

Fixed Points Theorems of Multi-Valued Mappings in $\mathcal{F}\text{-}\mathsf{Metric}$ **spaces**

Article Info: Article history: Received 2023-11-11 / Accepted 2023-12-20 / Available online 2023-12-31 doi: 10.18540/jcecvl9iss11pp19388

Mohamed Bouabdelli ORCID:<https://orcid.org/0009-0009-8450-5615> University of Djelfa, Algeria E-mail: bouabdelli.med1@yahoo.fr **Mahmoud Bousselsal** Ecole Normale Supérieure, Kouba, Algiers E-mail: bousselsal55@gmail.com

Abstract

We prove existence fixed point results of generalized multi-valued g -weak contraction mappings and multivalued mappings satisfying a Reich-type condition in \mathcal{F} - metric spaces. Our results generalized, extend and enrich recently fixed point existing in the literature. Examples and applications illustrating the main resuts are presented in the last section.

Keywords: Fixed point, ℱ- metric space, ℱ- Hausdorff distance, Multi-valued mapping.

1. Introduction and preliminaries

Recently, Jleli and Samet have introduced a new concept named $\mathcal F$ -metric spaces as a generalization of the notion of the metric spaces [3]. The main objective of the present paper is to prove the common fixed point theorems for generalized multi-valued g - weak contraction mappings in $\mathcal F$ -metric spaces, and which presents a generalization of some previous theories such as [1], [4,5] and [7], which have been used in $\mathcal F$ -metric spaces. It is worthy to mention that the obtained results will allow generalizing and unifying Nadler's multi-valued contraction mapping and many fixed point theorems for multivalued mappings. In $\mathcal F$ -metric spaces. Furthermore, this paper will present some applications and examples to validate the proposed theorems.

Firstly, a brief relocation of basic notions and facts on ℱ-metric spaces are exposed. Let's denote by *F* the set of functions $f: [0, \infty) \to \mathbb{R}$ such that

 (\mathcal{F}_1) *f* is non-decreasing, i.e., $0 < s < t$ implies $f(s) \le f(t)$.

 (\mathcal{F}_2) For every sequence $(t_n) \subset]0, \infty[$, we have

$$
\lim_{n \to +\infty} t_n = 0 \text{ if and only } \lim_{n \to +\infty} f(t_n) = -\infty.
$$

Definition 1.1 ([3, Definition 2.1]) Let *E* be a nonempty set and $D: E^2 \to \mathbb{R}_+$ be a given mapping. Suppose that there exists $(f, a) \in [0, \infty)$, such that

$$
(D_1) \quad \forall (x, y) \in E^2, \ D(x, y) = 0 \text{ if and only } x = y.
$$

$$
(D_2)
$$
 $\forall (x, y) \in E^2$, $D(x, y) = D(y, x)$.

 (D_3) $\forall (x, y) \in E^2$ and for every $N \in \mathbb{N}, N \ge 2$ and for all $(v_i)_{i=1}^N \subset E$ with $(v_i, v_N) = (x, y)$,

we have

$$
D(x, y) > 0 \text{ implies } f(D(x, y)) \le f(\sum_{i=1}^{N-1} D(v_i, v_{i+1})) + a
$$

Then D is called an $\mathcal F$ -metric on E and the pair (E,D) is called an $\mathcal F$ -metric space.

Definition 1.2 ([8, Definition 1.3]) Let Φ be the family of functions $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying

1) ϕ is non-decreasing.

2) The series $\sum_{k=0}^{\infty} \phi^n(t)$ converges for any $t > 0$, where ϕ^n is the n-th iterate of ϕ . **Lemma 1.1** ([8, Lemma 1.4]) Let $\phi \in \Phi$, we have $\phi(t) < t$ for all $t > 0$.

Remark 1.1 If $\phi \in \Phi$, then $\phi(0) = 0$.

If $\phi(0) > 0$, by Lemma 1.1, we have $\phi(\phi(0)) < \phi(0)$. Since ϕ is non-decreasing, then $\phi(0) \leq \phi(\phi(0))$, which is a contradiction. Hence $\phi(0) = 0$.

Definition 1.3 ([2, Definition 5]) Let (E,D) be an \mathcal{F} -metric space. Define:

$$
D(x, A) = inf_{y \in A} D(x, y)
$$

and

$$
L(A, B) = sup_{x \in A} D(x, B)
$$

where $x \in E$ and $A, B \in P(E)$.

Definition 1.4 ([2, Definition 6]) Let (E,D) be an $\mathcal F$ -metric space and let M_F be the set of all nonempty F -closed and bounded subsets of E . The F -Hausdorff distance is defined by:

$$
\Delta(A, B) = \max(L(A, B), L(B, A))
$$
\n(1.1)

Proposition 1.1 ([2, Proposition 3]) Let (E,D) be an $\mathcal F$ -metric space with continuous function $f \in \mathcal{F}$ and $a \geq 0$. Then (M_F, Δ) is an \mathcal{F} -metric space.

Lemma 1.2 ([1, Lemma 1 in \mathcal{F} -metric space]) Let (E,D) be a \mathcal{F} -metric space with continuous $f \in \mathcal{F}$ and $a \ge 0$. Let $A, B \in M_F$ and $q \in \mathbb{R}, q > 1$ be given. Then, for every $a \in A$ there exists $b \in B$ such that

$$
D(a,b) \le q\Delta(A,B) \tag{1.2}
$$

Proof Let $a \in A$ be, if $\Delta(A, B) = 0$ then $a \in B$ and $(1, 2)$ holds for $b = a$.

If $\Delta(A, B) > 0$, choose $\epsilon = (q - 1)\Delta(A, B)$, there exists $b \in B$ such that

$$
D(a, b) \le D(a, B) + (q - 1)\Delta(A, B)
$$

\n
$$
\le \Delta(A, B) + (q - 1)\Delta(A, B) = q\Delta(A, B)
$$

Remark 1.2 If $f \in \mathcal{F}$ is continuous and satisfies (\mathcal{F}_1) then

$$
f\big(\inf(A)\big) = \inf\big(f(A)\big) \text{ for all } A \subset \mathbb{R}_+ \text{ with } \inf(A) > 0.
$$

Definition 1.5 ([9] and [10, Definition 2.2]) Let g be a self-map on \mathcal{F} -metric space (E,D) and let $T: E \to P(E)$ be a multi-valued mapping.

- 1) A point $x \in E$ is a fixed point of g (resp. T) if $gx = x$ (resp. $x \in Tx$) and the set of fixed points of g (resp. T) is denoted by $F(g)$ (resp. $F(T)$).
- 2) A point $x \in E$ is a coincidence point of g and T if $g(x) \in Tx$ and the set of coincidence points of g and T is denoted by $C(g, T)$.
- 3) A point $x \in E$ is a common fixed point of g and T if $x = g(x) \in Tx$ and the set of

common fixed points of g and T is denoted by $F(g, T)$.

2-Main Results

Lemma 2.1 Let $(y_n)_n$ be a sequence in a *F*-metric space (E, D) , such that

$$
D(y_{n+1}, y_n) \le \phi\big(D(y_n, y_{n-1})\big) \text{ for all } n \in \mathbb{N},\tag{2.1}
$$

where $\phi \in \Phi$. Then $(y_n)_n$ is an *F*-Cauchy sequence.

Proof If $D(y_1, y_0) = 0$, then

$$
D(y_2, y_1) \le \phi(D(y_1, y_0)) = \phi(0) = 0, \quad so \ y_2 = y_1 = y_0.
$$

We conclude that $y_n = y_0$ for all $n \in \mathbb{N}$, so $(y_n)_n$ is \mathcal{F} - Cauchy sequence. Now, we assume $D(y_1, y_0) > 0$. In condition (2.1) and ϕ is non-decreasing, we have

$$
D(y_{n+1}, y_n) \le \phi(D(y_n, y_{n-1})) \le \phi^2(D(y_{n-1}, y_{n-2}))
$$

$$
\le \phi^n(D(y_1, y_0)).
$$

So,

$$
D(y_{n+1}, y_n) \le \phi^n(D(y_1, y_0)), \text{ for all } n \in \mathbb{N}.
$$
 (2.2)

By (D_3) and (2.2) , for $m > n$ such that $y_n \neq y_m$, we have

$$
f(D(y_n, y_m)) \le f\left(\sum_{k=n}^{m-1} D(y_k, y_{k+1})\right) + a \le f\left(\sum_{k=n}^{m-1} \phi^k(D(y_0, y_1))\right) + a.
$$

Denote

$$
S_n = \sum_{k=0}^n \phi^k(D(y_0, y_1)), \quad n \in \mathbb{N}.
$$

Then

$$
f(D(y_n, y_m)) \le f(S_{m-1} - S_{n-1}) + a \tag{2.3}
$$

Since $\phi \in \Phi$, we have

$$
\sum_{k=0}^{\infty} \phi^k\big(D(y_0, y_1)\big) < \infty.
$$

It follows that, (S_n) is a convergent sequence. This yields that (S_n) is a Cauchy sequence in R. By (\mathcal{F}_2) and (2.3) , it follows that, $\lim_{n,m\to\infty} (S_{m-1} - S_{n-1}) = 0$, implies

$$
\lim_{n,m\to\infty}(f(S_{m-1}-S_{n-1})+a)=-\infty,
$$

then $\lim_{n,m \to \infty} f(D(y_n, y_m)) = -\infty$. So $\lim_{n,m \to \infty} D(y_n, y_m) = 0$.

Remark 2.1 ([6, Lemma 1]) Let $(y_n)_n$ be a sequence in a \mathcal{F} -metric space (E, D) , such that

$$
D(y_{n+1}, y_n) \le \lambda D(y_n, y_{n-1}), \text{ for all } n \in \mathbb{N}, \lambda \in \mathbb{R}, 0 < \lambda < 1
$$
 (2.4)

Then $(y_n)_n$ is an *F*-Cauchy sequence. Putting $\phi(t) = \lambda t$, where $\lambda \in]0,1[$, we get $\phi \in \Phi$.

Theorem 2.1 Let g be a self-map on *F*-metric space (E,D) with continuous $f \in \mathcal{F}$ and $a \geq$ 0 and let $T: E \to M_F$ be a multi-valued mapping such that

$$
\Delta(Tx, Ty) \le \phi(D(gx, gy)).\tag{2.5}
$$

For all $x, y \in E$, where $\phi \in \Phi$ and $Tx \subset g(E)$ for all $x \in E$. Suppose that the following assertions hold:

a- For each $x \in E$ the set

$$
E_T(x) = \{ y \in Tx; L(Tx, gx) \le q(D(y, gx)) \text{ for some } q > 1 \}
$$

is nonempty.

b- $g(E)$ is a F -complete subspace of E . Then

- 1) The set $C(g, T)$ is nonempty.
- 2) If $ggx = gx$ for some $x \in C(g,T)$ then g and T have a common fixed point.

Proof

1) Let $x_0 \in E$ be arbitrary and $y_0 = gx_0$. Since $Tx_0 \subset g(E)$, there exists $x_1 \in E$, such that $y_1 = gx_1 \in Tx_0$. If $\Delta(Tx_0, Tx_1) = 0$, so $gx_1 \in Tx_0 = Tx_1.$

If $\Delta(Tx_0, Tx_1) > 0$. Since $E_T(x_1)$ is nonempty, there exists $y_2 \in Tx_1$ such that

$$
L(Tx_1, gx_1) \le qD(y_2, gx_1) \text{ for some } q > 1.
$$

Then

$$
D(y_2, gx_1) \le L(Tx_1, gx_1).
$$

Since $y_2 \in Tx_1 \subset g(E)$, there exists $x_2 \in E$, such that $y_2 = gx_2 \in Tx_1$. Then

$$
D(gx_2, gx_1) \le L(Tx_1, gx_1) \le \Delta(Tx_1, Tx_0) \le \phi(D(gx_1, gx_0)).
$$

We continue with the same process. If $\Delta(Tx_1, Tx_2) = 0$, so

$$
gx_2 \in Tx_1 = Tx_2.
$$

Now, if $\Delta(Tx_1, Tx_2) > 0$. Since $E_T(x_2)$ is nonempty, there exists $y_3 \in Tx_2$ such that

$$
L(Tx_2, gx_2) \le qD(y_3, gx_2) \text{ for some } q > 1.
$$

Then

$$
D(y_3, gx_2) \le L(Tx_2, gx_2)
$$

Since $y_3 \in Tx_2 \subset g(E)$, there exists $x_3 \in E$, such that $y_3 = gx_3 \in Tx_2$. Then

$$
D(gx_3, gx_2) \le L(Tx_2, gx_2) \le \Delta(Tx_2, Tx_1) \le \phi(D(gx_2, gx_1)).
$$

Continuing in this fashion, we produce a sequence $(y_n)_n$ of points of E such that $y_{n+1} = g x_{n+1} \in T x_n$ and

 $D(y_{n+1}, y_n) \le L(Tx_n, gx_n) \le \Delta(Tx_n, Tx_{n-1}) \le \phi(D(y_n, y_{n-1}))$. $\forall n \in \mathbb{N}^*$.

By Lemma 2.1, it follows that $(gx_n)_n$ is a *F*-Cauchy sequence in a complete *F*-metric space $(g(E), D)$, hence there exists $x \in E$ such that

$$
\lim_{n\to\infty} gx_n = gx.
$$

We show that $gx \in Tx$. If $gx \notin Tx$, since Tx is closed, this implies $D(gx, Tx) > 0$. In condition **(2.5)** and by Remark 1.2, we have

$$
f(D(gx, Tx)) \le f(D(gx, gx_{n+1}) + D(gx_{n+1}, Tx)) + a
$$

\n
$$
\le f(D(gx, gx_{n+1}) + \Delta(Tx_n, Tx)) + a.
$$

\n
$$
\le f(D(gx, gx_{n+1}) + \phi(D(gx_n, gx))) + a
$$

\n
$$
\le f(D(gx, gx_{n+1}) + D(gx_n, gx)) + a
$$

Taking limit as $n \to +\infty$, we get $f(D(gx, Tx)) \leq -\infty$, which is a contradiction, hence $D(gx, Tx) = 0$. Since Tx is closed, then $gx \in Tx$.

2) If $ggx = gx$, for some $x \in C(g, T)$, In condition (2.5), we have

$$
\Delta(Tgx, Tx) \leq \phi(D(ggx, gx)) = 0.
$$

Then $Tgx = Tx$, for some $x \in C(g, T)$. Let $y = gx$, then $y = gy$ and

 $y = gx \in Tx = Tgx = Ty$. So $y = gy \in Ty$.

Example 2.1 Le t $E = \begin{bmatrix} 1 \\ +\infty \end{bmatrix}$ be endowed with the $\mathcal F$ -metric D given by

$$
D(x, y) = |x - y|, \ \ x, y \in E.
$$

With $f(x) = \ln x$ and $a = 0$. Define g and T on E by

$$
g : E \to E, \qquad T : E \to M_F
$$

$$
x \to g(x) = \frac{x+2}{2}, \qquad x \to T(x) = \left[1, \frac{3+\sqrt{x}}{2}\right].
$$

Then

$$
\Delta(Tx, Ty) = \max \left(\sup_{z \in Tx} D(z, Ty), \sup_{w \in Ty} D(w, Tx) \right)
$$

$$
= \left| \frac{\sqrt{x} - \sqrt{y}}{2} \right| \le \frac{|x - y|}{4} = \frac{1}{2} D(gx, gy), \text{ for all } x, y \in E.
$$

Putting $\phi(t) = \frac{t}{2}$ $\frac{1}{2}$, $t \ge 0$, then $\phi \in \Phi$, and we get

$$
\Delta(Tx, Ty) \le \phi(D(gx, gy)), \text{ for all } x, y \in E.
$$

Obviously, $Tx \subset g(E)$, $E_T(x) \neq \emptyset$, $\forall x \in E$ and $g(E) = \frac{3}{2}$ $\frac{3}{2}$, +∞ is a *F*-complete subspace of *E*.

Thus all conditions in Theorem 2.1 are satisfied. Then

- 1) $g(x) \in Tx$, for all $x \in C(g, T) = \left[1, \frac{3+\sqrt{5}}{2}\right]$ $\left[\frac{1}{2}\right]$.
- 2) We have $ggx = gx$, for $x = 2 \in C(g, T)$, then g and T have a common fixed point $x =$ $2 = g(2) \in T2 = \left[1, \frac{3+\sqrt{2}}{2}\right]$ $\left[\frac{V^2}{2}\right]$.

Theorem 2.2 Let g be a self-map on $\mathcal F$ -metric space (E, D) with continuous $f \in \mathcal F$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping such that

$$
\Delta(T x, T y) \le \alpha D (gx, gy) + \beta D (gx, Tx) + \delta D (gy, Ty), \qquad (2.6)
$$

for all $x, y \in E$, with α , β , $\delta \in \mathbb{R}_+$ such that $\alpha + \beta + \delta < 1$, where $Tx \subset g(E)$, for all $x \in E$. If

- a) $g(E)$ is a *F*-complete subspace of *E*.
- b) The real number δ is chosen in order that $f(t) > f(\delta t) + a$ for all $t > 0$, where $f \in$ F and *a* are given by (D_3) . Then
	- 1) The set $C(g, T)$ is nonempty.
- 2) If $ggx = gx$ for some $x \in C(g, T)$, then g and T have a common fixed point. **Proof**
-
- 1) If $\alpha = \beta = \delta = 0$, it is clear, that there exists $x \in E$, such that $gx \in Tx$. Now if there is at least one non-zero of α , β , δ . Let $x_0 \in E$ be arbitrary and $y_0 = gx_0$. Since $Tx_0 \subset g(E)$, there exists $x_1 \in E$, such that

$$
y_1 = gx_1 \in Tx_0.
$$

If $\Delta(Tx_0, Tx_1) = 0$, we have

$$
gx_1 \in Tx_0 = Tx_1.
$$

Now, if $\Delta(Tx_0, Tx_1) > 0$, choose $q \in \mathbb{R}$, $1 < q < \frac{1}{q+6}$ $\frac{1}{\alpha+\beta+\delta}$. By Lemma 1.2, there exists $y_2 \in$ Tx_1 such that

$$
D(y_1, y_2) \le q \Delta(Tx_0, Tx_1).
$$

Since $Tx_1 \subset g(E)$, there exists $x_2 \in E$, such that $y_2 = gx_2$. In condition (2.6), we have

$$
D(gx_1, gx_2) \le q\Delta(Tx_0, Tx_1)
$$

\n
$$
\le q(\alpha D(gx_0, gx_1) + \beta D(gx_0, Tx_0) + \delta D(gx_1, Tx_1))
$$

\n
$$
\le q(\alpha D(gx_0, gx_1) + \beta D(gx_0, gx_1) + \delta D(gx_1, gx_2))
$$

So,

$$
D(gx_1, gx_2) \le \lambda D(gx_0, gx_1), \text{ where } 0 < \lambda = \frac{q(\alpha + \beta)}{1 - q\delta} < 1.
$$

We continue with the same process, if $\Delta(Tx_1, Tx_2) = 0$, we have

$$
gx_2 \in Tx_1 = Tx_2.
$$

If $\Delta(Tx_1, Tx_2) > 0$, we have

$$
D(gx_2, gx_3) \le \lambda D(gx_1, gx_2), \text{ where } 0 < \lambda = \frac{q(\alpha + \beta)}{1 - q\delta} < 1.
$$

We obtain a sequence $(y_n)_n$ in E such that $y_{n+1} = g x_{n+1} \in T x_n$, and

$$
D(y_n, y_{n+1}) \le \lambda D(y_{n-1}, y_n), \ \forall n \in \mathbb{N}^*, \ 0 < \lambda < 1.
$$

By Remark 2.1, it follows that $(gx_n)_n$ is a $\mathcal F$ -Cauchy sequence in a complete $\mathcal F$ -metric space $(g(E), D)$, hence there exists $x \in E$ such that

$$
\lim_{n\to\infty} gx_n = gx.
$$

We show that $gx \in Tx$. If $gx \notin Tx$. Since Tx is closed, this implies $D(gx, Tx) > 0$. In condition **(2.6)** and by Remark 1.2, we have

$$
f(D(gx, Tx)) \le f(D(gx, gx_{n+1}) + D(gx_{n+1}, Tx)) + a
$$

\n
$$
\le f(D(gx, gx_{n+1}) + \Delta(Tx_n, Tx)) + a.
$$

\n
$$
\le f\left(\frac{D(gx, gx_{n+1}) + \alpha D(gx_n, gx)}{+\beta D(gx_n, Tx_n) + \delta D(gx, Tx)}\right) + a
$$

Since f is continuous, taking limit as $n \to +\infty$, we have

$$
f(D(gx, Tx)) \le f(\delta D(gx, Tx)) + a.
$$

Which is a contradiction with respect condition (b). Hence, we obtain $D(gx, Tx) = 0$. Since Tx is closed, then $gx \in Tx$.

2) If $ggx = gx$, for some $x \in C(g, T)$. In condition (2.6), we have

$$
\Delta(Tgx, Tx) \le \alpha D(ggx, gx) + \beta D(ggx, Tgx) + \delta D(gx, Tx) = \beta D(gx, Tgx)
$$

$$
\le \beta \Delta(Tx, Tgx).
$$

Then

$$
\Delta(Tgx, Tx) \leq \beta \Delta(Tx, Tgx) < \Delta(Tx, Tgx).
$$

Consequently, $\Delta(Tgx, Tx) < \Delta(Tgx, Tx)$, which is a contradiction.

So, $\Delta(Tax, Tx) = 0$.

Then, $Tgx = Tx$, for some $x \in C(g, T)$.

Let $y = gx$, then $y = gy$ and $y = gx \in Tx = Tgx = Ty$. So $y = gy \in Ty$.

Example 2.2 Let $E = \begin{bmatrix} 1 \\ +\infty \end{bmatrix}$ be endowed with the $\mathcal F$ -metric D given by

$$
D(x, y) = |x - y|, \quad x, y \in E.
$$

With $f(x) = \ln x$ and $a = 0$. Define g and T on E by

$$
g : E \to E, \qquad T : E \to M_F
$$

$$
x \to g(x) = \frac{x+1}{2}, \qquad x \to T(x) = \left[1, \frac{2+\sqrt{x+3}}{4}\right].
$$

For all $x \in E$, we have $\frac{2+\sqrt{x+3}}{4} \le \frac{x+1}{2}$ $\frac{1}{2}$, then

$$
\Delta(Tx, Ty) = \frac{|\sqrt{x+3} - \sqrt{y+3}|}{4}
$$

$$
D(gx, Tx) = \inf_{z \in Tx} D(gx, z) = \left| \frac{2x - \sqrt{x+3}}{4} \right|
$$

$$
D(gy, Ty) = \inf_{z \in Ty} D(gy, z) = \left| \frac{2y - \sqrt{y+3}}{4} \right|.
$$

Then

$$
\Delta(Tx, Ty) = \left| \frac{\sqrt{x+3} - \sqrt{y+3}}{4} \right| \le \frac{|x-y|}{16}
$$

$$
\le \frac{13}{32} D(gx, gy) + \frac{D(gx, Tx)}{4} + \frac{D(gy, Ty)}{4}.
$$

Putting $\alpha = \frac{13}{22}$ $\frac{13}{32}, \beta = \delta = \frac{1}{4}$ $\frac{1}{4}$. We get

$$
\Delta(Tx, Ty) \le \frac{13}{32}D(gx, gy) + \frac{1}{4}D(gx, Tx) + \frac{1}{4}D(gy, Ty), \text{ for all } x, y \in E.
$$

Obviously, $Tx \subset g(E)$, $\forall x \in E$, and $g(E) = [1, +\infty]$ is a *F*-complete.

Thus all conditions in Theorem 2.2 are satisfied. Then

- 1) $q(x) \in Tx$, for $x = 1 \in E$.
- 2) We have $ggx = gx$, for $x = 1 \in C(g, T)$, then g and T have a common fixed point $x = 1 = q(1) \in T1 = [1].$

Theorem 2.3 Let g be a self-map on *F*-metric space (E, D) with continuous $f \in \mathcal{F}$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping such that

$$
\Delta(Tx, Ty) \leq \alpha D(gx, gy) + LD(gy, Tx), \qquad (2.7)
$$

for all $x, y \in E$, with $\alpha \in]0, 1[$ and $L \ge 0$, where $Tx \subset g(E)$, for all $x \in E$. If $g(E)$ is a $\mathcal F$ complete subspace of E , then

- 1) The set $C(g, T)$ is nonempty.
- 2) If $ggx = gx$ for some $x \in C(g, T)$, then g and T have a common fixed point. **Proof**
- 1) Let $x_0 \in E$ be arbitrary and $y_0 = gx_0$. Since $Tx_0 \subset g(E)$, there exists $x_1 \in E$, such that $y_1 =$ $gx_1 \in Tx_0$. If $\Delta(Tx_0, Tx_1) = 0$, we have $gx_1 \in Tx_0 = Tx_1$. Now, if $\Delta(Tx_0, Tx_1) > 0$, choose $q \in \mathbb{R}$, $1 < q < 1/a$. By Lemma 1.2, there exists $y_2 \in Tx_1$ such that $D(y_1, y_2) \leq q \Delta(Tx_0, Tx_1)$. In condition (2.7), we have $D(y_1, y_2) \leq q \Delta(Tx_0, Tx_1) \leq q(\alpha D(gx_0, gx_1) + LD(gx_1, Tx_0))$ $\leq \lambda D(gx_0, gx_1), \quad 0 < \lambda = \alpha q < 1.$

Since $Tx_1 \subset g(E)$, there exists $x_2 \in E$, such that $y_2 = gx_2$. Then

$$
D(gx_1, gx_2) \le \lambda D(gx_0, gx_1), \quad 0 < \lambda = \alpha q < 1.
$$

We continue with the same process, if $\Delta(Tx_1, Tx_2) = 0$, we have

$$
gx_2 \in Tx_1 = Tx_2.
$$

If $\Delta(Tx_1, Tx_2) > 0$, we have

$$
D(gx_2, gx_3) \le \lambda D(gx_1, gx_2), \quad 0 < \lambda = \alpha q < 1.
$$

We obtain a sequence $(y_n)_n$ in E such that $y_{n+1} = g x_{n+1} \in T x_n$, and

$$
D(y_n, y_{n+1}) \le \lambda D(y_{n-1}, y_n), \ \forall n \in \mathbb{N}^*, \ 0 < \lambda < 1.
$$

By Remark 2.1, it follows that $(gx_n)_n$ is a $\mathcal F$ -Cauchy sequence in a complete $\mathcal F$ -metric space $(g(E), D)$, hence there exists $x \in E$ such that

$$
\lim_{n\to\infty} gx_n = gx.
$$

We show that $gx \in Tx$, If $gx \notin Tx$. Since Tx is closed, this implies $D(gx, Tx) > 0$. In condition **(2.7)** and by Remark 1.2, we have

$$
f(D(gx, Tx)) \le f(D(gx, gx_{n+1}) + D(gx_{n+1}, Tx)) + a
$$

\n
$$
\le f(D(gx, gx_{n+1}) + \Delta(Tx_n, Tx)) + a.
$$

\n
$$
\le f(D(gx, gx_{n+1}) + \alpha D(gx_n, gx) + LD(gx, Tx_n)) + a
$$

\n
$$
\le f(D(gx, gx_{n+1}) + \alpha D(gx_n, gx) + LD(gx, gx_{n+1})) + a.
$$

Taking limit as $n \to +\infty$, we get $f(D(x, Tx)) \leq -\infty$, which is a contradiction, hence $D(gx, Tx) = 0$. Since Tx is closed, then $gx \in Tx$.

2) If $ggx = gx$, for some $x \in C(g, T)$. In condition (2.7), we have $\Delta(Tgx, Tx) \leq \alpha D(ggx, gx) + LD(gx, Tx) = 0.$

Then $Tgx = Tx$, for some $x \in C(g, T)$.

Let $y = gx$, then $y = gy$ and

$$
y = gx \in Tx = Tgx = Ty.
$$

So $y = gy \in Ty$.

Theorem 2.4 Let (E, D) be a complete $\mathcal F$ -metric space with continuous $f \in \mathcal F$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping. If

$$
\Delta(Tx, Ty) \le g(D(hx, hy))D(hx, hy),\tag{2.8}
$$

for all $x, y \in E$, with $g : \mathbb{R}_+ \to \mathbb{R}_+$ is a increasing function and $0 \leq g(t) < 1$, for each $t > 0$, where $Tx \subset h(E)$, for all $x \in E$. If $h(E)$ is a $\mathcal F$ -complete subspace of E, then

- 1) The set $C(h, T)$ is nonempty.
- 2) If $hhx = hx$ for some $x \in C(h, T)$, then h and T have a common fixed point. **Proof**
- 1) Let $x_0 \in E$ be arbitrary and $y_0 = gx_0$. Since $Tx_0 \subset h(E)$, there exists $x_1 \in E$, such that $y_1 =$ $hx_1 \in Tx_0$. If $\Delta(Tx_0, Tx_1) = 0$, we have $hx_1 \in Tx_0 = Tx_1$. Now, if $\Delta(Tx_0, Tx_1) > 0$, then $g(D(hx_0, hx_1)) > 0$. Choose $q \in R$, $1 < q < \frac{1}{g(D(hx_0, y_0))}$ $\frac{1}{g(D(hx_0, hx_1))}$. By Lemma 1.2, there exists $y_2 \in$ Tx_1 such that $D(y_1, y_2) \leq q \Delta(Tx_0, Tx_1)$. In condition (2.8), we have $D(y_1, y_2) \leq q \Delta(Tx_0, Tx_1) \leq q \left(g(D(hx_0, hx_1)) D(hx_0, hx_1) \right)$

$$
\leq \lambda D(hx_0, hx_1), \quad 0 < \lambda = qg(D(hx_0, hx_1)) < 1
$$

Since $Tx_1 \subset h(E)$, there exists $x_2 \in E$, such that $y_2 = hx_2$. Then

$$
D(hx_1, hx_2) \le \lambda D(hx_0, hx_1), \quad 0 < \lambda < 1.
$$
\nAgain, if $\Delta(Tx_1, Tx_2) = 0$, we have $y_2 = hx_2 \in Tx_1 = Tx_2$. If

\n
$$
\Delta(Tx_1, Tx_2) > 0,
$$

then $g(D(hx_1, hx_2)) > 0$, By Lemma 1.2, there exists $y_3 \in Tx_2$ such that $D(y_2, y_3) \leq q \Delta(Tx_1, Tx_2)$. Since g is a increasing function and

$$
D(hx_1, hx_2) \le \lambda D(hx_0, hx_1) < D(hx_0, hx_1).
$$

Then

$$
D(y_2, y_3) \le q\Delta(Tx_1, Tx_2) \le q\left(g(D(hx_1, hx_2))D(hx_1, hx_2)\right)
$$

$$
\le q\left(g(D(hx_0, hx_1))D(hx_1, hx_2)\right) = \lambda D(hx_1, hx_2).
$$

Since $Tx_2 \subset h(E)$, there exists $x_3 \in E$, such that $y_3 = hx_3$. Then

$$
D(hx_2, hx_3) \le \lambda D(hx_1, hx_2), \quad 0 < \lambda < 1.
$$

We obtain a sequence $(y_n)_n$ in E such that $y_{n+1} = hx_{n+1} \in Tx_n$, $n \in \mathbb{N}$ and

$$
D(y_n, y_{n+1}) \le \lambda D(y_{n-1}, y_n), \ \forall n \in \mathbb{N}^*, \ 0 < \lambda < 1.
$$

By Remark 2.1, it follows that $(y_n)_n$ is a $\mathcal F$ -Cauchy sequence in a complete $\mathcal F$ -metric space $(h(E), D)$, hence there exists $x \in E$ such that $\lim_{n \to \infty} hx_n = hx$. We show that $hx \in Tx$, If $hx \notin Tx$. Since Tx is closed, this implies $D(hx, Tx) > 0$. In condition (2.8) and by Remark 1.2, we have

$$
f(D(hx, Tx)) \le f(D(hx, hx_{n+1}) + D(hx_{n+1}, Tx)) + a
$$

\n
$$
\le f(D(hx, hx_{n+1}) + \Delta(Tx_n, Tx)) + a.
$$

\n
$$
\le f(D(hx, hx_{n+1}) + g(D(hx_n, hx))D(hx_n, hx)) + a
$$

\n
$$
\le f(D(hx, hx_{n+1}) + D(hx_n, hx)) + a.
$$

Taking limit as $n \to +\infty$, we get $f(D(hx, Tx)) \leq -\infty$, which is a contradiction, hence $D(hx, Tx) = 0$. Since Tx is closed, then $hx \in Tx$.

2) If $hhx = hx$, for some $x \in C(h, T)$. In condition (2.8), we have

 $\Delta(Thx, Tx) \leq g(D(hhx, hx))D(hhx, hx) = 0.$ Then $Thx = Tx$, for some $x \in C(h, T)$. Let $y = hx$, then $y = hy$ and $y = hx \in Tx = Thx = Ty$. So, $y = hy \in Ty$.

Example 2.3 Let $E = \mathbb{R}_+$ be endowed with the $\mathcal F$ -metric D given by

$$
D(x, y) = |x - y|, \quad x, y \in E.
$$

With $f(x) = \ln x$ and $a = 0$. Define g and T on E by

$$
h : E \to E,
$$

$$
x \to h(x) = \frac{x+3}{2},
$$

$$
T : E \to M_F
$$

$$
x \to T(x) = \left[0, \frac{4+\sqrt{x+1}}{2}\right].
$$

Let g be a mapping on \mathbb{R}_+ defined by

$$
g : \mathbb{R}_{+} \to \mathbb{R}_{+}
$$

$$
t \to g(t) = \frac{t+1}{t+2}
$$

Then g is a increasing function and $0 \le g(t) < 1$. We obtain

$$
\Delta(Tx, Ty) = \frac{|\sqrt{x+1} - \sqrt{y+1}|}{2}, \quad D(hx, hy) = \frac{|x-y|}{2}
$$

$$
g(D(hx, hy)) = \frac{|x-y| + 2}{|x-y| + 4} \ge \frac{1}{2}
$$

Then

$$
\Delta(Tx, Ty) = \left| \frac{\sqrt{x+1} - \sqrt{y+1}}{2} \right| \le \frac{|x-y|}{4} = \frac{1}{2}D(hx, hy)
$$

$$
\le g\big(D(hx, hy)\big)D(hx, hy).
$$

We get

$$
\Delta(Tx, Ty) \le g\big(D(hx, hy)\big)D(hx, hy), \text{ for all } x, y \in E.
$$

Obviously, $Tx \subset h(E)$, $\forall x \in E$, and $h(E) = \frac{3}{2}$ $\frac{3}{2}$, +∞ is a *F* -complete subspace of *E*.

Thus all conditions in Theorem 2.4 are satisfied. Then

- 1) $h(x) \in Tx$, for all $x \in C(h, T) = [0, 3]$.
- 2) We have $hhx = hx$, for $x = 3 \in C(h, T)$, then hand T have a common fixed point $x = 3 = h(3) \in T3 = [0, 3].$

We present the following consequences of Theorems 2.1, 2.2, 2.3, 2.4 respectively.

Theorem 2.5 Let (E, D) be a complete $\mathcal F$ -metric space with continuous $f \in \mathcal F$ and $a \ge 0$. Let (M_F, Δ) be *F* -metric space. Suppose $T : E \to M_F$ is a multi-valued mapping such that

$$
\Delta \left(Tx, Ty \right) \leq \phi \left(D \left(x, y \right) \right),\tag{2.9}
$$

for all $x, y \in E$, where $\phi \in \Phi$. Suppose that the following assertion hold:

For each $x \in E$, the set

$$
E_T(x) = \{ y \in Tx; \ L(Tx, x) \le qD(y, x) \text{ for some } q > 1 \}
$$

is nonempty. Then, there exists an element x in E, such that $x \in T(x)$.

Proof Putting $g = I_E$ in Theorem 2.1, we get the result.

Theorem 2.6 ([6, Proposition 4]) Let (E, D) be a complete $\mathcal F$ -metric space with continuous $f \in$ $\mathcal F$ and $\alpha \geq 0$. Furthermore, let M_F be the set of all nonempty $\mathcal F$ -closed and bounded subsets of E and let Δ be the $\mathcal F$ -Hausdorff distance which turns (M_F, Δ) into an $\mathcal F$ -metric space. Suppose $T : E \to M_F$ and $0 < k < 1$ are such that

$$
\Delta(Tx, Ty) \leq kD(x, y), \tag{2.10}
$$

for every $x, y \in E$. Then, there exists an element $x \in E$, such that $x \in T(x)$.

Proof Putting $g = I_E$, and $\alpha \in [0, 1], L = 0$ in Theorem 2.3, we get the result.

Theorem 2.7 ([7]) Let (E, D) be a complete $\mathcal F$ -metric space with continuous $f \in \mathcal F$ and $a \ge 0$ and let $T : E \rightarrow M_F$ be a multi-valued mapping. If

$$
\Delta(Tx, Ty) \le \alpha D(x, y) + \beta D(x, Tx) + \delta D(y, Ty), \qquad (2.11)
$$

for all $x, y \in E$, with α , β , $\delta \in \mathbb{R}_+$ such that $\alpha + \beta + \delta < 1$. Then, there exists an element x in E, such that $x \in T(x)$ if the following condition is satisfied: The real number δ is chosen in order that $f(t) > f(\delta t) + a$ for all $t > 0$, where $f \in \mathcal{F}$ and a are given by (D_3) .

Proof Putting $g = I_E$ in Theorem 2.2, we get the result.

Theorem 2.8 ([1, Theorem 3 in $\mathcal F$ -metric space]) Let (E, D) be a complete $\mathcal F$ -metric space with continuous $f \in \mathcal{F}$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping. If

$$
\Delta(Tx, Ty) \leq \alpha D(x, y) + LD(y, Tx), \qquad (2.12)
$$

for all $x, y \in E$, with $\alpha \in [0, 1]$ and $L \ge 0$. Then, there exists an element x in E, such that $x \in$ $T(x)$.

Proof Putting $g = I_E$ in Theorem 2.3, we get the result.

Theorem 2.9 ([4, in $\mathcal F$ -metric space]) Let (E, D) be a complete $\mathcal F$ -metric space with continuous $f \in \mathcal{F}$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping. If

$$
\Delta(Tx, Ty) \le g(D(x, y)) D(x, y), \qquad (2.13)
$$

for all $x, y \in E$, with $g : \mathbb{R}_+ \to \mathbb{R}_+$ is a increasing function and $0 \le g(t) < 1$, for each $t >$ 0. Then, there exists an element x in E such that $x \in T(x)$.

Proof Putting $h = I_E$ in Theorem 2.4, we get the result.

3-Application

Definition 3.1 We say that ψ : ℝ₊ → ℝ₊ is a sub additive function if

$$
\int_0^{\varepsilon+\mu} \psi(t)dt \le \int_0^{\varepsilon} \psi(t)dt + \int_0^{\mu} \psi(t)dt
$$

for all $\varepsilon > 0$ and all $\mu > 0$.

Let Y be the set of functions $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying the following conditions:

1- ψ is a Lebesgue integrable which is non negative and satisfies $\int_0^{\varepsilon} \psi(t) dt > 0$ $\int_0^{\epsilon} \psi(t) dt > 0$ for each $\epsilon > 0$. 2- ψ is a sub additive.

3- If $f \in \mathcal{F}$ a continuous function, there exists a continuous function $f_1 \in \mathcal{F}$ such that

$$
f(\varepsilon) = f_1\left(\int_0^{\varepsilon} \psi(t)dt\right), \forall \varepsilon > 0.
$$

Remark 3.1 The set $Y \neq \emptyset$. There exists $\psi \in Y$ such that $\psi(t) = \frac{1}{1+t}$ $\frac{1}{1+t}$, $t \geq 0$. If $t = 0$, it's clear, if $t > 0$, then $\int_0^{\varepsilon} \psi(t) dt = \ln(1 + \varepsilon) > 0$, and

$$
\int_0^{\varepsilon+\mu} \psi(t)dt = \int_0^{\varepsilon+\mu} \frac{1}{1+t} dt = \ln(1+\varepsilon+\mu)
$$

\n
$$
\leq \ln(1+\varepsilon)(1+\mu) = \ln(1+\varepsilon) + \ln(1+\mu)
$$

\n
$$
\leq \int_0^{\varepsilon} \psi(t)dt + \int_0^{\mu} \psi(t)dt.
$$

Let $f \in \mathcal{F}$ be, we define $f_1 :]0, \infty[\rightarrow \mathbb{R}$, by

$$
f_1(x) = f(-1 + \exp(x)).
$$

We have

$$
f_1\left(\int_0^\varepsilon \psi(t)dt\right) = f_1\big(\ln(1+\varepsilon)\big) = f\left(-1 + \exp\big(\ln(1+\varepsilon)\big)\right) = f(\varepsilon),
$$

it's clear that f_1 is non-decreasing, and if f is continuous, then f_1 is continuous. Now, for every sequence $(s_n) \subset]0, \infty[$, we have

$$
\lim_{n \to +\infty} s_n = 0 \text{ if and only if } \lim_{n \to +\infty} (-1 + \exp(s_n)) = 0
$$

if and only if
$$
\lim_{n \to +\infty} f_1(s_n) = \lim_{n \to +\infty} f(-1 + \exp(s_n)) = -\infty.
$$

Lemma 3.1 Let (E, D) be an $\mathcal F$ -metric space with $(f, a) \in \mathcal F \times [0, \infty)$, and let \widehat{D} : $E \times E \rightarrow [0, \infty)$ be a mapping given by

$$
\widehat{D}(x, y) = \int_0^{D(x, y)} \psi(t) dt,
$$

for all $x, y \in E$, where $\psi \in Y$. There exists a function $f_1 \in \mathcal{F}$ such that (E, \widehat{D}) is a \mathcal{F} -metric space with $(f_1, a) \in \mathcal{F} \times [0, \infty[$

Proof Let $\psi \in Y$, there exists a continuous function $f_1 \in \mathcal{F}$ such that

$$
f(\varepsilon) = f_1\left(\int_0^{\varepsilon} \psi(t)dt\right), \forall \varepsilon > 0.
$$

For all $(x, y) \in E^2$, we have

- 1) $\hat{D}(x, y) = 0$ if and only if $D(x, y) = 0$ if and only if $x = y$.
- 2) $\widehat{D}(x, y) = \widehat{D}(y, x)$.
- 3) For every $N \in \mathbb{N}$, $N \ge 2$ and for all $(v_i)_{i=1}^N \subset E$ with $(v_1, v_N) = (x, y)$, we obtain

$$
\hat{D}(x, y) > 0, \text{ then } D(x, y) > 0
$$
\n
$$
\text{so, } f_1(\hat{D}(x, y)) = f_1\left(\int_0^{D(x, y)} \psi(t)dt\right) = f(D(x, y))
$$
\n
$$
\leq f\left(\sum_{i=1}^{N-1} D(v_i, v_{i+1})\right) + a
$$
\n
$$
= f_1\left(\int_0^{\sum_{i=1}^{N-1} D(v_i, v_{i+1})} \psi(t)dt\right) + a
$$
\n
$$
\leq f_1\left(\sum_{i=1}^{N-1} \int_0^{D(v_i, v_{i+1})} \psi(t)dt\right) + a
$$
\n
$$
= f_1\left(\sum_{i=1}^{N-1} \hat{D}(v_i, v_{i+1})\right) + a.
$$

Then \widehat{D} is an $\mathcal F$ -metric on E with $(f_1, a) \in \mathcal F \times [0, \infty[$

Lemma 3.2 Let (E, D) be an \mathcal{F} -metric space with continuous function $f \in \mathcal{F}$ and $a \ge 0$, and let $\hat{\Delta}$: $M_F \times M_F \rightarrow [0, \infty)$ be a mapping is defined by

$$
\hat{\Delta}(A, B) = \int_0^{\Delta(A, B)} \psi(t) dt,
$$

for all A, $B \in M_F$, where $\psi \in Y$, and Δ is a $\mathcal F$ -metric space with $(f, a) \in \mathcal F \times [0, \infty)$, given by **(1.1)**. There exists a continuous function $f_1 \in \mathcal{F}$ such that $(M_F, \hat{\Delta})$ is a \mathcal{F} -metric space with $(f_1, a) \in \mathcal{F} \times [0, \infty)$ and

$$
\hat{\Delta}(A, B) = \max\left(\hat{L}(A, B), \hat{L}(B, A)\right), \ \forall A, B \in M_F,
$$

where

$$
\widehat{L}(A, B) = \sup_{x \in A} \widehat{D}(x, B)
$$

Proof By Lemma 3.1, $(M_F, \hat{\Delta})$ is a $\mathcal F$ -metric space with continuous function $f_1 \in \mathcal F$ and $a \ge$ 0, and \hat{D} is defined by

$$
\widehat{D}(x, y) = \int_0^{D(x, y)} \psi(t) dt,
$$

then

$$
\widehat{D}(x, B) = \inf_{y \in B} \widehat{D}(x, y) = \inf_{y \in B} \int_0^{D(x, y)} \psi(t) dt
$$

$$
= \int_0^{\inf_{y \in B} D(x, y)} \psi(t) dt = \int_0^{D(x, B)} \psi(t) dt.
$$

Thus, we have

$$
\hat{\Delta}(A, B) = \int_0^{\Delta(A, B)} \psi(t)dt = \int_0^{\max(L(A, B), L(B, A))} \psi(t)dt
$$

\n
$$
= \max \left(\int_0^{L(A, B)} \psi(t)dt, \int_0^{L(B, A)} \psi(t)dt \right)
$$

\n
$$
= \max \left(\int_0^{x \in A} \psi(t)dt, \int_0^{x \in B} \psi(t)dt \right)
$$

\n
$$
= \max \left(\sup_{x \in A} \int_0^{D(x, B)} \psi(t)dt, \sup_{x \in B} \int_0^{D(x, A)} \psi(t)dt \right)
$$

\n
$$
= \max \left(\sup_{x \in A} \hat{D}(x, B), \sup_{y \in B} \hat{D}(x, A) \right)
$$

\n
$$
= \max (\hat{L}(A, B), \hat{L}(B, A))
$$

Theorem 3.1 Let q be a self-map on $\mathcal F$ -metric space (E, D) with continuous function $f \in \mathcal F$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping such that.

$$
\int_0^{\Delta(Tx,Ty)} \psi(t)dt \leq \phi\left(\int_0^{D(gx,gy)} \psi(t)dt\right), \tag{3.1}
$$

For all x, $y \in E$, with $\phi \in \Phi$, where $\psi \in Y$ and $Tx \subset g(E)$, for all $x \in E$. Suppose that the following assertions hold:

a- For each $x \in E$, the set

$$
E_T(x) = \{ y \in Tx; \ L(Tx, gx) \le qD(y, gx) \text{ for some } q > 1 \}
$$

is nonempty.

b- If $g(E)$ is a F -complete subspace of E , then

1) The set $C(g \cap T)$ is nonempty. 2) If $ggx = gx$ for all $x \in C(g \cap T)$, then g and T have a common fixed point. **Proof** The inequality **(3.1)** becomes

$$
\hat{\Delta}(Tx, Ty) \le \phi\left(\hat{D}(gx, gy)\right)
$$

By Lemmas 3.1 and 3.2, \hat{D} is an $\hat{\tau}$ -metric on E , and $\hat{\Delta}$ is an $\hat{\tau}$ -metric on M_F . Now the proof follows directly from theorem 2.1.

Theorem 3.2 Let g be a self-map on $\mathcal F$ -metric space (E, D) with continuous function $f \in \mathcal F$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping such that

$$
\int_0^{\Delta(Tx,Ty)} \psi(t)dt \leq \alpha \int_0^{D(gx,gy)} \psi(t)dt
$$
\n
$$
+ \beta \int_0^{D(gx,Tx)} \psi(t)dt + \delta \int_0^{D(gy,Ty)} \psi(t)dt
$$
\n(3.2)

for all $x, y \in E$, with $\alpha, \beta, \delta \in \mathbb{R}_+$ such that $\alpha + \beta + \delta < 1$, where $\psi \in Y$ and $Tx \subset g(E)$, for all $x \in E$. If

a) $g(E)$ is a $\mathcal F$ -complete subspace of E .

- b) The real number δ is chosen in order that $f(t) > f(\delta t) + a$ for all where $f \in \mathcal{F}$ and a are given by (D_3) . Then
- 1) The set $C(g, T)$ is nonempty.
- 2) If $ggx = gx$ for some $x \in C(g, T)$, then g and T have a common fixed point.

Proof The inequality **(3.2)** becomes

$$
\hat{\Delta}(Tx, Ty) \le \alpha \hat{D}(gx, gy) + \beta \hat{D}(gx, Tx) + \delta \hat{D}(gy, Ty).
$$

By Lemmas 3.1 and 3.2, \hat{D} is an $\hat{\tau}$ -metric on E , and $\hat{\Delta}$ is an $\hat{\tau}$ –metric on M_F Now the proof follows directly from theorem 2.2.

Theorem 3.3 Letg be a self-map on $\mathcal F$ -metric space (E, D) with continuous function $f \in \mathcal F$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping such that

$$
\int_0^{\Delta(Tx,Ty)} \psi(t)dt \le \alpha \int_0^{D(gx,gy)} \psi(t)dt + L \int_0^{D(gx,Tx)} \psi(t)dt \tag{3.3}
$$

For all $x, y \in E$, with $\alpha \in [0, 1]$ and $L \ge 0$, where $\psi \in Y$ and $Tx \subset g(E)$, for all $x \in E$. If $g(E)$ is a $\mathcal F$ -complete subspace of E , then

- The set $C(g, T)$ is nonempty.
- If $qgx = gx$ for some $x \in C(g, T)$, then g and T have a common fixed point. **Proof** The inequality **(3.3)** becomes

$$
\hat{\Delta}(Tx, Ty) \leq \alpha \hat{D}(gx, gy) + L\hat{D}(gy, Tx).
$$

By Lemmas 3.1 and 3.2, \hat{D} is an $\hat{\tau}$ -metric on E , and $\hat{\Delta}$ is an $\hat{\tau}$ -metric on M_F . Now the proof follows directly from theorem 2.3.

Theorem 3.4 Let (E, D) be a complete $\mathcal F$ -metric space with continuous function $f \in \mathcal F$ and $a \ge 0$ and let $T : E \to M_F$ be a multi-valued mapping. If

$$
\int_0^{\Delta(Tx,Ty)} \psi(t)dt \le g\left(\int_0^{D(hx,hy)} \psi(t)dt\right) \int_0^{D(hx,hy)} \psi(t)dt\right),\tag{3.4}
$$

for all $x, y \in E$, with $g : \mathbb{R}_+ \to \mathbb{R}_+$ is a increasing function and $0 \le g(t) < 1$, for each $t >$ 0, where $\psi \in Y$ and $Tx \subset h(E)$, for all $x \in E$. If $h(E)$ is a $\mathcal F$ -complete subspace of E, then

1) The set $C(h, T)$ is nonempty.

2) If $hhx = hx$ for some $x \in C(h, T)$, then h and T have a common fixed point.

Proof The inequality **(3.4)** becomes

$$
\hat{\Delta}(Tx, Ty) \le g\left(\widehat{D}(hx, hy)\right)\widehat{D}(hx, hy).
$$

By Lemmas 3.1 and 3.2, \hat{D} is an $\hat{\tau}$ -metric on E , and $\hat{\Delta}$ is an $\hat{\tau}$ -metric on M_F . Now the proof follows directly from theorem 2.4.

References

- 1. M.Berinde , V.Berinde (2007). On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326 - 772--782.<https://doi.org/10.1016/j.jmaa.2006.03.016>
- 2. Jahangir, F., Haghmaram, P. & Nourouzi, K. (2021). A note on *F*-metric spaces. *J. Fixed Point Theory Appl.* **23**, 2.<https://doi.org/10.1007/s11784-020-00836-y>
- 3. M.Jleli, B.Samet. (2018). On new generalization of metric Spaces. Journal of Fixed Point Theory and Applications, 20, 128. <https://doi.org/10.1007/s11784-018-0606-6> .
- 4. H.Kaneko. (1988). Generalized contractive multi-valued mappings and their fixed points. Math. Japon. 33, 57-64. <https://cir.nii.ac.jp/articles>
- 5. T.Lazar, G.Mot, G.Petrusel , and S.Szentesi (Volume 2010). The Theory of Reich's Fixed Point Theorem for Multivalued Operators. Hindawi Publishing Corporation Fixed Point Theory and Applications, Article ID 178421, 10 pages. [https://doi:10.1155/2010/178421.](https://doi:10.1155/2010/178421)
- 6. Z.D. Mitrovic, H. Aydi, N. Hussain, A. Mukheimer. Reich, Junck, and Berinde. (28 April 2019). Common fixed point on F -Metric Spaces and an application. Mathematics, 7(387), 1-10<http://www.mdpi.com/journal/mathematics> .
- 7. S. Reich. (1972). Fixed points of contractive functions, Bollettino della Unione Matematica Italiana, vol. 5, pp. 26--42. https://api.semanticscholar.org/CorpusID:115383852
- 8. B.Samet, M.Turinici. (2012). Fixed Point Theorems on a metric space endowed with an arbitrary binary relation and applications. Communications in Mathematical Analysis, Volume 13, Number 2, pp. 82—97. ISSN 1938-9787.
- W. Sintunavarat, P. Kumam. (2011). Weak condition for generalized multi-valued (f, α, β) -weak contraction mappings . Applied Mathematics Letters 24 - 460-465. <https://doi.org/10.1016/j.aml.2010.10.042>
- 9. W.Sintunavarat, P.Kumam (2012). Common fixed point theorem for cyclic generalized multi-valued contraction mappings Applied Mathematics Letters 25. 1849-1855. <https://doi.org/10.1016/j.aml.2012.02.045>