a self-map on F-metric space (E, D) and let
T:E — P(E) be a multi-valued mapping.

1) A point x € E s a fixed point of g (resp.T) if gx = x(resp.x € Tx) and the set of fixed
points of g (resp. T ) is denoted by F(g) (resp. F(T)).

2) Apoint x € E is a coincidence point of g and T if g(x) € Tx) and the set of coincidence
points of g and T is denoted by C(g,T).

3) Apoint x € E is a common fixed point of g and T if x = g(x) € Tx and the set of
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common fixed points of g and T is denoted by F(g,T).

2-Main Results

Lemma 2.1 Let (y,), be asequence in a F-metric space (E, D), such that

DWns1,¥n) < O(DWn, yn-1)) foralln €N, (2.1)
where ¢ € ®. Then (y,), isan F- Cauchy sequence.
Proof If D(y;,y,) =0, then

D(y2y1) < (D, ¥0)) =(0) =0,  so ¥, =y; = y,.

We conclude that y,, =y, forall n €N, so (y,), is F- Cauchy sequence. Now, we assume
D(y1,¥0) > 0. In condition (2.1) and ¢ is non-decreasing, we have

D(Yn+1,¥n) < ¢(D(yn' yn—l)) < ¢2(D(yn—1:yn—2))

= ¢"(D(y1,yo)).
So,

D1, ¥n) < ¢™(D(y1,¥0)), forall n€N. (2.2)
By (D;) and (2.2), for m > n such that y,, # y,,,, we have

fFOGnym) < f <z D(yk:yk+1)> +a<f <z ¢k(D(y0rY1))> +a,

k=n k_n
Denote

n
Si=) ¢*(DGoy)), nEN,
k=0
Then

F(DGmYm)) < f(Smot = Sn-1) + @ (2.3)
Since ¢ € ®, we have

Z ¢*(D (o, ¥1)) < oo.
k=0
It follows that, (S,,) is a convergent sequence. This yields that (S,,) is a Cauchy sequence inR.
By (F,) and (2.3), itfollows that, lim (S,,—; —S,—1) =0, implies
n,m—oo

lim (f(Sm-1— Sp-1) + @) = —o,

n,m-—oo
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then lim f(D(y,,yp)) = o, So _lim D(yn,ym) = 0.

n,m—oo

Remark 2.1 ([6, Lemma 1]) Let (v,), be asequence in a F-metric space (E, D), such that

D(Vns1, Vo) < AD(Vy, Yn—1), forallneN, 1R, 0<A< 1 (2.4)
Then (y,), is an F-Cauchy sequence. Putting ¢(t) = At, where 1 € ]0,1[, we get ¢ € .

Theorem 2.1 Let g be a self-map on F-metric space (E, D) with continuous f € Fand a >
0 andlet T:E — My be a multi-valued mapping such that

A(Tx, Ty) < ¢(D(gx, gy)). (2.5)

Forall x,y € E, where ¢ € ® and Tx c g(E) forall x € E. Suppose that the following assertions
hold:

a- For each x € E the set

Er(x) ={y € Tx; L(Tx, gx) < q(D(y, gx)) for someq > 1}
IS nonempty.
b- g(E) isaF -complete subspace of E. Then

1) Theset C(g,T) isnonempty.
2) If ggx = gx forsome x € C(g,T) then g and T have a common fixed point.

Proof

1) Let x, €E bearbitraryand vy, =gx,. Since Tx, — g(E), thereexists x, € E, such that
Y1 = gxq € Txy. If A(Txy, Tx;) =0, SO
gx1 € Txy = Tx,.

If A(Tx,, Tx;) > 0. Since Er(x;) is nonempty, there exists y, € Tx,; such that
L(Txy, gx1) < qD(y,, gx;) forsomeq > 1.
Then
D(y, gx1) < L(Txq, gxq).
Since y, € Tx, c g(E), there exists x, € E, suchthat y, =gx, €Tx,. Then
D(gxz, gx1) < L(Txy, gx;) < A(Txy, Txo) < (D (gx1, gxo)).
We continue with the same process. If A(Tx;, Tx,) =0, so
gx, € Txqy = Tx,.
Now, if A(Tx;, Tx,) > 0. Since Er(x;) is nonempty, there exists y; € Tx, such that
L(Tx,, gx;) < qD(ys, gx,) forsomeq > 1.
Then

D(ys, gxz) < L(Tx3, gxz)
Since y; € Tx, c g(E), there exists x5 € E, such thaty, = gx3 € Tx;. Then
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D(gxs3, gx;) < L(Tx,, gx;) < A(Txy, Txy) < ¢>(D(gx2, gxl)).

Continuing in this fashion, we produce a sequence (y,,), of points of E such that
Yn+1 = 9Xn+1 € TX, and

D(Vni1, V) < L(Txp, gxn) < A(Txp, TXp_1) < d(D(Vp, Yn_1))-¥Yn € N,

By Lemma 2.1, it follows that (gx,), isa F-Cauchy sequence in a complete F-metric space
(g(E), D), hence there exists x € E such that

lim gx,, = gx.

n—-oo

We show that gx € Tx. If gx & Tx ,since Tx is closed, this implies D(gx, Tx) > 0. In
condition (2.5) and by Remark 1.2, we have

f(D(gx, Tx)) < f(D(g%, gXns1) + D(gXns1, TX)) +a
< f(D(gx, gxns1) + A(Txy,, TX)) + a.

=f (D(gx, gxnr1) + (D (gxy, gx))) +a
< f(D(gx, gxn+1) + D(gxn, gx)) +a

Taking limitas n — +oo, we get f(D(gx, Tx)) < —oo, which is a contradiction, hence
D(gx, Tx) = 0. Since Tx is closed, then gx € Tx.

2) If ggx = gx, forsome x € C(g, T), In condition (2.5), we have

A(Tgx, Tx) < ¢p(D(ggx, gx)) = 0.
Then Tgx = Tx, forsome x € C(g, T). Let y = gx, then y = gy and
y=gx€Tx=Tgx =Ty. SO y=gyeTy.
Example 2.1 LetE = [1,+[ be endowed with the F -metric D given by
D(x,y)=I|x—y|, x, y€E.
With f(x) =Inx and a = 0. Define g and T on E by

g : E-EFE, T : E—- Mg
x+2 3++/x
x - g(x) = > x—>T(X)=l1. 5 l

Then

A(Tx, Ty) = max(supD(z, Ty), sup D(w, Tx))
Z€Tx wWETy

V-5
2

SIx—yl
4

1
= ED(gx, gy), forallx, y €E.

Putting ¢(t) = % t >0, then ¢ € @, and we get

A(Tx, Ty) < ¢(D(gx, gy)), forallx, y € E.
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Obviously, Tx c g(E), E;y(x) # @,Vvx € E and g(E) = E +oo[ is a F-complete subspace of E.

Thus all conditions in Theorem 2.1 are satisfied. Then

1) gx)eTx,forall xeC(g, T)= [1, 3+2\/§] .

2) We have ggx = gx, for x =2 € C(g, T), then g and T have a common fixed point x =
2=g@er2=[1,27].
Theorem 2.2 Let g be a self-map on F -metric space (E, D) with continuous f € Fanda > 0

andletT : E — Mg be a multi-valued mapping such that
A(Tx,Ty) < aD (gx,9y) + BD (gx,T x) + 6D (gy.Ty), (2.6)
for all x,y € E ,with a, B, § € R, suchthat « + § + 6 < 1, where Tx c g(E),forall x € E. If

a) g(E) isa F-complete subspace of E.

b) The real number & is chosen in order that f(t) > f(6t) + aforall t > 0, where f €
Fand a are given by (D3). Then
1) Theset C(g, T) is nonempty.
2) If ggx = gx for somex € C(g, T), then g and T have a common fixed point.

Proof

1) Ifa=p=4=0,itisclear, that there exists x € E, such that gx € Tx. Now if there is at
least one non-zero of a, B, 6. Let x, € E be arbitrary and y, = gx,. Since Tx, c g(E), there
exists x; € E, such that

V1 = gx, € Tx,.

If A(Tx,, Tx,) = 0, we have

gx1 € TxO == Txl.

1
a+f+6

Now, if A(Tx,, Tx;) > 0,choose g €ER, 1< g < By Lemma 1.2, there exists y, €

Tx; such that
D(y1, ¥2) < qA(Txo, Txy).
Since Tx; c g(E), there exists x, € E, such that y, = gx,. In condition (2.6), we have
D(gx1, gxz) < qA(Txo, Tx1)
< q(aD(gxo, gx1) + BD(gxo, Txo) + 6D (gx1, Tx,))
< q(aD(gxo, gx1) + BD(gxo, gx1) + 6D(gx1, gx3))
So,

a+
D(gxq, gx;) < AD(gxy, gx1), where 0 < A = qi——q? < 1.
We continue with the same process, if A(Tx,, Tx,) = 0, we have
gx; € T.Xl = sz.
If A(Tx,, Tx,) > 0, we have

q(a+p) <1

D(gx,, gx3) < AD(gx,, gx,), where 0 < A = g
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We obtain a sequence (y,,),, in E suchthat y,,.; = gx,+1 € Tx, , and
D(Yn' }’n+1) < AD()’n—p yn)’ Vn € N*r 0 < A < 1.

By Remark 2.1, it follows that(gx,), is a F -Cauchy sequence in a complete F -metric space
(g(E), D), hence there exists x € E such that

lim gx,, = gx.

n—-oo

We show that gx € Tx. If gx & Tx. Since Tx is closed, this implies D(gx, Tx) > 0. In
condition (2.6) and by Remark 1.2, we have

f(D(gx, Tx)) < f(D(g%, gXns1) + D(gxns1, TX)) +a
< f(D(gx, gxn+1) + A(Txy, TX)) + a.

< f(D(gx, 9Xn+1) + aD(gxn, gX)) ta
— 2 \+pD(gx,, Tx,) + 6D(gx, Tx)

Since f is continuous, taking limit as n — +oo, we have
f(D(gx, Tx)) < f(6D(gx, Tx)) + a.

Which is a contradiction with respect condition (b). Hence, we obtain D(gx, Tx) = 0. Since
Tx isclosed, then gx € Tx.

2) If ggx = gx, for some x € C(g, T). In condition (2.6), we have
A(Tgx, Tx) < aD(ggx, gx) + BD(ggx, Tgx) + 6D(gx, Tx) = BD(gx, Tgx)
< BA(Tx, Tgx).
Then
A(Tgx, Tx) < BA(Tx, Tgx) < A(Tx, Tgx).
Consequently, A(Tgx, Tx) < A(Tgx, Tx), which is a contradiction.
So, A(Tgx, Tx) = 0.

Then, Tgx = Tx, forsome x € C(g, T).

Let y=gx,theny=gyand y=gx € Tx =Tgx =Ty.So y = gy € Ty.
Example 2.2 LetE = [1, +oo[ be endowed with the F -metric Dgiven by

D(x,y)=|x—yl, x, y€E.
With f(x) = Inx and a = 0. Define g and T on E by

g : E-E, T : E—- Mg
x+1 24++Vx+3
x = g(x) = > x—>T(X)=I1,Tl.

2+vVx+3 x+1
4

Forall x € E, we have <= then
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Vx+3-.y+3]

A(Tx, Ty) = 2

) 2x —Vx+3
D(gx, Tx) = ZleanxD(gx, z) = T‘

2y —4Jy + 3‘
—

D(gy, Ty) = inf D(gy, z) =
Z€ETy

Then

A(Tx, Ty) =

Vx+3—-,/y+3 <Ix—yl
4 - 16
13 D(gx, Tx) D(gy, Ty)
< — :
< 32D(gx, gy) + 2 + 2

Putting a=2= ﬁ=5=i. We get

32’
13 1 1
A(Tx, Ty) < 3—2D(gx, gy) + ZD(gx, Tx) + ZD(gy, Ty), forallx, y € E.

Obviously, Tx c g(E),Vx € E,and g(E) = [1,+oo[ is a F-complete.
Thus all conditions in Theorem 2.2 are satisfied. Then

1) gx)eTx,for x=1€E.

2) We have ggx = gx,for x =1 € C(g, T), then g and T have a common fixed point
x=1=g(1)eT1=[1].

Theorem 2.3 Let g be a self-map on F-metric space (E, D) with continuous f € Fand a = 0

and let T :E — Mg be a multi-valued mapping such that

A(Tx,Ty) < aD (gx,gy) + LD (gy,Tx), (2.7)

forall x, y € E,with @« € ]0, 1[and L > 0, where Tx c g(E),forallx e E. If g(E) isa F -
complete subspace of E, then
1) Theset C(g, T) is nonempty.

2) If ggx = gx forsome x € C(g, T), then g and T have a common fixed point.
Proof

1) Letx, € E be arbitrary and y, = gx,. Since Tx, c g(E), there exists x, € E,such that y; =
gx1 € Txy. If A(Txy, Tx,) = 0, we have gx, € Tx, = Tx;. Now, if A(Tx,, Tx;) > 0,
choose g € R, 1 < g < 1/a. By Lemma 1.2, there exists y, € Tx; such that
D(y1, v2) < qA(Tx,, Txy). In condition (2.7), we have

D(y1, ¥2) < qA(Txo, Txy) < q(aD(gxo, gx1) + LD(gx1, Txo))
< AD(gxy, 9x1), 0<A=aq<1.

Since Tx; c g(E), there exists x, € E, such that y, = gx,. Then
D(gxy, gx;) < AD(gxy, gx1), 0<A=aq <1.
We continue with the same process, if A(Tx,, Tx,) = 0, we have

gx; € T.Xl = sz.
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If A(Tx,, Tx,) > 0, we have
D(gx,, gx3) < AD(gxq, gx,), 0 <A =aq < 1.
We obtain a sequence (y,,), inEsuchthaty,,; = gx,4+1 € Tx,, and
DYy Vns1) S AD(Yp—1, Vn), VREN", 0 <A< 1.

By Remark 2.1, it follows that (gx,), is a F -Cauchy sequence in a complete F -metric space
(g(E), D), hence there exists x € E such that
lim gx, = gx.
n—->0oo
We show that gx € Tx, If gx & Tx. Since Tx is closed, this implies D(gx, Tx) > 0. In
condition (2.7) and by Remark 1.2, we have
f(D(gx, Tx)) < f(D(gx, gxn+1) + D(gXn41, TX)) + @@
< f(D(gx, 9Xns1) + A(Txy, Tx)) + a.
< f(D(gx, gxn41) + aD(gxn, gx) + LD(gx, Txn)) +a
< f(D(gx, gxn+1) + aD(gxy, gx) + LD(gx, gxni1)) + a.
Taking limit as n — +oo, we get f(D(x, Tx)) < —oo, which is a contradiction, hence
D(gx, Tx) = 0. Since Tx is closed, then gx € Tx.

2) If ggx = gx, forsome x € C(g, T). In condition (2.7), we have
A(Tgx, Tx) < aD(ggx, gx) + LD(gx, Tx) = 0.

Then Tgx = Tx, forsome x € C(g, T).
Let y = gx, then y = gy and
y=gx €Tx=Tgx =Ty.
So y=gy€Ty.
Theorem 2.4 Let (E, D) be a complete F -metric space with continuous f € F anda > 0 and
let T : E - Mg beamulti-valued mapping. If
A(Tx, Ty) < g(D (hx, hy))D(hx, hy), (2.8)

forall x, y € E,withg :R, - R, isaincreasing functionand 0 < g(t) < 1, foreach t > 0,
where Tx c h(E), forall x € E. If h(E) isa F -complete subspace of E, then

1) The set C(h, T) is nonempty.
2) If hhx = hx for some x € C(h, T), then h and T have a common fixed point.
Proof

1) Letx, € E be arbitrary and y, = gx,. Since Tx, € h(E),there exists x; € E,such that y; =
hx1 € TxO. If A(TxO, Txl) = 0, we haVe hx1 € TxO = Txl. NOW, if A(Txo, Txl) > 0, then

9(D(hxy, hx;)) > 0.Choose g ER, 1< q < m. By Lemma 1.2, there exists y, €
Tx, such that D(y;, y,) < qA(Tx,, Tx;). In condition (2.8), we have
D(yy, ¥2) < qA(Txy, Tx;) < q (Q(D(hxo’ hx1)) D (hxy, hx1))
< AD(hxy, hxy), 0 <A =qg(D(hx,, hxy)) <1

Since Tx; c h(E), there exists x, € E, such that y, = hx,. Then
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D(hxy, hx,) < AD(hxy, hx;), 0<A<1.
Agaln, |fA(Tx1, TXZ) = 0, we haVe Vo, = hxz € Tx1 = sz. If
A(Txq, Txy) > 0,

then g(D(hxy, hx;)) > 0, By Lemma 1.2, there exists y; € Tx, such that
D(y,, y3) < qA(Tx,, Tx,). Sinceg is a increasing function and

D(hxy, hxy) < AD(hxg, hx,) < D(hxy, hxy).
Then

D(y2, y3) < qA(Txq, Txy) < q (g(D(hxl, hxz)) D(hx,, hxz))
<q (g(D(th, hxl)) D(hx,, hxz)) = AD(hx4, hx,).

Since Tx, c h(E), there exists x5 € E, such that y; = hx;. Then
D(hxy, hx3) < AD(hxq, hx,), 0<A<1.
We obtain a sequence (y,,),, in E such that y,,; = hx,4+1 € Tx, ,n €N and
D(Yn, Yn+1) S AD(Yn-1, Yn), VREN', 0 <A< L.

By Remark 2.1, it follows that (y,,),, is a F -Cauchy sequence in a complete F-metric space
(h(E), D), hence there exists x € E such that lim hx,, = hx. We show that hx € Tx, If

n—-oo
hx & Tx. Since Tx is closed, this implies D(hx, Tx) > 0. In condition (2.8) and by Remark
1.2, we have

f(D(hx, Tx)) < f(D(hx, hxp41) + D(hxpyq, Tx)) +a

< f(D(hx, hxpy1) + A(Tx,, TX)) + a.

< £ (D(hx, hxyar) + g(D(hity, hx)) D(hixy, hx)) + @

< f(D(hx, hxpyq) + D(hx,, hx)) + a.
Taking limitas n — +oo, we get f(D (hx, Tx)) < —oo, which is a contradiction, hence
D(hx, Tx) = 0. Since Tx is closed, then hx € Tx.

2) If hhx = hx, for some x € C(h, T). In condition (2.8), we have
A(Thx, Tx) < g(D(hhx, hx)) D(hhx, hx) = 0.

Then Thx = Tx, forsome x € C(h, T). Lety = hx,theny = hyandy = hx € Tx = Thx = Ty.
So, y =hy €Ty.

Example 2.3 LetE = R, be endowed with the F -metric D given by

D(x,y)=I|x—vy|, x, y€E€E.
With f(x) = Inx and a = 0. Define g and T on E by

h: E-E, T : E- Mg
x+3 4+x+1
x - h(x) = > x—>T(x)=lO, Tl
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Let g be a mapping on R, defined by

g Ry ->Ry
t+1

t t) =——

290 =

Then g is a increasing function and 0 < g(t) < 1. We obtain

Ve+1—-y+1 x —
A(Tx, Ty) = | 2‘/y |, D(hx, hy) =%
x—yl+2 1
D(hx, h = >
9(D(hx, hy)) lx—yl+4 2
Then
Vx+1—Jy+1| |x- 1
A(Tx, Ty) = W oyl 1 hy)
2 4 2
< g(D(hx, hy)) D(hx, hy).
We get

A(Tx, Ty) < g(D(hx, hy)) D(hx, hy), forallx, y € E.
Obviously, Tx c h(E),Vx € E,and h(E) = E +oo[ is a F -complete subspace of E .

Thus all conditions in Theorem 2.4 are satisfied. Then

1) h(x) € Tx, for all x € C(h, T) = [0, 3].
2) We have hhx = hx, forx = 3 € C(h, T), then hand T have a common fixed point
x=3=h(3)eT3=]0, 3]

We present the following consequences of Theorems 2.1, 2.2, 2.3, 2.4 respectively.

Theorem 2.5 Let (E,D) be a complete F -metric space with continuous f € F and a > 0.
Let (Mg, 4) be F -metric space. Suppose T : E — M is a multi-valued mapping such that

A(Tx,Ty) < ¢ (D (x,5)), (2.9)
forall x, y € E, where ¢ € ®. Suppose that the following assertion hold:
For each x € E, the set
Er(x) ={y € Tx; L(Tx, x) <qD(y, x) forsomeq > 1}
is nonempty. Then, there exists an element x in E, such that x € T (x).
Proof Putting g = Iz in Theorem 2.1, we get the result.

Theorem 2.6 ([6, Proposition 4]) Let (E, D) be a complete F -metric space with continuous f €
F and a = 0. Furthermore, let M be the set of all nonempty F -closed and bounded subsets of E
and let 4 be the F -Hausdorff distance which turns (Mg, 4) into an F -metric space. Suppose

T : E-> My and 0 <k <1 aresuch that

A(Tx,Ty) < kD (x,y), (2.10)

for every x, y € E. Then, there exists an element x € E, such that x € T (x).
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Proof Putting g = Iz, and a € ]0, 1[, L = 0 in Theorem 2.3, we get the result.

Theorem 2.7 ([7]) Let (E, D) be a complete F -metric space with continuous f € Fand a = 0
andlet T : E — Mg be a multi-valued mapping. If

A(Tx,Ty) < aD(x,y) + BD(x,Tx) + 6D(y, Ty), (2.11)

forall x, y € E, with «, 8, § € R, suchthat « + § + § < 1. Then, there exists an element x in
E,such that x € T(x) if the following condition is satisfied: The real number & is chosen in order
that f(t) > f(8t) + aforall t > 0,where f € F and a are given by (D3).

Proof Putting g = Iz in Theorem 2.2, we get the result.

Theorem 2.8 ([1, Theorem 3 in F -metric space]) Let (E, D) be a complete F -metric space
with continuous f € Fand a >0 andletT : E — My be amulti-valued mapping. If

A (Tx,Ty) < aD(x,y) + LD(y, Tx), (2.12)

forall x, y € E, with « € 10, 1[and L > 0. Then, there exists an element x in E, such that x €
T(x) .

Proof Putting g = Iz in Theorem 2.3, we get the result.

Theorem 2.9 ([4, in F -metric space]) Let (E, D) be a complete F -metric space with
continuous f € Fanda >0 andlet T : E — M be a multi-valued mapping. If

A(Tx, Ty) < g(D(x,y)) D(x,), (2.13)

forall x, y € E,with g :R, — R, isaincreasing functionand 0 < g(t) < 1,foreach t >
0. Then, there exists an element x in E such that x € T(x) .

Proof Putting h = Iz in Theorem 2.4, we get the result.
3-Application
Definition 3.1 Wesay that ¥ :R, — R, isasub additive function if

foswzp(t)dt < J:lp(t)dt + j;ul/)(t)dt

foralle > 0andall u > 0.

Let Y be the set of functions i :R, — R, satisfying the following conditions:
1- v is a Lebesgue integrable which is non negative and satisfies foetp(t)dt > 0 foreach € > 0.

2- 1 s a sub additive.

3- If f € F a continuous function, there exists a continuous function f; € F such that

fle)=f (j:d;(t)dt),Ve > 0.

Remark 3.1 ThesetY # @. There exists y € Ysuch that (t) = ﬁ t=>0.
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If t = 0, it's clear, if ¢ > 0, then [ y(0)dt =In(1+ &) > 0, and

et+u et+u 1
f Y(t)dt = f ——dt=In(1+¢e+pu)
0 0

1+t
<In(l4+&)(1+pu)=In(1+¢&)+In(1+p
< fgllj(t)dt+fﬂlll(t)dt.
0 0

Let f € F be, we define f; : ]0,00[ - R, by

fi(®) = (=1 + exp(x)).
We have

fi ( ] 1/)(t)dt> = fi(In(1 + &) = £ (~1+ exp(In(1 + &))) = f (&),
0

it’s clear that f; is non-decreasing, and if f is continuous, then f; is continuous. Now, for every
sequence (s,) < ]0, o[, we have

lim s, = 0if and only if lirp (—1 + exp(sn)) =0
n-+oo

n—-+oo

if and only if lirp fi(sp) = lirp f(=1+ exp(sy)) = —oo.
n—-+oo n—-+oo

Lemma 3.1 Let (E, D) be an F -metric space with (f, a) € F X [0, oo, and let
D : EXE - [0,00[ beamapping given by

D(x,y)

D(x, y) = f Yo,

0

forall x, y € E, where 1) € Y. There exists a function f; € F such that (E, 5) isa F -metric
space with (f;, a) € F X [0, oo[

Proof Let 1 €Y, there exists a continuous function f; € F such that

fle)=f; (Lip(t)dt),Ve > 0.

Forall (x, y) € E, we have

1) D(x,y) =0 ifandonlyif D(x, y) =0 ifandonly if x = y.

2) D(x, y) =D(y, x).
3) Forevery N € N, N > 2andforall (v)Y, c E with (v,, vy) = (x, y), we obtain
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D(x, y) >0, then D(x,y) >0
_ D(x,y)
SO, fl(D(x’ }’)):f1<f l/)(t)dt>:f(D(xf Y))

N-1
Sf( D (v;, v, )>+a
Zl 1

N-—

Zi=11D(vivvi+1)
=fi f

0
N-1

D, vig1)
<fi f Y()dt | +a
0
1

l/)(t)dt) +a

i

=1
TR

g

=fi ( D(v;, vi+1)) +a.

Then D is an F-metric on E with (f;, a) € F x [0, oo[
Lemma 3.2 Let (E, D) bean F -metric space with continuous function f € F and a > 0, and
let A: Mg X Mg - [0,00[ beamapping is defined by

A(A, B)

A4, B) = f Yo,

0

forall A, B € Mg, where Y € Y,and 4 isa F -metric space with (f, a) € F X [0, o[, given by
(1.1). There exists a continuous function f, € F such that (MF, ﬁ) is a F -metric space with
(f1, @) € F x [0,00[ and

A4, B) = max(L(4, B), L(8, A)), VA, B € M,

where

L(A, B) = supD(x, B)

XEA

Proof By Lemma 3.1, (M, 4) isa F -metric space with continuous function f; € F and a >
0, and D is defined by

D(x,y)

D(x, y) = f Yo,

0
then
_ _ D(x,y)
D(x, B) = infD(x, ») = inf j (Ot

Ji/rellgD(x,y) D(x,B)
=f Y(t)dt =f Y(t)dt.
0 0

Thus, we have
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A(A, B)

A max(L(4, B), L(B, 4))
A(A, B) =f Y(t)dt =f Y(t)dt
0 0

L(A,B) L(B,A)
= max (f Y(t)dt, f 1/1(t)dt>
0 0

supD(x, B) supD(x, A)
= max (f"e’* l/)(t)dt,fxEB l/)(t)dt)
0

0

D(x,B) D(x, 4)
= max (supf Y(t)dt, supf 1/)(t)dt>
0 0

XEA XEB

XEA YEB

= max (supﬁ (x, B), supD(x, A)>

= max (E(A, B), L(B, A))

Theorem 3.1 Let g be a self-map on F -metric space (E, D) with continuous function f € F
and a>0andlet T : E — Mg be amulti-valued mapping such that.

J'OA(Tx; Ty) l/)(t)dt < d) (J‘D(gxr.g ¥) ll](t)dt) ’ (31)

0

Forallx, y € E, with ¢ € @, where ¥ € Y and Tx c g(E), forall x € E. Suppose that the
following assertions hold:

a- For each x € E, the set

Er(x) ={y € Tx; L(Tx, gx) < qD(y, gx) forsomeq > 1}
IS nonempty.
b- If g(E) isaF -complete subspace of E, then

1) Theset C(g N T) is nonempty.
2) If ggx =gx forallx € C(gnT), then g and T have a common fixed point.
Proof The inequality (3.1) becomes

A(rx, Ty) < ¢ (D(gx, g))

By Lemmas 3.1 and 3.2, D is an F -metric on E, and 4 is an F -metric on M. Now the proof
follows directly from theorem 2.1.

Theorem 3.2 Let g be a self-map on F -metric space (E, D) with continuous function f € F
and a>0 andletT : E - My be a multi-valued mapping such that

T y@dr < o f) 7 w0 (32)

D(gx,Tx) D(gy,Ty)
BT w@d s [ wde
forall x, y € E,with a, B, 6 € R, suchthat a + § + 6 < 1,where Y € Y and Tx c g(E), for
all xeE.If

a) g(E)isa F -complete subspace of E.
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b) The real number § is chosen in order that f(t) > f(6t) + a forall where f € Fand a
are given by (D3). Then
1) Theset C(g, T) is nonempty.
2) If ggx = gx forsome x € C(g, T), then g and T have a common fixed point.
Proof The inequality (3.2) becomes

A(Tx, Ty) < aD(gx, gy) + BD(gx, Tx) + 6D (gy, Ty).

By Lemmas 3.1 and 3.2, D is an F -metric on E, and 4 is an F —metric on M Now the proof
follows directly from theorem 2.2.

Theorem 3.3 Letg be a self-map on F -metric space (E, D) with continuous function f € F
and a>0 andlet T : E - Mg be a multi-valued mapping such that

A f B ’
[ @t 2o [P0 p@de g ) wde (33)
Forallx, y € E, witha € ]0, 1[and L = O,where ¢y € Y and Tx c g(E), forall x € E. If g(E)
is a F-complete subspace of E, then

e Theset C(g, T) is nonempty.
o If ggx = gx forsome x € C(g, T), then g and T have a common fixed point.
Proof The inequality (3.3) becomes

A(Tx, Ty) < aD(gx, gy) + LD(gy, Tx).

By Lemmas 3.1 and 3.2, D is an F -metric on E, and 4 is an F -metric on M. Now the proof
follows directly from theorem 2.3.

Theorem 3.4 Let (E, D) be a complete F -metric space with continuous function f € F and
a=>0 andletT : E - Mg be a multi-valued mapping. If

fOA(Tx, Ty)llj(t)dt <9 (fOD(hx,hy)lp(t)dt).foD(hx,hy)l/)(t)dt' (3.4)

forall x, y € E, with g :R, - R, isaincreasing functionand 0 < g(t) < 1, foreach t >
0, where Y e Yand Tx c h(E), forall x € E. If h(E) isa F -complete subspace of E, then

1) The set C(h, T) is nonempty.
2) If hhx = hx for some x € C(h, T), then h and T have a common fixed point.
Proof The inequality (3.4) becomes

A(Tx, Ty) < g (5(hx, hy)) D(hx, hy).

By Lemmas 3.1 and 3.2, D is an F -metric on E, and 4 is an F -metric onMy. Now the proof
follows directly from theorem 2.4.
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