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Abstract  

We investigate a mathematical problem involving dynamic interaction between a viscoelastic body 

with long-term memory loss and an obstruction. The contact is frictional and bilateral, with a 

moving rigid base, resulting in wear of the contacting surface. The problem is expressed as a coupled 

system, with a hyperbolic quasi-variational inequality for displacement and a parabolic variational 

inequality for damage. We define a variational formulation for the model and demonstrate the 

existence of a single weak solution to the problem. The material behaviour is explained using a 

viscoelastic constitutive law that includes long-term memory and damage. Elastic deformations 

induce material deterioration, which is depicted by a parabolic inclusion. The proof is based on 

classical existence. 

Keywords: Viscoelastic. Long-term memory. Wear. Damage. Fixed point. Hyperbolic. Quasi-

variational inequality. 

 

1. Introduction  

Problems of contact with or without friction, involving deformable or non-deformable 

bodies, occur in many ways, both in industrial fields and in everyday life. In view of the importance 

and the multitude of these phenomena, extensive studies have been undertaken, so the literature 

concerning contact mechanics is vast and covers as many diserent subjects as are modeling, 

mathematical analysis. Often, these are models in the form of variational equations or inequalities 

with non-standard limit terms. The aim of these studies is to place these results and basic 

computational methods in a unified format that can be accessed by specialists and graduate students. 

Steps in this direction have been accomplished in many monographs; see, for instance, Han and 

Sofonea (2000), Li and Liu (2010) and the references therein. Our research is supported by studies 

in this field; more informations are avaialable in this references:  Hamidat and Aissaoui (2021), 

Hamidat and Aissaoui (2022), Hamidat and Aissaoui (2023). 

As a generalization of the communication problem discussed in Chau, Shillor, and Sofonea 

(2004), Chau et al. Chau, Fernández, Han, and Sofonea (2003) studied a dynamic frictionless 
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contact problem and gave a fully discrete scheme for solving it. Bartosz (2006) considered a 

dynamical viscoelastic contact problem to modify the model treated by Ciulcu et al. (2002). In 

particular, Bartosz (2006) proved the existence of weak solutions to the dynamical viscoelastic 

contact problem with wear by using the surjectivity result for a class of pseudomonotone operators 

in the framework of hemivariational inequalities.  

Recently, Cocou (2015) extended the static contact problem considered by Rabier et al. 

(2000) to a dynamic viscoelastic contact problem with friction and obtained the existence and 

uniqueness of the weak solution for such a problem. And as far as we know, there is a study on the 

dynamic viscoelastic contact problem with friction and wear in Chen, Huang, and Xiao (2020). The 

aim of this paper is to make a new attempt in this direction. And that, by introducing material 

damage. The subject of damage is extremely important in design engineering because it directly 

affcts the useful life of the structure or component being designed. There is a very large engineering 

literature on it. Models taking into account the influence of internal damage of matter on the contact 

process have been studied mathematically. New general models for damage were learned in Chau 

et al. (2003), and Chau et al. (2004) from the principle of virtual power. The mathematical analysis 

of one-dimensional problems can be found in Chau et al. (2004). The damage function 𝛽 varies 

between 0 and 1. When 𝛽 = 1 there is no damage in the material, when 𝛽 = 0 the material is 

completely damaged, when 0 ≺ 𝛽 ≺ 1 the damage is partial. In this paper the relation used to model 

the evolution of the damage field is as follows 𝛽̇ − 𝑘Δ𝛽 + 𝜕𝜑𝐾(𝛽) ∋ 𝜓(𝜀(𝑢), 𝛽) where 𝐾 is the set 

of admissible damage test functions, 𝜑 being the source function of the damage. In this work, we 

consider a version of a dynamic model describing a contact problem frictional with wear and 

damage in viscoelastic with long term memory body. 

The paper is structured as follows. In Section 2, we introduce some essential preliminaries. 

In Section 3, we present the mechanical problem, list the assumptions on the data, and give the 

variational formulation of the problem. In Section 4, we present the proof of the Theorem 4. The 

arguments for the proof are based on the hyperbolic quasi-variational inequality, parabolic 

inequalities and Banach is fixed point theorem. 

 

2. Preliminaries 

In this section, we present some essential tools for our main results. We denote by 𝕊𝑑 the 

space of second order symmetric tensors on Ω ⊂ ℝ𝑑(𝑑 = 2,3) with a smooth boundary 𝜕Ω = Γ. 

The boundary 𝜕Ω is divided into three disjoint measurable parts Γ1, Γ2 and Γ3. 

We denote by 𝝂 = (𝜈𝑖) the unit outward normal vector and by 𝑥 ∈ Ω = Ω ∪ 𝜕Ω the position 

vector. Note that the indications 𝑖, 𝑗 run from 1 to 𝑑, unless stated otherwise, the summation 

convention over repeated indications is used. For simplicity, we do not indicate explicitly the 

dependence of the variables on 𝑥. The inner products and norms for ℝ𝑑 and 𝕊𝑑 are denoted by  

 
𝐮 ⋅ 𝐯 = 𝑢𝑖𝑣𝑖 ,    ∥ 𝐯 ∥ℝ𝑑= (𝐯, 𝐯)

1

2
    for all  𝐮 = (𝑢𝑖), 𝐯 = (𝑣𝑖) ∈ ℝ

𝑑 ,

𝝈. 𝝉 = 𝜎𝑖𝑗𝜏𝑖𝑗 ,    ∥ 𝝉 ∥𝕊𝑑= (𝝉, 𝝉)
1

2   for all  𝝈 = (𝜎𝑖𝑗), 𝝉 = (𝜏𝑖𝑗) ∈ 𝕊
𝑑 ,

 

respectively. 

The normal and tangential components of the displacement 𝐮 on Γ is denoted by 𝑢𝜈 = 𝑢. 𝜈 

and 𝐮𝜏 = 𝐮 − 𝑢𝜈𝝂. The similar notation is used for 𝑢̇𝜈 and 𝐮̇𝜏 which are the normal and tangential 

velocities on the boundary. The normal and tangential components of stress field 𝝈 on the boundary 

are defined by 𝜎𝜈 = (𝝈𝝂). 𝝂 and 𝝈𝝉 = 𝝈𝝂 − 𝜎𝜈𝝂, respectively. 

We also use the following notations  

 
𝐻 = 𝐿2(Ω)𝑑 = {𝐮 = (𝑢𝑖)|𝑢𝑖 ∈ 𝐿

2(Ω)},    𝐻1 = {𝐮 = (𝑢𝑖)|𝜀(𝐮) ∈ ℋ},

ℋ = {𝝈 = (𝜎𝑖𝑗)|𝜎𝑖𝑗 = 𝜎𝑗𝑖 ∈ 𝐿
2(Ω)},    ℋ1 = {𝝈 ∈ ℋ|𝐷𝑖𝑣𝝈 ∈ 𝐻}.

 

The operators of deformation 𝜀 and divergence 𝐷𝑖𝑣 are defined as follows  

 𝜀(𝐮) = (𝜀𝑖𝑗(𝐮)),    𝜀𝑖𝑗(𝐮) =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),    𝐷𝑖𝑣𝝈 = (𝜎𝑖𝑗,𝑗). 
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The spaces 𝐻, 𝐻1, ℋ and ℋ1 are real Hilbert spaces with the canonical inner products defined as 

follows  

 (𝐮, 𝐯)𝐻 = ∫ 𝑢𝑖𝑣𝑖𝑑𝑥    ∀𝐮, 𝐯 ∈ 𝐻, 

 (𝐮, 𝐯)𝐻1 = (𝐮, 𝐯)𝐻 + (𝜀(𝐮), 𝜀(𝐯))ℋ, ∀𝐮, 𝐯 ∈ 𝐻1, 

 (𝝈, 𝝉)ℋ = ∫ 𝜎𝑖𝑗𝜏𝑖𝑗𝑑𝑥    ∀𝝈, 𝝉 ∈ ℋ, 

 (𝝈, 𝝉)ℋ1 = (𝝈, 𝝉)ℋ + (𝐷𝑖𝑣𝝈, 𝐷𝑖𝑣𝝉)𝐻,    ∀𝝈, 𝝉 ∈ ℋ1. 

The associated norm in the space 𝐻, 𝐻1, ℋ and ℋ1, is denoted by ∥. ∥𝐻, ∥. ∥𝐻1 , ∥. ∥ℋ and ∥. ∥ℋ1 , 

respectively. 

When 𝝈 is a regular function, the following Green is type formula holds,  

(𝝈, 𝜀(𝐯))
ℋ
+ (𝐷𝑖𝑣𝝈, 𝐯)𝐻 = ∫Γ 𝝈𝝂. 𝐯 𝑑𝑎,    ∀𝐯 ∈ 𝐻1.            (1) 

For the displacement field we need the closed subspace of 𝐻1 defined by  

 𝑉 = {𝐮 ∈ 𝐻1|𝐮 = 𝟎  on  Γ1},  
and we denote by 𝑉′ the dual space of 𝑉. We can consider the duality pairing (. , . )𝑉′×𝑉 as continuous 

extension of the inner product (. , . )𝐻 on 𝐻, i.e.,  

 (𝐮, 𝐯)𝐻 = (𝐮, 𝐯)𝑉′×𝑉,    ∀𝐮 ∈ 𝐻, ∀𝐯 ∈ 𝑉. 

The notation ℒ(𝑉, 𝑉′) stands for the space of linear continuous operators from a Banach space 𝑉 to 

a Banach space 𝑉′. 

Since meas (Γ1) > 0, Korn’s inequality holds and there exists a constant 𝐶𝑘 > 0, that depends only 

on Ω and Γ1, such that  

 ∥ 𝜀(𝐯) ∥ℋ≥ 𝐶𝑘 ∥ 𝐯 ∥𝐻1(Ω)𝑑 ,    ∀𝐯 ∈ 𝑉, 

We define inner product on 𝑉 by  

(𝐮, 𝐯)𝑉 = (𝜀(𝐮), 𝜀(𝐯))ℋ ,    ∥ 𝐯 ∥𝑉=∥ 𝜀(𝐯) ∥ℋ ,    ∀𝐮, 𝐯 ∈ 𝑉,                                                        (2) 

 and let ∥. ∥𝑉 be the associated norm. It follows that ∥. ∥𝐻1(Ω)𝑑  and ∥. ∥𝑉 are equivalent norms on 𝑉 

and therefore (𝑉, (. , . )𝑉) is a real Hilbert space. Moreover, by the Sobolev trace theorem, there 

exists a constant 𝐶̃0, depending only on Ω, Γ1 and Γ3, such that  

∥ 𝐯 ∥𝐿2(Γ3)𝑑≤ 𝐶̃0 ∥ 𝐯 ∥𝑉 ,    ∀𝐯 ∈ 𝑉.                                                                                                 (3) 

We recall some spaces 𝑊𝑘,𝑝(0, 𝑇; 𝑉), 𝐻𝑘(0, 𝑇; 𝑉) and 𝐶(0; 𝑇; 𝑉) for a Banach space 𝑉 equipped 

with the norm ∥. ∥𝑉 for 1 < 𝑝 < +1 and 𝑘 ≥ 1. Let 𝑊𝑘,𝑝(0, 𝑇; 𝑉) be the space of all functions from 

[0, 𝑇] to 𝑉 with the norm  

 ∥ 𝛿 ∥𝑊𝑘,𝑝(0,𝑇;𝑉)= {
(∫

𝑇

0
∑1≤𝑙≤𝑘 ‖𝜕𝑡

𝑙𝛿‖
𝑉

𝑝
𝑑𝑡)

1/𝑝

, if  1 ≤ 𝑝 < +∞,

max
0≤𝑙≤𝑘0≤𝑡≤𝑇

sup
𝑡
‖𝜕𝑡

𝑙𝛿‖
𝑉
, if  𝑝 = +∞.

 

When 𝑝 = 2 or 𝑘 = 0, 𝑊𝑘,2([0, 𝑇]; 𝑉) is written as 𝐻𝑘([0, 𝑇]; 𝑉) or 𝐿𝑝([0, 𝑇]; 𝑉), respectively. Let 

𝐶([0, 𝑇]; 𝑉) denote the space of all continuous functions from [0, 𝑇] to 𝑉 with the norm  

 ∥ 𝑢 ∥𝐶([0,𝑇];𝑉)= max
𝑡∈[0,𝑇]

∥ 𝑢(𝑡) ∥𝑉 . 

Clearly, 𝐶([0, 𝑇]; 𝑉), 𝑊𝑘,𝑝([0, 𝑇]; 𝑉) and 𝐻𝑘([0, 𝑇]; 𝑉) are all Banach spaces when 𝑉 is a Banach 

space. 

The following existence, uniqueness and regularity result is carried out in the next Theorem and is 

based on the abstract result for hyperbolic quasi-variational inequality.  Let 𝑉 be a Hilbert space. 



The Journal of Engineering and Exact Sciences – jCEC 

4 

We assume that operators 𝐴, 𝐵: 𝑉 → 𝑉′, the functional 𝜑: 𝑉 × 𝑉 → ℝ, and two initial values 𝐮0 ∈
𝑉, 𝐯0 ∈ 𝐻. 

There exists a constant 𝑀𝐴 > 0 such that  

(𝐴𝐮1 − 𝐴𝐮2, 𝐮1 − 𝐮2) ≥ 𝑀𝐴‖𝐮1 − 𝐮2‖𝑉
2   , ∀𝐮1, 𝐮2 ∈ 𝑉,           (4) 

There exists a constant 𝐿𝐴 > 0 such that   

‖𝐴𝐮1 − 𝐴𝐮2‖𝑉′ ≤ 𝐿𝐴‖𝐮1 − 𝐮2‖𝑉    , ∀𝐮1, 𝐮2 ∈ 𝑉.        (5) 

𝐵 ∈ ℒ(𝑉′, 𝑉) is strongly monotone, i.e., there exists a constant 𝑀𝐵 > 0 such that  

(𝐵(𝐮), 𝐮) ≥ 𝑀𝐵‖𝐮‖𝑉
2  , ∀𝐮 ∈ 𝑉, (6) 

The norm of 𝐵 is 𝐿𝐵 > 0, i.e.  

‖𝐵𝐮‖𝑉′ ≤ 𝐿𝐵‖𝐮‖𝑉  , ∀𝐮 ∈ 𝑉,         (7) 

 for any 𝐮, 𝐯 ∈ 𝑉  

(𝐵𝐮, 𝐯) = (𝐵𝐯, 𝐮), (8) 

There exists a constant 𝐿𝜑 > 0 such that  

𝜑(𝐠1, 𝐯2) + 𝜑(𝐠2, 𝐯1) − 𝜑(𝐠1, 𝐯1) − 𝜑(𝐠2, 𝐯2) ≤ 𝐿𝜑‖𝐠1 − 𝐠2‖‖𝐯1 − 𝐯2‖,

                                ∀𝐠1, 𝐠2, 𝐯1, 𝐯2 ∈ 𝑉.
 (9) 

There exists a constant 𝐶𝜑 > 0 such that  

𝜑(𝐠, 𝐯1) − 𝜑(𝐠, 𝐯2) ≤ 𝐶𝜑‖𝐠‖𝑉‖𝐯1 − 𝐯2‖𝑉 ,

𝜑(𝐯1, 𝐠) − 𝜑(𝐯2, 𝐠) ≤ 𝐶𝜑‖𝐠‖𝑉‖𝐯1 − 𝐯2‖𝑉 ,   ∀𝐠, 𝐯1, 𝐯2 ∈ 𝑉.
 (10) 

For any 𝐮 ∈ 𝑉  

𝜑(𝐮,⋅) is a convex functional in 𝑉. (11) 

The function 𝒇 satisfies  

𝒇 ∈ 𝐻2(0, 𝑇; 𝑉′). (12) 

Then, if 𝐿𝜑  ≺ 𝑀𝐴 ≺ 2𝐶𝜑. For each 𝒇 ∈ 𝑉′, the problem  

{

(𝐮̈(𝑡), 𝐯 − 𝐮̇(𝑡))𝑉′×𝑉 + (𝐴𝐮̇(𝑡), 𝐯 − 𝐮̇(𝑡))𝑉′×𝑉 + (𝐵𝐮(𝑡), 𝐯 − 𝐮̇(𝑡))𝑉′×𝑉 + 𝜑(𝐮̇(𝑡), 𝐯)

                −𝜑(𝐮̇(𝑡), 𝐮̇(𝑡)) ≥ (𝒇(𝑡), 𝐯 − 𝐮̇(𝑡))𝑉′×𝑉, ∀𝐯 ∈ 𝑉,    a. e.   𝑡 ∈ [0, 𝑇],

𝐮(0) = 𝐮0,    𝐮̇(0) = 𝐯0.

 

 has a unique solution  

𝐮(𝑡) ∈ 𝐶(0, 𝑇; 𝑉)with {
𝐮̇(𝑡) ∈ 𝐶(0, 𝑇; 𝑉) ∩ 𝐿∞(0, 𝑇; 𝑉),
𝑎𝑛𝑑
𝐮̈(𝑡) ∈ 𝐶(0, 𝑇; 𝑉) ∩ 𝐿∞(0, 𝑇; 𝑉).

 (13) 

In the proof of the above Theorem 2, we employ the Rothe method to prove the existence and 

uniqueness of the solution, which may be found in Chen et al. (2020) page 06, Problem 3.1. 

Finally, we recall the following standard result for parabolic variational inequalities (see Chen et al. 

(2020).) 

Let 𝑉 ⊂ 𝐻 ⊂ 𝑉′ be a Gelfand triple. Let 𝐾 be a nonempty, closed, and convex set of 𝑉. Assume 

that 𝑎(. , . ): 𝑉 × 𝑉 → ℝ is a continuous and symmetric bilinear form such that for some constants 

𝜆 > 0 and 𝛾,  

 𝑎(𝐯, 𝐯) = 𝛾 ∥ 𝐯 ∥𝐻
2≥ 𝜆 ∥ 𝐯 ∥𝑉

2 ,    ∀𝐯 ∈ 𝐻. 

Then, for every 𝐮0 ∈ 𝐾 and 𝑆 ∈ 𝐿2(0, 𝑇; 𝐻), there exists a unique function 𝐮 ∈ 𝐻1(0, 𝑇; 𝐻) ∩
𝐿2(0, 𝑇; 𝑉), such that 𝐮(0) = 𝐮0, 𝐮(𝑡) ∈ 𝐾 for all 𝑡 ∈ [0, 𝑇], and for almost all 𝑡 ∈ (0, 𝑇),  

 (𝐮̇(𝑡), 𝐯 − 𝐮(𝑡))𝑉′×𝑉 + 𝑎(𝐮(𝑡), 𝐯 − 𝐮(𝑡)) ≥ (𝑆(𝑡), 𝐯 − 𝐮(𝑡))𝐻,    ∀𝐯 ∈ 𝐾.  
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3. Mechanical and variational formulations  

We give the physical setting of the contact problem and introduce some notations which we 

use in the sequel. We consider a viscoelastic body which occupies a domain Ω ⊂ ℝ𝑑, where 𝑑 =
2,3, such that the boundary Γ = 𝜕Ω is Lipschitz continuous. 

As we mentioned earlier the boundary 𝜕Ω is divided into three disjoint measurable parts 

Γ1, Γ2 and Γ3 with meas (Γ1) > 0. In addition, we assume the body is in contact with a deformable 

foundation and the process is dynamic and frictional. We are interested in an evolution of the body 

in a finite time interval (0, 𝑇). 
We now have to write the boundary conditions on the contact surface Γ3, We introduce the 

wear function 𝑤: [0, 𝑇] × Γ3 → ℝ+ which measures the wear of the surface. Wear is identified as 

the normal depth of material that is lost, the body is in bilateral contact with the foundation, as a 

result  

𝑢𝜈 = −𝑤    onΓ3. (14) 

Thus, the location of the contact grows with wear. We recall that the effect of wear is on Γ3 

and therefore, it is natural to think that 𝑢𝜈 ≤ 0 on Γ3, therefore 𝑤 > 0 on Γ3. The evolution of the 

wear of the contact surface is governed by a simplified version of Archard’s law (See Strömberg, 

Johansson, and Klarbring (1996))  

𝑤̇ = −𝑘𝜎𝜈 ∥ 𝐮̇𝜏 − 𝐯
∗ ∥, (15) 

 where 𝑘 > 0 is a coefficient of wear, 𝐯∗ is the tangential velocity of the foundation and ∥ 𝐮̇𝜏 − 𝐯
∗ ∥ 

represents the slip speed between the contact surface and the foundation. We assume that the motion 

of the foundation is uniform, i.e., 𝐯∗ does not vary over time. We have Archard’s law  

𝑤̇ = −𝑘𝑣∗𝜎𝜈 .                                                                                                                               (16) 

The use of the simple law (16) avoids certain mathematical difficulties in the study of the dynamic 

problem of viscoelastic contact. Let 𝜁 = 𝑘𝑣∗ and 𝛼 =
1

𝜁
 By using (14) and (16), we have  

𝜎𝜈 = 𝛼𝑢̇𝜈 .                                                                                                                                      (17) 

We model the Coulomb dry friction contact between the body of the viscoelastic and the foundation 

as follows  
‖𝝈𝜏‖ = 𝜇|𝜎𝜈|,    𝝈𝜏 = −𝜆(𝐮̇𝜏 − 𝐯

∗),    𝜆 ≥ 0,                                                                              (18) 

 where 𝜇 > 0 is the coefficient of friction. Naturally, if 𝑤̇ ≥ 0 Thus, it follows from (14) and (16) 

that 𝑢𝜈 ≤ 0 and 𝜎𝜈 ≤ 0 on Γ3 Thus, the conditions (17) and (18) imply  

−𝜎𝜈 = 𝛼‖𝑢̇𝜈‖,    ‖𝝈𝜏‖ = −𝜇𝜎𝜈 ,    𝝈𝜏 = −𝜆(𝐮̇𝜏 − 𝐯
∗),    𝜆 ≥ 0. (19) 

The classical formulation of the mechanical problem of a frictional contact with wear may be stated 

as follows.  

problem 𝑷 

 Find a displacement field 𝐮:Ω × [0, 𝑇] → ℝ𝑑 , a stress field 𝝈:Ω × [0, 𝑇] → 𝕊𝑑, a damage 

field 𝛽:Ω × [0, 𝑇] → ℝ.  

𝜌𝐮̈ = Div 𝝈 + 𝑓0    inΩ × (0, 𝑇), (20) 

𝝈(𝑡) = 𝒜𝜀(𝐮̇(𝑡)) +ℬ𝜀(𝐮(𝑡))

+ ∫
𝑡

0
ℱ(𝑡 − 𝑠, 𝜀(𝐮(𝑠)), 𝛽(𝑠))𝑑𝑠

    inΩ × (0, 𝑇), (21) 

𝛽̇ − 𝑘Δ𝛽 + 𝜕𝜑𝐾(𝛽) ∋ 𝜓(𝜀(𝐮), 𝛽)    inΩ × (0, 𝑇), (22) 

𝐮 = 𝟎    onΓ1 × (0, 𝑇), (23) 
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𝝈𝝂 = 𝑓2    onΓ2 × (0, 𝑇), (24) 

{

−𝜎𝜈 = 𝛼 ∥ 𝑢̇𝜈 ∥,
∥ 𝝈𝜏 ∥= −𝜇𝜎𝜈 ,
𝝈𝜏 = −𝜆(𝐮̇𝜏 − 𝑣

∗),    𝜆 > 0
    on   Γ3 × (0, 𝑇), (25) 

𝜕𝛽

𝜕𝜈
= 0    onΓ × (0, 𝑇), (26) 

𝐮(0) = 𝐮0,    𝐮̇(0) = 𝐯0,    𝛽(0) = 𝛽0    inΩ, (27) 

 The equation (20) represents the equation of motion where 𝑓0 is the density of the volumic forces 

acting on the deformable body Ω and 𝜌 denotes the density of the mass. The equation (21) represents 

the constitutive law of a viscoelastic material with long-term memory where ℱ = (ℱ𝑖𝑗) is the tensor 

of the relaxation and damage. The evolution of the damage field is modeled by the inclusion of the 

parabolic type given by relation (22) where 𝜓 is the source function of the damage, the set of 

admissible damage functions 𝐾 defined by  

 𝐾 = {𝜉 ∈ 𝐻1(Ω): 0 ≤ 𝜉 ≤ 1    a. e. inΩ}, 

 𝜕𝜑𝐾 represents the subdifferential of the indicator function of set 𝐾. (23) - (24) are displacement 

and traction boundary conditions, respectively. The condition (25) describes the frictional bilateral 

contact with wear described above on the potential contact surface Γ3. The relation (26) represents 

a homogeneous Neumann boundary condition where 
𝜕𝛽

𝜕𝜈
 represents the normal derivative of 𝛽. In 

(27) we consider the initial conditions where 𝐮0 is the displacement initially, 𝐯0 the initial velocity 

field and 𝛽0 the initial damage. 

For the study of the mechanical problem (20) -(27) we consider the following hypotheses. 

The viscosity operator 𝒜:Ω × 𝕊𝑑 ⟶ 𝕊𝑑 satisfied  

{
 
 
 

 
 
 

(𝑎)  There exists  𝐿𝒜 > 0    such that

∥ 𝒜(𝐱, 𝜺1) − 𝒜(𝐱, 𝜺2) ∥≤ 𝐿𝒜 ∥ 𝜺1 − 𝜺2 ∥     ∀𝜺1, 𝜺2 ∈ 𝕊𝑑 , a. e. 𝐱 ∈ Ω.

(𝑏)There  exists  𝑚𝒜 > 0    such that

(𝒜(𝐱, 𝜺1) − 𝒜(𝐱, 𝜺2)). (𝜺1 − 𝜺2) ≥ 𝑚𝒜 ∥ 𝜺1 − 𝜺2 ∥
2

∀𝜺1, 𝜺2 ∈ 𝕊𝑑 , a. e. 𝐱 ∈ Ω.

(𝑐)The mapping  𝐱 ↦ 𝒜(𝐱, 𝜺) is  lebesgue  measurable  on  Ω, for  all 𝜺 ∈ 𝕊𝑑 .

(𝑑)The mapping  𝐱 ↦ 𝒜(𝐱, 𝟎) ∈ ℋ.

 (28) 

The elasticity operator ℬ:Ω × 𝕊𝑑 ⟶ 𝕊𝑑 satisfied  

{
 
 
 

 
 
 

(𝑎)There exists 𝐿ℬ > 0  such that

∥ ℬ(𝐱, 𝜺1) − ℬ(𝐱, 𝜺2) ∥≤ 𝐿ℬ ∥ 𝜺1 − 𝜺2 ∥     ∀𝜺1, 𝜺2 ∈ 𝕊
𝑑 , a. e. 𝐱 ∈ Ω.

(𝑏)There exists𝑚ℬ > 0    such that

(ℬ(𝐱, 𝜺1) − ℬ(𝐱, 𝜺2)). (𝜺1 − 𝜺2) ≥ 𝑚ℬ ∥ 𝜺1 − 𝜺2 ∥
2 ∀𝜺1, 𝜺2 ∈ 𝕊

𝑑 , a. e. 𝐱 ∈ Ω.

(𝑐)    ℬ𝜺1. 𝜺2 = ℬ𝜀2. 𝜺1, ∀𝜺1, 𝜺2 ∈ 𝕊
𝑑andℬ(𝟎) ∈ ℋ.

(𝑑)The mapping  𝐱 ↦ ℬ(𝐱, 𝜺) is  lebesgue  measurable  onΩ, for all 𝜺 ∈ 𝕊𝑑 .

(𝑒)The mapping  𝐱 ↦ ℬ(𝐱, 𝟎) ∈ ℋ.

 (29) 

The relaxation tensor operator ℱ:Ω × (0, 𝑇) × 𝕊𝑑 ×ℝ⟶ 𝕊𝑑  satisfied  
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{
 
 
 

 
 
 

(𝑎) There exists 𝐿ℱ > 0  such that

∥ ℱ(𝐱, 𝑡, 𝜺1, 𝛽1) − ℱ(𝐱, 𝑡, 𝜺2, 𝛽2) ∥≤ 𝐿ℱ(∥ 𝜺1 − 𝜺2 ∥ +∥ 𝛽1 − 𝛽2 ∥)

                    ∀𝜺1, 𝜺2 ∈ 𝕊
𝑑 , ∀𝛽1, 𝛽2 ∈ ℝ, ∀𝑡 ∈ (0, 𝑇), a. e. 𝐱 ∈ Ω.

(𝑏)The mapping 𝐱 ↦ ℱ(𝑥, 𝑡, 𝜺, 𝛽)is  lebesgue  measurable  on Ω,

                for  all 𝜺 ∈ 𝕊𝑑 , ∀𝑡 ∈ (0, 𝑇), 𝛽 ∈ ℝ.

(𝑐)The mapping  𝑡 ↦ ℱ(𝐱, 𝑡, 𝜺, 𝛽) is continuous on Ω × (0, 𝑇) × 𝕊𝑑 × ℝ.    

(𝑑)The mapping 𝐱 ↦ ℱ(𝐱, 𝑡, 𝟎, 0) ∈ ℋ, ∀𝑡 ∈ (0, 𝑇).

 (30) 

The function of the damage source 𝜓:Ω × 𝕊𝑑 × ℝ⟶ ℝ  

{
  
 

  
 

(𝑎) There are 𝐿𝜓 > 0    such that

∥ 𝜓(𝐱, 𝜺1, 𝛽1) − 𝜓(𝐱, 𝜺2, 𝛽2) ∥≤ 𝐿𝜓(∥ 𝜺1 − 𝜺2 ∥ +∥ 𝛽1 − 𝛽2 ∥)

                    ∀𝜺1, 𝜺2 ∈ 𝕊
𝑑 , ∀𝛽1, 𝛽2 ∈ ℝ, a. e.  𝐱 ∈ Ω.

(𝑏)The mapping 𝐱 ↦ 𝜓(𝐱, 𝜺, 𝛽) is  lebesgue  measurable  on  Ω,            

                for  all 𝜺 ∈ 𝕊𝑑 , 𝛽 ∈ ℝ.

(𝑐) The mapping 𝐱 ↦ 𝜓(𝐱, 𝟎, 0) ∈ 𝐿2(Ω).

 (31) 

We assume that the function 𝛼, the volume and surface forces satisfy  

𝜌 ∈ 𝐿∞(Γ3), 𝜌(𝐱) ≥ 𝜌 ∗> 0    a. e  𝐱 ∈ Ω. (32) 

𝛼 ∈ 𝐿∞(Γ3), 𝛼(𝐱) ≥ 𝛼 ∗> 0    a. e  𝐱 ∈ Γ3. (33) 

𝒇0 ∈ 𝐻
2(0, 𝑇, 𝐿2(Ω)𝑑),    𝒇2 ∈ 𝐻

2(0, 𝑇, 𝐿2(Γ2)
𝑑). (34) 

The coefficient of friction 𝜇 is such that  

𝜇 ∈ 𝐿∞(Γ3), 𝜇(𝐱) > 0    a. e. 𝐱 ∈ Γ3.   (35) 

Finally the initial conditions satisfied  

𝐮0 ∈ 𝑉,    𝐯0 ∈ 𝐻. (36) 

𝛽0 ∈ 𝐾.     (37) 

We define the bilinear form 𝑎:𝐻1(Ω) × 𝐻1(Ω) → ℝ  

𝑎(𝜉, 𝜁) = 𝑘 ∫
Ω
∇𝜉∇𝜁𝑑𝑥, (38) 

 where 𝑘 is a positive coefficient. 

Define an inner product (. , . )𝐻 by setting  

 (𝐮, 𝐯)𝐻 = (𝜌(𝐱)𝐮, 𝐯)𝐻. 

Riesz’s representation Theorem causes the existence of an element 𝑓 ∈ 𝑉′, such that  
(𝒇(𝑡), 𝐯)𝑉′×𝑉 = (𝒇0(𝑡), 𝐯)𝐻 + (𝒇2(𝑡), 𝐯)𝐿2(Ω), ∀𝐯 ∈ 𝑉   a. e.  𝑡 ∈ (0, 𝑇). (39) 

Note that condition (34) implies that  

𝒇 ∈ 𝐻2(0, 𝑇; 𝑉′). (40) 

 Now let 𝜑: 𝑉 × 𝑉 → ℝ, the mapping defined by  

𝜑(𝐮, 𝐯) = ∫
Γ3
𝛼‖𝑢𝜈‖(𝜇‖𝐯 − 𝐯

∗‖ + 𝑣𝜈) 𝑑𝑎. (41) 

Using standard arguments based on Green’s formula for example (see Chen et al. (2020), 

page 4-5), we obtain the variational formulation of the problem (20)-(27) is given by  

problem 𝑷𝑽 
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𝝈(𝑡) = 𝒜𝜀(𝐮̇(𝑡)) + ℬ𝜀(𝐮(𝑡)) + ∫
𝑡

0
ℱ (𝑡 − 𝑠, 𝜀(𝐮(𝑠)), 𝛽(𝑠))𝑑𝑠,    𝑡 ∈ (0, 𝑇), (42) 

(𝐮̈(𝑡), 𝐯 − 𝐮̇(𝑡))𝑉′×𝑉 +(𝝈(𝑡), 𝜀(𝐯 − 𝐮̇(𝑡)))ℋ + 𝜑(𝐮̇(𝑡), 𝐯) − 𝜑(𝐮̇(𝑡), 𝐮̇(𝑡))

        ≥ (𝒇(𝑡), (𝐯 − 𝐮̇(𝑡)))𝑉′×𝑉,    ∀𝐯 ∈ 𝑉, 𝑡 ∈ [0, 𝑇],
 (43) 

𝛽(𝑡) ∈ 𝐾,    (𝛽̇(𝑡), 𝜁 − 𝛽(𝑡))𝐿2(Ω) + 𝑎(𝛽(𝑡), 𝜁 − 𝛽(𝑡))

≥ (𝜓(𝜀(𝐮(𝑡)), 𝛽(𝑡)), 𝜁 − 𝛽(𝑡))𝐿2(Ω),    ∀𝜁 ∈ 𝐾, 𝑡 ∈ [0, 𝑇],
 (44) 

𝐮(0) = 𝐮0,    𝐮̇(0) = 𝐯0,    𝛽(0) = 𝛽0. (45) 

Our main existence and uniqueness result for Problem 𝑃𝑉 is the following.  

 

4. Existence and uniqueness 

Assume that (28)-(37) hold, Then there exists a constant 𝜆0 > 0 depending on Γ3, such that if  

∥ 𝛼 ∥𝐿∞(Γ3) (∥ 𝜇 ∥𝐿∞(Γ3)+ 1) < 𝜆0. (46) 

 and  

𝑐𝛾
2 ∥ 𝛼 ∥𝐿∞(Γ3)𝑑 (∥ 𝜇 ∥𝐿∞(Γ3)𝑑+ 1) < 𝑚𝒜 < 2𝑐𝛾

2 ∥ 𝛼 ∥𝐿∞(Γ3)𝑑 (∥ 𝜇 ∥𝐿∞(Γ3)𝑑+ 1), (47) 

where 𝑐𝛾 is a constant. Then Problem 𝑃𝑉 has a unique solution (𝐮, 𝝈, 𝛽). Moreover, the solution 

satisfies  

{

𝐮(𝑡) ∈ 𝐶(0, 𝑇; 𝑉)
𝐮̇(𝑡) ∈ 𝐶(0, 𝑇; 𝑉) ∩ 𝐿∞(0, 𝑇; 𝑉)

𝐮̈(𝑡) ∈ 𝐶(0, 𝑇; 𝑉) ∩ 𝐿∞(0, 𝑇; 𝑉).
 (48) 

𝝈 ∈ 𝐻2(0, 𝑇;ℋ),    𝐷𝑖𝑣𝝈 ∈ 𝐻2(0, 𝑇; 𝑉′), (49) 

𝛽 ∈ 𝑊1,2(0, 𝑇; 𝐿2(Ω)) ∩ 𝐿2(0, 𝑇; 𝐻1(Ω)), (50) 

Note that if 𝐯∗ is large enough, then 𝛼 =
1

𝑘𝐯∗
 is sufficiently small and, therefore, the condition (46) 

for the unique solution of the 𝑃𝑉 problem is satisfied. We conclude that the mechanical problem 

(20)-(27) has a unique weak solution if the tangential velocity of the foundation is large enough. In 

addition, the solving the problem (20)-(27), allows us to find the function of the wear by integration 

of (16) and we use the initial condition 𝑤(0) = 0 which indicates that the body at the initial time is 

not subjected to wear. 

The proof of Theorem 4, is carried out is several steps and is based on the following abstract result 

for evolutionary hyperbolic quasi-variational inequality. We denote by 𝐶 a constant whose value 

may change from line to line when no confusing can arise. 

Let 𝜼 ∈ 𝐻2(0, 𝑇; 𝑉′) be given and consider the following variational problems.  

Problem 𝓟𝜼 

 Find a displacement field 𝐮𝜂: [0, 𝑇] → 𝑉, such that  

(𝐮̈𝜂(𝑡), 𝐯 − 𝐮̇𝜂(𝑡))𝑉′×𝑉
+ (𝒜𝜀(𝐮̇𝜂(𝑡)), 𝜀(𝐯 − 𝐮̇𝜂(𝑡)))ℋ + (ℬ𝜀(𝐮𝜂(𝑡)), 𝜀(𝐯 − 𝐮̇𝜂(𝑡)))ℋ

+(𝜼(𝑡), 𝐯 − 𝐮̇𝜂(𝑡))𝑉′×𝑉
+𝜑(𝐮̇𝜂(𝑡), 𝐯) − 𝜑(𝐮̇𝜂(𝑡), 𝐮̇𝜂(𝑡)) ≥ (𝒇(𝑡), 𝐯 − 𝐮̇𝜂(𝑡))𝑉′×𝑉

a. e.   𝑡 ∈ (0, 𝑇),    for all 𝐯 ∈ 𝑉,

 (51) 

𝐮𝜂(0) = 𝐮0,    𝐮̇𝜂(0) = 𝐮̇0 = 𝐯0. (52) 

We have the following result for 𝒫𝜂  There exists 𝐮𝜂 a unique solution to Problem 𝒫𝜂 and it has the 

regularity expressed in (48).   

Proof. We apply Theorem 2. Thus, we only need to verify that all the conditions (4)-(12) are 

satisfied. The Riesz representation Theorem allows us to define 𝒇𝜂: [0, 𝑇] → 𝑉, by  

 (𝒇𝜂(𝑡), 𝐯)𝑉′×𝑉
= (𝒇(𝑡) − 𝜼(𝑡), 𝐯)𝑉′×𝑉.  

We define the operator 𝐴: 𝑉 → 𝑉′  
 (𝐴𝐮, 𝐯)𝑉′×𝑉 = (𝒜𝜺(𝐮(𝑡)), 𝜀(𝐯))ℋ     ∀𝐮, 𝐯 ∈ 𝑉, (53) 
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 it follows from (53) and (28)(a) that  

 ∥ 𝐴𝐮1 − 𝐴𝐮2 ∥𝑉′=∥ 𝒜𝜀(𝐮1) − 𝒜𝜀(𝐮2) ∥ℋ≤ 𝐿𝒜 ∥ 𝜀(𝐮1) − 𝜀(𝐮2) ∥ℋ 

 ≤ 𝐿𝒜 ∥ 𝐮1 − 𝐮2 ∥𝑉. 
Now by(53) and (28)(b), we find  

 (𝐴𝐮1 − 𝐴𝐮2, 𝐮1 − 𝐮2)𝑉′×𝑉 = (𝒜𝜀(𝐮1) − 𝒜𝜀(𝐮2), 𝜀(𝐮1 − 𝐮2))ℋ 

 ≥ 𝑚𝒜 ∥ 𝜀(𝐮1 − 𝐮2)) ∥ ℋ
2  

 ≥ 𝑚𝒜 ∥ 𝐮1 − 𝐮2) ∥𝑉
2 . 

Similarly for 𝐵: 𝑉 → 𝑉′  
(𝐵𝐮, 𝐯)𝑉′×𝑉 = (ℬ𝜺(𝐮(𝑡)), 𝜀(𝐯))ℋ     ∀𝐮, 𝐯 ∈ 𝑉, (54) 

 it follows from (54) and (29)(a) that  

 
∥ 𝐵𝐮1 − 𝐵𝐮2 ∥𝑉′ =∥ ℬ𝜀(𝐮1) − ℬ𝜀(𝐮2) ∥ℋ≤ 𝐿ℬ ∥ 𝜀(𝐮1) − 𝜀(𝐮2) ∥ℋ

≤ 𝐿ℬ ∥ 𝐮1 − 𝐮2 ∥𝑉.
 

Now by (54) and (29)(b), we find  

 (𝐵𝐮1 − 𝐵𝐮2, 𝐮1 − 𝐮2)𝑉′×𝑉 = (ℬ𝜀(𝐮1) − ℬ𝜀(𝐮2), 𝜀(𝐮1 − 𝐮2))ℋ 

 ≥ 𝑚ℬ ∥ 𝜀(𝐮1 − 𝐮2)) ∥ ℋ
2  

 ≥ 𝑚ℬ ∥ 𝐮1 − 𝐮2) ∥𝑉
2 . 

For the condition (8), it results directly from (29)(c). 

Clearly, (4)-(8) and (12) are met. Now we turn to check the remaining conditions. Since  

 𝜑(𝐮, 𝐯) = ∫
Γ3
𝛼‖𝑢𝜈‖(𝜇‖𝑣 − 𝑣

∗‖ + 𝑣𝜈)𝑑𝑎. 

and for any 𝐯1, 𝐯2 ∈ 𝑉  

 |𝜆𝐯1 + (1 − 𝜆)𝐯2 − 𝐯
∗| ≤ 𝜆|𝐯1 − 𝐯

∗| + (1 − 𝜆)|𝐯2 − 𝐯
∗|, 

we deduce that 𝜑(𝐮, . ) is a proper convex functional  

𝜑(𝒈, 𝐯1) − 𝜑(𝒈, 𝐯2) = ∫
Γ3
𝛼‖𝑔𝜈‖(𝜇‖𝐯1,𝜏 − 𝐯

∗‖ + 𝑣1,𝑣)𝑑𝑎

−∫
Γ3
𝛼‖𝑔𝜈‖(𝜇‖𝐯2,𝜏 − 𝐯

∗‖ + 𝑣2,𝜈)𝑑𝑎

= ∫
Γ3
𝛼‖𝑔𝜈‖(𝜇‖𝐯1,𝜏 − 𝐯

∗‖ − 𝜇‖𝐯2,𝜏 − 𝑣
∗‖ + 𝑣1,𝜈 − 𝑣2,𝜈)𝑑𝑎

≤ ∫
Γ3
𝛼‖𝑔𝜈‖(𝜇‖𝐯1,𝜏 − 𝐯2,𝜏‖ + ‖𝑣1,𝜈 − 𝑣2,𝜈‖)𝑑Γ

≤∥ 𝛼 ∥𝐿∞(Γ3)∥ 𝜇 ∥𝐿∞(Γ3) ‖𝑔𝜈‖𝐿2(Γ3)‖𝐯1,𝜏 − 𝐯2,𝜏‖𝐿2(Γ3)

+∥ 𝛼 ∥𝐿∞(Γ3) ‖𝑔𝜈‖𝐿2(Γ3)‖𝑣1,𝜈 − 𝑣2,𝜈‖𝐿2(Γ3)

≤∥ 𝛼 ∥𝐿∞(Γ3) (∥ 𝜇 ∥𝐿∞(Γ3)+ 1)‖𝑔𝜈‖𝐿2(Γ3)‖𝑣1,𝜈 − 𝑣2,𝜈‖𝐿2(Γ3)

≤∥ 𝛼 ∥𝐿∞(Γ3) (∥ 𝜇 ∥𝐿∞(Γ3)+ 1) ∥ 𝑔 ∥𝐿2(Γ3) ‖𝐯1 − 𝐯2‖𝐿2(Γ3).

 (55) 

We know that there exists a constant 𝑐𝛾 > 0 such that  

 ∥ 𝐮 ∥𝐿2(Γ3)𝑑≤∥ 𝐮 ∥𝐿2(Ω)𝑑≤ 𝑐𝛾 ∥ 𝐮 ∥𝑉 ,    ∀𝐮 ∈ 𝐿
2(Γ3)

𝑑. 

Then the inequality (55) can be transformed as follows  

 𝜑(𝐠, 𝐯1) − 𝜑(𝐠, 𝐯2) ≤ 𝑐𝛾
2 ∥ 𝛼 ∥𝐿∞(Γ3) (∥ 𝜇 ∥𝐿∞(Γ3)+ 1) ∥ 𝐠 ∥𝑉 ‖𝐯1 − 𝐯2‖𝑉. 

Thus the condition (10) holds. Similarly, we have  

 
𝜑(𝑔1, 𝑣2) − 𝜑(𝑔1, 𝑣1) + 𝜑(𝑔2, 𝑣1) − 𝜑(𝑔2, 𝑣2) ≤

                    𝑐𝛾
2 ∥ 𝛼 ∥𝐿∞(Γ3) ((𝜇𝐿∞(Γ3) + 1)‖𝑔1 − 𝑔2‖𝑉‖𝑣1 − 𝑣2‖𝑉.

 

and so the condition (9) is true, and we point out that (47) has been achieved 𝐿𝜑  ≺ 𝑀𝐴 ≺ 2𝐶𝜑. 

Therefore, we verify that all the conditions of Theorem 2 are satisfied and so Problem 𝒫𝜂 is uniquely 

solvable.  

For 𝜃 ∈ 𝐻2(0, 𝑇; 𝐿2(Ω)), we consider the following variational problem. 

Problem 𝓟𝜽 
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 Find the damage field 𝛽𝜃: [0, 𝑇] → ℝ,  such that  

𝛽𝜃(𝑡) ∈ 𝐾, (𝛽̇𝜃(𝑡), 𝜉 − 𝛽𝜃(𝑡))𝐿2(Ω) + 𝑎
(𝛽𝜃(𝑡), 𝜉 − 𝛽𝜃(𝑡)) ≥ (𝜃(𝑡), 𝜉 − 𝛽𝜃(𝑡))𝐿2(Ω),

∀𝜉 ∈ 𝐾, a. e. t ∈ (0, 𝑇),                                
 (56) 

𝛽𝜃(0) = 𝛽0.   (57) 

  There exists a unique solution 𝛽𝜃 to the auxiliary problem 𝒫𝜃 satisfying (50).  

Proof. The inclusion mapping of (𝐻1(Ω), ∥⋅∥𝐻1(Ω)) into (𝐿2(Ω), ∥⋅∥𝐿2(Ω)) is continuous and its 

range is dense. We denote by (𝐻1(Ω))′ the dual space of 𝐻1(Ω) and, identifying the dual of 𝐿2(Ω) 
with itself, we can write the Gelfand triple  

 𝐻1(Ω) ⊂ 𝐿2(Ω) ⊂ (𝐻1(Ω))′. 
We use the notation (. , . )

(𝐻1(Ω))
′
×𝐻1(Ω)

 to represent the duality pairing between (𝐻1(Ω))′ and 

(𝐻1(Ω)). We have  

 (𝛽, 𝜉)
(𝐻1(Ω))

′
×𝐻1(Ω)

= (𝛽, 𝜉)𝐿2(Ω),    ∀𝛽 ∈ 𝐿
2(Ω), 𝜉 ∈ 𝐻1(Ω), 

and we note that 𝐾 is a closed convex set in (𝐻1(Ω)). Then, using the definition (38) of the bilinear 

form 𝑎 , and the fact that 𝛽𝜃 ∈ 𝐾 in (37), it is easy to see that Lemma 4 is a consequence of Theorem 

2. 

We now consider the operator  

 Λ:𝐻2(0, 𝑇; 𝑉′ × 𝐿2(Ω)) → 𝐻2(0, 𝑇; 𝑉′ × 𝐿2(Ω)),  
defined by  

Λ(𝜼, 𝜃)(𝑡) = (Λ1(𝜼, 𝜃)(𝑡), Λ2(𝜼, 𝜃)(𝑡)) ∈ 𝑉′ × 𝐿2(Ω), (58) 

 and  

(Λ1(𝜼, 𝜃)(𝑡), 𝐯)𝑉′×𝑉 = (∫
𝑡

0
ℱ(𝑡 − 𝑠, 𝜀(𝐮𝛈(𝑠)), 𝛽𝜃(𝑠))𝑑𝑠, 𝜀(𝐯))

ℋ
, ∀𝐯 ∈ 𝑉, (59) 

Λ2(𝜼, 𝜃)(𝑡) = 𝜓 (𝐮𝜂(𝑡), 𝛽𝜃(𝑡)). (60) 

We have the following result.  The mapping Λ has a fixed point  (𝜼∗, 𝜃∗) ∈ 𝐻2(0, 𝑇; 𝑉′ × 𝐿2(Ω)) . 

Such that Λ(𝜼∗, 𝜃∗) = (𝜼∗, 𝜃∗).   

Proof. Let (𝜼1, 𝜃1), (𝜼2, 𝜃2) ∈ 𝐻
2(0, 𝑇; 𝑉′ × 𝐿2(Ω)). We use the notation 𝐮𝜂𝑖 = 𝐮𝑖 , 𝐮̇𝜂𝑖 =

𝐮̇ 𝑖, 𝐮̈𝜂𝑖 = 𝐮̈ 𝑖 and 𝛽𝜃𝑖 = 𝛽𝑖 , for 𝑖 = 1,2. 

using(30), we have  

‖Λ1(𝜼1, 𝜃1)(𝑡) − Λ
1(𝜼2, 𝜃2)(𝑡)‖𝑉′

2

                ≤ 𝐶 (∫
𝑡

0
‖𝐮1(𝑠) − 𝐮2(𝑠)‖𝑉

2𝑑𝑠 + ∫
𝑡

0
‖𝛽1(𝑠) − 𝛽2(𝑠)‖𝐿2(Ω)

2 𝑑𝑠) ,
 (61) 

 and by (31) we find  

‖Λ2(𝜼1, 𝜃1)(𝑡) − Λ
2(𝜼2, 𝜃2)(𝑡)‖𝐿2(Ω)

2

                ≤ 𝐶(‖𝐮1(𝑠) − 𝐮2(𝑠)‖𝑉
2 + ‖𝛽1(𝑠) − 𝛽2(𝑠)‖𝐿2(Ω)

2 ),
 (62) 

Therefore, 
‖Λ(𝜼1, 𝜃1)(𝑡) − Λ(𝜼2, 𝜃2)(𝑡)‖𝑉′×𝐿2(Ω)

2 ≤ 𝐶(‖𝐮1(𝑠) − 𝐮2(𝑠)‖𝑉
2

+∫
𝑡

0
‖𝐮1(𝑠) − 𝐮2(𝑠)‖𝑉

2𝑑𝑠 + ‖𝛽1(𝑠) − 𝛽2(𝑠)‖𝐿2(Ω)
2 + ∫

𝑡

0
‖𝛽1(𝑠) − 𝛽2(𝑠)‖𝐿2(Ω)

2 𝑑𝑠) .

 (63) 

Using inequality (51) for 𝜼 = 𝜼1 we find  
(𝐮̈1, 𝐯 − 𝐮̇1)𝑉′×𝑉 + (𝒜𝜀(𝐮̇1), 𝜀(𝐯 − 𝐮̇1))ℋ + (ℬ𝜀(𝐮1), 𝜀(𝐯 − 𝐮̇1))ℋ
+(𝜼1, 𝐯 − 𝐮̇1)𝑉′×𝑉 + 𝜑(𝐮̇1, 𝐯) − 𝜑(𝐮̇1, 𝐮̇1) ≥ (𝒇, 𝐯 − 𝐮̇1)𝑉′×𝑉,

 (64) 

Also for 𝜼 = 𝜼2 we find  
(𝐮̈2, 𝐯 − 𝐮̇2)𝑉′×𝑉 + (𝒜𝜀(𝐮̇2), 𝜀(𝐯 − 𝐮̇2))ℋ + (ℬ𝜀(𝐮2), 𝜀(𝐯 − 𝐮̇2))ℋ
+(𝜼2, 𝐯 − 𝐮̇2)𝑉′×𝑉 + 𝜑(𝐮̇2, 𝐯) − 𝜑(𝐮̇2, 𝐮̇2) ≥ (𝒇, 𝐯 − 𝐮̇2)𝑉′×𝑉,

 (65) 

 we take 𝐯 = 𝐮̇2 in (64) and 𝐯 = 𝐮̇1 in (65) by adding the results obtained we have  
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(𝐮̈1 − 𝐮̈2, 𝐮̇1 − 𝐮̇2)𝑉′×𝑉 + (𝒜𝜀(𝐮̇1) − 𝒜𝜀(𝐮̇2), 𝜀(𝐮̇1 − 𝐮̇2))ℋ
+(ℬ𝜀(𝐮1) − ℬ𝜀(𝐮2), 𝜀(𝐮̇1 − 𝐮̇2))ℋ + (𝜼1 − 𝜼2, 𝐮̇1 − 𝐮̇2)𝑉′×𝑉 

            ≤ 𝜑(𝐮̇1, 𝐮̇2) − 𝜑(𝐮̇1, 𝐮̇1) + 𝜑(𝐮̇2, 𝐮̇1) − 𝜑(𝐮̇2, 𝐮̇2),

  

Combine this hypothesis with (28)-(29) and the inequalities provided by the functional 𝜑 we find  
1

2

𝑑

𝑑𝑡
‖𝐮̇1 − 𝐮̇2‖𝑉

2 +𝑚𝒜‖𝐮̇1 − 𝐮̇2‖𝑉
2 ≤ 𝐿ℬ‖𝐮1 − 𝐮2‖𝑉‖𝐮̇1 − 𝐮̇2‖𝑉

+‖𝜼1 − 𝜼2‖𝑉‖𝐮̇1 − 𝐮̇2‖𝑉 + 𝑐𝛾
2 ∥ 𝛼 ∥𝐿∞(Γ3)𝑑 (∥ 𝜇 ∥𝐿∞(Γ3)𝑑+ 1)‖𝐮̇1 − 𝐮̇2‖𝑉

2 ,
 (66) 

 we integrate this inequality with respect to time and by Young’s inequality and by to use 𝐮𝑖(𝑡) =

∫
𝑡

0
𝐮̇𝑖(𝑠)𝑑𝑠 + 𝐮0, and by from Gronwall, we find  

‖𝐮1(𝑡) − 𝐮2(𝑡)‖𝑉
2 ≤ 𝐶 ∫

𝑡

0
‖𝜼1(𝑠) − 𝜼2(𝑠)‖𝑉

2𝑑𝑠.                                                                         (67) 

From (56), deduced that  

 (𝛽̇1 − 𝛽̇2, 𝛽1 − 𝛽2)𝐿2(Ω) + 𝑎
(𝛽1 − 𝛽2, 𝛽1 − 𝛽2) ≤ (𝜃1 − 𝜃2, 𝛽1 − 𝛽2)𝐿2(Ω), ∀𝑡 ∈ (0, 𝑇),  

integrate inequality with respect to time, using the initial condyions 𝛽1(0) = 𝛽2(0) = 𝛽0, and 

inequality 𝑎(𝛽1 − 𝛽2, 𝛽1 − 𝛽2) ≥ 0, we find  

 
1

2
‖𝛽1(𝑡) − 𝛽2(𝑡)‖𝐿2(Ω)

2 ≤  𝐶 ∫
𝑡

0
(𝜃1(𝑠) − 𝜃2(𝑠), 𝛽1(𝑠) − 𝛽2(𝑠))𝐿2(Ω)𝑑𝑠,  

which implies  

 ‖𝛽1(𝑡) − 𝛽2(𝑡)‖𝐿2(Ω)
2 ≤ 𝐶 (∫

𝑡

0
‖𝜃1(𝑠) − 𝜃2(𝑠)‖𝐿2(Ω)

2 𝑑𝑠 + ∫
𝑡

0
‖𝛽1(𝑠) −

𝛽2(𝑠)‖𝐿2(Ω)
2 𝑑𝑠), (68) 

 this inequality combined with the Gronwall inequality leads to  

‖𝛽1(𝑡) − 𝛽2(𝑡)‖𝐿2(Ω)
2 ≤ 𝐶 ∫

𝑡

0
‖𝜃1(𝑠) − 𝜃2(𝑠)‖𝐿2(Ω)

2 𝑑𝑠,    ∀𝑡 ∈ [0, 𝑇]. (69) 

Using (63), (67) and (69), we find  

‖Λ(𝜼1, 𝜃1)(𝑡) − Λ(𝜼2, 𝜃2)(𝑡)‖𝑉′×𝐿2(Ω)
2 ≤ 𝐶 ∫

𝑡

0
‖(𝜼1, 𝜃1)(𝑠) − (𝜼2, 𝜃2)(𝑠)‖𝑉′×𝐿2(Ω)

2 𝑑𝑠. (70) 

Reiterant cette inegalite 𝑚 lead time a  

 

‖Λ𝑚(𝜼1, 𝜃1)(𝑡) − Λ
𝑚(𝜼2, 𝜃2)(𝑡)‖𝐻2(0,𝑇;𝑉′×𝐿2(Ω))

2

            ≤
(𝐶𝑇)𝑚

𝑚!
‖(𝜼1, 𝜃1) − (𝜼2, 𝜃2)‖𝐻2(0,𝑇;𝑉′×𝐿2(Ω))

2 ,
 

this inequality shows that for a sufficiently large the operator Λ𝑚 is a contraction operator in the 

Banach space 𝐻2(0, 𝑇; 𝑉′ × 𝐿2(Ω)). Therefor, there exists a unique element (𝜼∗, 𝜃∗) ∈

𝐻2(0, 𝑇; 𝑉′ × 𝐿2(Ω)), such that  

 Λ(𝜼∗, 𝜃∗) = (𝜼∗, 𝜃∗).  
Now we have every thing that is required to prove Theorem 4. 

Existence 

Let (𝜼∗, 𝜃∗) ∈ 𝐻2(0, 𝑇; 𝑉′ × 𝐿2(Ω)),  be the fixed point of Λ and denote  

𝐮∗ = 𝐮𝜼∗ , 𝛽∗ = 𝛽𝜃∗ , (71) 

𝝈∗ = 𝒜𝜀(𝐮̇∗) + ℬ𝜀(𝐮∗) + ∫
𝑡

0
ℱ(𝑡 − 𝑠, 𝜀(𝐮∗(𝑠)), 𝛽∗(𝑠))𝑑𝑠,    𝑡 ∈ (0, 𝑇), (72) 

 we use : Λ1(𝜼∗, 𝜃∗) = 𝜼∗, Λ2(𝜼∗, 𝜃∗) = 𝜃∗, it follows  

(𝜼∗(𝑡), 𝐯)𝑉′×𝑉 = (∫
𝑡

0
ℱ(𝑡 − 𝑠, 𝜀(𝐮∗(𝑠)), 𝛽∗(𝑠))𝑑𝑠, 𝜀(𝐯))

ℋ
, ∀𝐯 ∈ 𝑉. (73) 

𝜃∗(𝑡) = 𝑆(𝐮∗(𝑡), 𝛽∗(𝑡)).           (74) 

 We prove (𝐮∗, 𝝈∗, 𝛽∗) satisfies (42)-(45) and the regularities (48)-(50). Indeed, we write (51) for 

𝜼 = 𝜼∗ and use (71) to find  
(𝐮̈∗(𝑡), 𝐯 − 𝐮̇∗(𝑡))𝑉′×𝑉 + (𝒜𝜀(𝐮̇∗)(𝑡), 𝜀(𝐯 − 𝐮̇∗(𝑡)))ℋ + (ℬ𝜀(𝐮∗(𝑡)), 𝜀(𝐯 − 𝐮̇∗(𝑡)))ℋ
+(𝜼∗(𝑡), 𝐯 − 𝐮̇∗(𝑡))𝑉′×𝑉 + 𝜑(𝐮̇∗(𝑡), 𝐯) − 𝜑(𝐮̇∗(𝑡), 𝐮̇∗(𝑡)) ≥ (𝒇(𝑡), 𝐯 − 𝐮̇∗(𝑡))𝑉′×𝑉,

            a. e.    𝑡 ∈ (0, 𝑇), for all 𝐯 ∈ 𝑉.

 (75) 

Substitute (73) in (75) to obtain  
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(𝐮̈∗(𝑡), 𝐯 − 𝐮̇∗(𝑡))𝑉′×𝑉 + (𝒜𝜀(𝐮̇∗)(𝑡), 𝜀(𝐯 − 𝐮̇∗(𝑡)))ℋ + (ℬ𝜀(𝐮∗(𝑡)), 𝜀(𝐯 − 𝐮̇∗(𝑡)))ℋ

+(∫
𝑡

0
ℱ(𝑡 − 𝑠, 𝜀(𝐮∗(𝑠)), 𝛽∗(𝑠))𝑑𝑠, 𝜀(𝐯 − 𝐮̇∗(𝑡)))

ℋ
+ 𝜑(𝐮̇∗(𝑡), 𝐯) − 𝜑(𝐮̇∗(𝑡), 𝐮̇∗(𝑡))

                ≥ (𝒇(𝑡), 𝐯 − 𝐮̇∗(𝑡))𝑉′×𝑉,    a. e.  𝑡 ∈
(0, 𝑇), for all 𝐯 ∈ 𝑉.

 (76) 

 and we write (56) for 𝜃 = 𝜃∗ and use (71) to find  

𝛽∗(𝑡) ∈ 𝐾, (𝛽̇∗(𝑡), 𝜉 − 𝛽∗(𝑡))𝐿2(Ω) + 𝑎
(𝛽∗(𝑡), 𝜉 − 𝛽∗(𝑡))

≥ (𝜃∗(𝑡), 𝜉 − 𝛽∗(𝑡))𝐿2(Ω), ∀𝜉 ∈ 𝐾, a. e. t ∈ (0, 𝑇),
 (77) 

 we substitute (74) in (77) to obtain  

𝛽∗(𝑡) ∈ 𝐾, (𝛽̇∗(𝑡), 𝜉 − 𝛽∗(𝑡))𝐿2(Ω) + 𝑎
(𝛽∗(𝑡), 𝜉 − 𝛽∗(𝑡))

≥ (𝑆(𝐮∗(𝑡), 𝛽∗(𝑡)), 𝜉 − 𝛽∗(𝑡))
𝐿2(Ω)

, ∀𝜉 ∈ 𝐾,   a. e.     t ∈ (0, 𝑇).
 (78) 

The relations (75)-(78), allow us to conclude now that (𝐮∗, 𝝈∗, 𝛽∗) satisfies (42)-(44). Next, (45) the 

regularity (48)-(50) follow from Lemmas 4 and 4. Since 𝐮∗, 𝛽∗ satisfies (48), (50), respectively, It 

follows from (34) that  

𝝈∗ ∈ 𝐻
2(0, 𝑇; 𝑉′)                                                                                                                          (79) 

we choose 𝐯 = 𝐮 ± 𝜙 in (76), with 𝜙 ∈ 𝐷(Ω)𝑑 to obtain  

𝐷𝑖𝑣 𝝈∗(𝑡) = 𝑓0(𝑡), ∀𝑡 ∈ [0, 𝑇],   (80) 

where 𝐷(Ω) is the space of infinitely differentiable real functions with a compact support in Ω. The 

regularity (49) follows from (34), (79) and (80). 

Finally we conclude that the weak solution (𝐮∗, 𝝈∗, 𝛽∗) of the problem 𝑃𝑉 has the regularity (48)–

(50), which concludes the existence part of Theorem 4.  

 

Uniqueness 

 The uniqueness of the solution is a consequence of the uniqueness of the fixed point of operator 
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