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Abstract  

Recently, extropy has gained interest by the academic researchers. This work explores the features 

of parametric and non-parametric estimators based on upper record values under the a two-

parameter Weibull distribution. We apply the Markov Chain Monte Carlo (MCMC) method to 

provide a Bayesian estimator. A considerable number of theoretical properties of the procedures are 

determined. 
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1. Introduction  

In reliability theory, the concept of uncertainty plays a pivotal role in our understanding of 

data and decision-making processes. Uncertainty, often quantified by entropy, see Shannon (1984), 

measures the degree to which outcomes are unpredictable or unknown. In the other hand, an 

alternative measurement for uncertainty was suggested by Lad et al. (2015) named extropy. offering 

a different perspective on the information contained within a system. For a continuous random 

variable (rv) 𝑋 with with probability density function (pdf) 𝑓 (𝑥) and cumulative distribution 

function (cdf) 𝐹(𝑥),  the extropy is defined by 

 

𝐽(𝑋) = −
1

2
∫ 𝑓2(𝑥)𝑑𝑥                                                                                                                    (1)    

 

These measurements are highly regarded in the framework of order and record statistics. In 

this article, we adopt the concept of record values which is important in a variety of practical 

applications, ranging from reliability engineering to environmental research. Understanding the 

behavior and characteristics of these records can provide useful information about the underlying 

distribution and its properties. readers may refer to works such as Arnold et al. (1998). 

Let 𝑋1, … , 𝑋𝑛 be a sequence of independent and identically distributed (iid) rv with pdf 𝑓 (𝑥) 

and cdf  𝐹(𝑥)  . We say an upper record value is an observation 𝑋𝑗 that outperforms all prior 

observations in a series of random variables  𝑋𝑗 > 𝑋𝑖, Ɐ 𝑖 < 𝑗 (Ahsanullah, 1995). 

Assume 𝐷𝑛 = 𝑈1, … , 𝑈𝑛  be the first n upper record values. The joint density function for 𝐷𝑛 

is as follows: 

 

𝑓(𝑢1, … , 𝑢𝑛) = 𝑓(𝑢𝑛)∏
𝑓(𝑢𝑖)

1−𝑓(𝑢𝑖)
𝑛−1
𝑖=1                                                                                         (2) 

 

The estimation of extropy has recently attracted attention from several researchers. We may 

refer to Qiu et al. (2017), who provided some estimators for extropy with applications in testing 

uniformity. On the other hand, the problem of estimating the extropy based on complete sample has 

been considered recently by some authors, see for example, Qiu et al. (2018). Characterization 

results are also given. Additionally, Zouaoui et al. (2022) investigated the Evaluation of the 
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uncertainty increments for the records and they also provided related characterization results. For 

more statistical inference see Jose et al. (2019) and Ahmed et al. (2023). 

This paper aims to explore the extropy of record values within the context of the Weibull 

distribution. We seek to gain deeper insights into the estimation of extropy for the Weibull 

distribution where it is noted for its adaptability and application, it is commonly used to describe 

life-cycle data and dependability problems, see Baratpour et al. (2007), Chacko et al. (2021) and 

Murthy et al. (2004). 

 The pdf of Weibull distribution is defined respectively as follows: 

 

𝑓(𝑥) = 𝑏𝜆𝑥𝜆−1𝑒−𝑏𝑥𝜆
                                                                                                                   (3) 

 

Understanding the extropy associated with Weibull-distributed records can enhance our ability 

to model and predict phenomena in various fields, from engineering to environmental studies. 

 

2. Maximum likelihood estimation 

The MLE method can be used to explore the range of possible distributions and parameters. it 

seeks to identify model parameter values that maximize the probability function over the parameter 

space.  The maximum likelihood method is a widely used statistical inference technique that may be 

used to a variety of distributions and models. The Fisher information matrix (FIM) can be used to 

calculate confidence intervals (CIs) due to its asymptotic features. 

 

1.1 Likelihood Equations 

   Let 𝐷𝑛 = 𝑈1, … , 𝑈𝑛 be  the first n upper record values from Weibull distribution 𝑊(𝑏, 𝜆). 

from (1), the likelihood function, say, 𝐿(𝑏, 𝜆; 𝑢), can be presented as 

 

𝐿(𝑏, 𝜆; 𝑢) = 𝑒−𝑏𝑢𝑛
𝜆
∏ 𝑏𝜆 𝑢𝑖

𝜆−1𝑛
𝑖=1                            (4) 

 

The log-likelihood function is given by: 

 

𝑙(𝑏, 𝜆; 𝑢) = −𝑏𝑢𝑛
𝜆 + ∑log 𝑏 + log  𝜆 + (𝜆 − 1) log 𝑢𝑖

𝑛

𝑖=1

 

                 =  −𝑏𝑢𝑛
𝜆 + 𝑛 log 𝑏 + 𝑛 log  𝜆 + ∑ (𝜆 − 1) log 𝑢𝑖

𝑛
𝑖=1                                                           (5) 

 

The partial derivatives of 𝑙(𝑏, 𝜆; 𝑢) for 𝑏, 𝜆 is derived respectively as 

 
𝜕𝑙(𝑏,𝜆;𝑢)

𝜕𝑏
= −𝑢𝑛

𝜆 +
𝑛

𝑏
                                                                                                                           (6) 

𝜕𝑙(𝑏,𝜆;𝑢)

𝜕𝜆
= −𝑏𝜆𝑢𝑛

𝜆−1 +
𝑛

𝜆
+ ∑ log 𝑢𝑖

𝑛
𝑖=1                                                                                              (7) 

 

Now, to get the  MLEs of 𝑏  and 𝜆 we set the equations (6) and (7) to zero. Therefore, the MLE 

of 𝑏 is given by 

 

  

𝑏̂𝑀𝐿 =
𝑛

𝑢𝑛
𝜆̂
                                                                                                                                         (8) 

 

For 𝜆̂𝑀𝐿 cannot be derived with an explicit form. Therefore, we need to solve the nonlinear 

equation (7) numerically. One of the most used methods is the Newton–Raphson (N–R) method. 

Using the invariant property, the MLE of 𝐽𝑋 is : 
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𝐽𝑋 = −𝑏̂𝑀𝐿
−2𝜆̂𝑀𝐿+3 𝜆̂𝑀𝐿

2

2𝜆̂𝑀𝐿
2 𝛤(2𝜆̂𝑀𝐿 − 1)                                                                                         (9) 

 

1.2 Asymptotic Confidence Intervals for MLEs 

For more accuracy of MLEs, we use the asymptotic variance of MLE to determine the ACIs 

of 𝑏  and 𝜆. Let 𝐼(𝛷) be the fisher information matrix where 𝛷 = (𝑏, 𝜆 ), the FIM can be given as 

follows 

  

𝐼(𝛷) = [
−

𝜕2𝑙(𝑏,𝜆;𝑢)

𝜕𝑏2 −
𝜕2𝑙(𝑏,𝜆;𝑢)

𝜕𝑏𝜕𝜆

−
𝜕2𝑙(𝑏,𝜆;𝑢)

𝜕𝑏𝜕𝜆
−

𝜕2𝑙(𝑏,𝜆;𝑢)

𝜕𝜆2

]                                                                                                (10) 

 

 

Thus,  

 

𝐼(𝛷) = [

𝑛

𝑏2
𝜆𝑢𝑛

𝜆−1

𝜆𝑢𝑛
𝜆−1 𝑏𝑢𝑛

𝜆−1 + 𝑏𝜆(𝜆 − 1)𝑢𝑛
𝜆−2 +

𝑛

𝜆2

]                                                                         (11)                            

 

To find the 𝑉𝑎𝑟(𝑏̂𝑀𝐿) and 𝑉𝑎𝑟(𝜆̂𝑀𝐿), we should calculate the inverse of FIM of the MLEs 

under the asymptotic property. Thus: 

 

𝐼(𝛷̂) = [

𝑛

𝑏̂𝑀𝐿
2 𝜆̂𝑀𝐿𝑢𝑛

𝜆̂𝑀𝐿−1

𝜆̂𝑀𝐿𝑢𝑛
𝜆̂𝑀𝐿−1

𝑏̂𝑀𝐿𝑢𝑛
𝜆̂𝑀𝐿−1

+ 𝑏̂𝑀𝐿𝜆̂𝑀𝐿(𝜆̂𝑀𝐿 − 1)𝑢𝑛
𝜆̂𝑀𝐿−2

+
𝑛

𝜆̂𝑀𝐿
2

]                                    (12) 

 

Where, 𝛷̂  is the estimate of 𝛷. Thus  

 

𝐼(𝛷̂)
−1

=
1

det (𝐼(𝛷̂))
[
 
 
 
 𝑏̂𝑀𝐿𝑢𝑛

𝜆̂𝑀𝐿−1
+ 𝑏̂𝑀𝐿𝜆̂𝑀𝐿(𝜆̂𝑀𝐿 − 1)𝑢𝑛

𝜆̂𝑀𝐿−2
+

𝑛

𝜆̂𝑀𝐿
2 −𝜆̂𝑀𝐿𝑢𝑛

𝜆̂𝑀𝐿−1

−𝜆̂𝑀𝐿𝑢𝑛
𝜆̂𝑀𝐿−1 𝑛

𝑏̂𝑀𝐿
2

]
 
 
 
 

 

           = [
𝑉𝑎𝑟(𝑏̂𝑀𝐿) 𝐶𝑂𝑉(𝑏̂𝑀𝐿 , 𝜆̂𝑀𝐿)

𝐶𝑂𝑉(𝑏̂𝑀𝐿 , 𝜆̂𝑀𝐿) 𝑉𝑎𝑟(𝜆̂𝑀𝐿)
]                                                                            (13) 

 

Where 

 

det (𝐼(𝛷̂)) =
𝑛

𝑏̂𝑀𝐿
(𝑢𝑛

𝜆̂𝑀𝐿−1
+ 𝜆̂𝑀𝐿(𝜆̂𝑀𝐿 − 1)𝑢𝑛

𝜆̂𝑀𝐿−2
) + (

𝑛

𝑏̂𝑀𝐿𝜆̂𝑀𝐿
)2 − (𝜆̂𝑀𝐿𝑢𝑛

𝜆̂𝑀𝐿−1
)2          (14) 

 

The (1 −  𝜀)100% confidence intervals for 𝑏̂𝑀𝐿, 𝜆̂𝑀𝐿 are given as 

𝑏̂𝑀𝐿 ± 𝑍𝜀

2

√𝑉𝑎𝑟(𝑏̂𝑀𝐿)  , 𝜆̂𝑀𝐿 ± 𝑍𝜀

2

√𝑉𝑎𝑟(𝜆̂𝑀𝐿)                                                                (15) 

 

respectively, where 𝑍𝜀

2
 is 𝑍𝜀

2
100% the lower percentile of standard normal distribution. 

 

𝐽𝑋 = −𝑏̂𝑀𝐿
−2𝜆̂𝑀𝐿+3 𝜆̂𝑀𝐿

2

2𝜆̂𝑀𝐿
2 𝛤(2𝜆̂𝑀𝐿 − 1)                                                                          (16) 
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To attain the 100(1 − 𝑍𝜀)% two-sided asymptotic approximation CIs for 𝐽𝑋. The delta method 

can be used to approximate the variances of extropy. Let: 

 

𝐷𝐽𝑋
= (

𝜕𝐽𝑋

𝜕𝑏

𝜕𝐽𝑋

𝜕𝜆
)
𝑏=𝑏̂𝑀𝐿,   𝜆=𝜆̂𝑀𝐿

                                                                                                 (17) 

 

Then we find the estimated variance of extropy as follows 

 

𝑉𝑎𝑟(𝐽𝑋̂) = 𝐷𝐽𝑋
 𝐼(𝛷̂)

−1
𝐷𝐽𝑋

𝑇                                                                                                      (18) 

 

Therefore 

 

[𝐽𝑋̂ − 𝑍𝜀

2

√𝑉𝑎𝑟(𝐽𝑋̂) , 𝐽𝑋̂ + 𝑍𝜀

2

√𝑉𝑎𝑟(𝐽𝑋̂)]                                                                                      (19) 

 

3. Bayes inference  

 

In this section, we concentrate on the main objective which is the Bayesian estimation to 

estimate the parameters 𝑏 and 𝜆 and also 𝐽𝑋. For this method we use the squared error and LINEX 

loss functions, it can be defined respectively as follows: 

 

𝐿1(𝛷, 𝛷̂) = (𝛷 − 𝛷̂)2, 𝐿2(𝛷, 𝛷̂) = e(𝜂(𝛷−𝛷̂)) − 𝜂(𝛷 − 𝛷̂) − 1                                               (20) 

 

Let’s choose the prior distribution of 𝑏 and 𝜆. We propose the parameters independently follow 

a Gamma distribution (𝑏~ 𝐺𝑎𝑚𝑚𝑎(α, 𝛽) and 𝜆~ 𝐺𝑎𝑚𝑚𝑎(γ, 𝜏), where α, 𝛽, γ, 𝑎𝑛𝑑 𝜏 are positive 

real constants). Thus, the joint prior distribution 

 

𝑃(𝑏, 𝜆) 𝛼  𝜆γ−1𝑏α−1𝑒−𝜆𝜏−𝑏𝛽;  α, 𝛽, γ, 𝜏 > 0                                                                                     (21) 

 

Hence, The joint posterior distribution 

 

𝑃∗(𝑏, 𝜆|𝑢) =   
𝐿(𝑏,𝜆;𝑢)𝑃(𝑏,𝜆)

∬ 𝐿(𝑏,𝜆;𝑢)𝑃(𝑏,𝜆) 𝑑𝑏 𝑑𝜆
  

                    =
𝜆γ−1𝑏α−1𝑒−𝜆𝜏−𝑏𝛽−𝑏𝑢𝑛

𝜆
∏ 𝑏𝜆 𝑢𝑖

𝜆−1𝑛
𝑖=1

∬𝑒−𝑏𝑢𝑛
𝜆

∏ 𝑏𝜆 𝑢𝑖
𝜆−1𝑛

𝑖=1 𝜆γ−1𝑏α−1𝑒−𝜆𝜏−𝑏𝛽 𝑑𝑏 𝑑𝜆
                    (22) 

 

The joint posterior density can be written as: 

 

𝑃∗(𝑏, 𝜆|𝑢) 𝛼  𝜆2𝑛+γ−1𝑏2𝑛+α−1 ∏ 𝑢𝑖
𝜆−1 𝑛

𝑖=1 𝑒−𝜆(𝜏−𝑢𝑛
𝑏)−𝑏(𝛽−∑ log𝑢𝑖

𝑛
𝑖=1 −𝑢𝑛

𝜆)                                        (23) 

 

 

2.1 Markov Chain Monte Carlo  

The Bayes estimates for determining the posterior mean for the parameters are difficult to get 

unless numerical approximation methods are used.  There are numerous approximation approaches 

in the literature for dealing with this type of situation. We consider the (MCMC) approximation 

approach and the Gibbs sampling algorithm which are popular Bayesian estimating techniques that 

rely on marginal posterior distributions for sampling. Readers may refer to Pradhan et al. (2011), 

Chib et al. (1995) and Al-Labadi et al. (2020).  

The full conditional posterior distributions for 𝑏 and 𝜆 s are as follows: 
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𝑃∗(𝜆|𝑏, 𝑢) 𝛼  𝜆2𝑛+γ−1 ∏ 𝑢𝑖
𝜆−1 𝑛

𝑖=1 𝑒−𝜆(𝜏−𝑢𝑛
𝑏)+𝑏𝑢𝑛

𝜆
                                                                          (24) 

 

𝑃∗(𝑏|𝜆, 𝑢) 𝛼  𝑏2𝑛+α−1𝑒𝜆𝑢𝑛
𝑏−𝑏(𝛽−∑ log𝑢𝑖

𝑛
𝑖=1 −𝑢𝑛

𝜆)                                                                               (25) 

 

Thus, we must use the Metropolis–Hastings (M–H) algorithm to generate the unknown 

parameters because the densities in Equations (24,25) cannot be written as known densities. As a 

result, it is impossible to generate 𝑏 and 𝜆 directly from these densities using conventional methods; 

for more information. The M–H algorithm aims to minimize rejection rates as much as possible. To 

find the (BEs) and generate credible intervals for the required parameters, the M–H algorithm relies 

on selecting the normal distribution. The Gibbs technique, which can be summarized as the 

following algorithm, is as follows: 

 

Step 1: Put the  ML estimators of 𝑏 and 𝜆 as initial values 𝑏0 and 𝜆0. 

Step 2: Let 𝑇 = 1, … . , 𝑁 be the observations generated from the conditional posterior 

distributions for 𝑏 and 𝜆 (24) and (25) respectively.  

 Step 3: Repeat Steps 2 𝑀 times to obtain MCMC samples (𝑏1, 𝜆1),… , (𝑏𝑀, 𝜆𝑀) where 𝑀 

The total amount of cycles needed.). 

Step 4: The Bayes estimator of extropy given in (9) under SE and LINEX are presented as 

follow 

𝐽𝑆𝐸̂ = 
1

𝑀−𝑚
∑ −𝑏𝑡−2𝜆𝑡+3 (𝜆𝑡)2

2(𝜆𝑡)2
𝛤(2𝜆𝑡 − 1)𝑀

𝑡=𝑚+1                                                                           (26) 

 

𝐽𝐿𝑋̂ =
−1

𝜂
 𝑙𝑜𝑔 [

1

𝑀−𝑚
∑ 𝑒

𝜂𝑏𝑡−2𝜆𝑡+3 (𝜆𝑡)2

2(𝜆𝑡)2
𝛤(2𝜆𝑡−1)𝑀

𝑡=𝑚+1 ]                                                                     (27) 

 

where m is the first iterations as burn in period. 

 

4. Simulation 

A simulation study was carried out to assess the performance of the estimating techniques 

created in Sections 2 and 3. First, we get the extropy of k-records for unknown parameters 𝑏, 𝜆  at 

equation (9) by calculating the MLE 𝑏̂𝑀𝐿 and 𝜆̂𝑀𝐿 which we were able to obtain the bias of MLEs 

for various values k . Now, assuming the model parameters α = 2, 𝛽 = 2 and γ = 2, 𝜏 = 2,  500 

observations. Based on these data sets, the maximum likelihood estimates (MLEs) and Bayes 

estimates of the parameters were obtained. For Bayesian estimation, we generated 10,000 

realizations of the Markov chains using the Gibbs and Metropolis–Hastings algorithms. The results 

of the simulation study are summarized in Table 1. We observe that the bias of all estimators 

decrease as the sample size n increases and the bias of bayes estimation under the SE loss function 

is smaller than the MLE.  

  



The Journal of Engineering and Exact Sciences – jCEC 

6 

 

Table 1 – The bias of MLE and BE for Weibull distribution 

k Shape Scale Extropy 

MLE Bayes 
 SEL LX: h=1 

|Bias| |Bias| |Bias| 

6 1.5 2 0.078998995 0.006430693 0.006030694 0.012340693 

7 1.5 2 0.072187881 0.013241806 0.012141809 0.019671806 

8 1.5 2 0.077499109 0.007930578 0.007820571 0.009830578 

9 1.5 2 0.067900459 0.017529228 0.017419221 0.018929228 

6 1.5 2.5 0.078998995 0.047277892 0.04417789 0.051277892 

7 1.5 2.5 0.072187881 0.054089006 0.051289009 0.062289006 

8 1.5 2.5 0.077499109 0.048777778 0.042377772 0.057877778 

9 1.5 2.5 0.06790046 0.058376427 0.054276421 0.061276427 

6 1.6 2 0.118035454 0.016182274 0.011682279 0.019682274 

7 1.6 2 0.106579012 0.027638716 0.022238717 0.027638716 

8 1.6 2 0.115357326 0.018860402 0.013160403 0.018860402 

9 1.6 2 0.09954352 0.034674208 0.031674201 0.034674208 

6 1.6 2.5 0.118035454 0.093583058 0.091783051 0.093583058 

7 1.6 2.5 0.106579012 0.1050395 0.102234394 0.196620395 

8 1.6 2.5 0.115357325 0.096261187 0.091161189 0.126261187 

9 1.6 2.5 0.09954352 0.112074992 0.100074993 0.187874992 
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