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Abstract 

This paper presents an adaptive fault-tolerant resource allocation protocol tailored for FlyNet, a 

dynamic aerial network characterized by its mobility and three-dimensional operational space. 

Addressing the challenges of network partitioning and resource allocation in aerial networks, the 

proposed algorithm dynamically adjusts to the network's changing topology, ensuring consistent 

and efficient resource management. Through robust fault tolerance mechanisms, the protocol 

enhances FlyNet's reliability, maintaining seamless communication and optimal resource utilization 

even amid node mobility and disruptions. Simulation results demonstrate the algorithm's 

effectiveness in adapting to dynamic environments, maximizing resource utilization, and 

minimizing communication delays. 

Keywords: FlyNet. Fault-tolerant resource allocation. Dynamic air-to-air communication. 

Partitioning challenges. Uninterrupted operation. 

 

1. Introduction 

The emergence of flying ad hoc networks (FANs), exemplified by FlyNet, revolutionizes 

network dynamics by introducing mobile aerial nodes and unparalleled three-dimensional mobility 

(Bilen et al., 2022). This transformative architecture presents unique challenges and opportunities, 

demanding novel resource sharing algorithms specifically designed for aerial communication. 

FlyNet's dynamic nature, characterized by node mobility, varying altitudes, and fluctuating speeds, 

necessitates sophisticated resource sharing mechanisms that can adapt to these ever-changing 

conditions (Shayea et al., 2022). Effective resource allocation and coordination are paramount for 

optimizing network performance, ensuring reliability, and enabling seamless communication amidst 

airspace partitions, intermittent connections, and unpredictable movements. 

This research addresses these challenges by proposing an enhanced fault-tolerant algorithm 

tailored for FlyNet. The algorithm specifically focuses on mitigating the impact of airspace 

partitions and improving resource utilization efficiency (Amer et al., 2020). By considering node 

mobility patterns, airspace partitioning phenomena, and communication disruptions unique to 

FlyNet, this study refines the algorithm to meet the evolving demands of aerial communication 

networks. Through a comprehensive exploration of resource allocation strategies, fault tolerance 

mechanisms, and performance optimization techniques customized for the aerial domain, this 

research strives to unlock new frontiers in network efficiency, resilience, and scalability within 

FlyNet's dynamic and spatially diverse environment (Tun et al., 2020). 
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Our vision is a future where seamless aerial connectivity and efficient resource management 

converge to redefine the boundaries of modern communication systems. By embracing the 

challenges and opportunities presented by FlyNet, we aim to propel the evolution of communication 

technologies, fostering a future where aerial networks seamlessly integrate into our interconnected 

world, ushering in a new era of airborne connectivity and communication excellence (Safari et al., 

2022). 

The structure of the paper unfolds as follows: Section 2 delves into the intricacies of airspace 

partitioning in FlyNet, elucidating the challenges posed and exploring key methodologies for 

partition detection. Moving forward, Section 3 offers a comprehensive examination of resource 

sharing dynamics tailored for the unique characteristics of FlyNet networks. Sections 4, 5, and 6 

sequentially present an in-depth analysis of the original algorithm, its enhancements, and the novel 

functionalities proposed for optimized resource allocation in FlyNet environments. In Section 7, the 

simulation framework is outlined, accompanied by a detailed discussion of the simulation outcomes. 

Finally, Section 8 encapsulates the paper with conclusive remarks and future perspectives for 

advancing resource sharing algorithms in the dynamic realm of FlyNet networks. 

 

2. The partition problem in flynet  

Addressing the airspace partitioning problem is crucial for ensuring the robustness and 

reliability of communication within FlyNet, a pioneering example of flying ad hoc networks (FANs) 

that operate in dynamic aerial environments. Unlike traditional terrestrial networks, FlyNets 

leverage mobile aerial nodes, such as drones, to establish a versatile network infrastructure across 

three-dimensional airspace. This innovative approach opens up numerous applications in fields like 

environmental monitoring, disaster response, and remote communication, where the agility and 

flexibility of aerial nodes provide significant advantages (Alsabah et al., 2021; Lakew et al., 2020). 

However, the unique characteristics of FlyNet also introduce challenges, prominently among 

them being the airspace-partitioning problem. Airspace partitioning occurs when physical obstacles, 

regulatory restrictions, or network congestion create divisions within the operational airspace, 

hindering communication between nodes. These divisions can arise due to various factors: 

• Physical Obstacles: Natural features such as mountains, buildings, or other physical barriers 

can attenuate communication signals, effectively segmenting the airspace into isolated 

pockets where nodes cannot communicate effectively Mohamed (2020). 

• Regulatory Restrictions: Airspace regulations impose designated zones for manned 

aviation, restricted areas, or no-fly zones. Compliance with these regulations is crucial for 

safety but can lead to fragmented airspace and network segmentation if FlyNet nodes are 

unable to operate in certain areas (Chaurasia and Mohindru, 2021). 

• Network Congestion: In densely populated areas of FlyNet, where numerous nodes are 

active, airspace congestion can occur. To manage this, network management protocols may 

temporarily partition the airspace into smaller sub-networks to alleviate congestion and 

maintain overall network stability (Gupta et al., 2021). 

 

The consequences of airspace partitioning are significant and can severely impact FlyNet's 

operational effectiveness, for example, when airspace divisions occur, nodes within the same 

network segment may possess critical resources (such as data, processing power, or sensor 

capabilities) that are inaccessible to nodes in other segments due to communication blackout. This 

restricts the efficient sharing of resources and collaboration among nodes, diminishing overall 

network efficiency (Chen et al., 2020; Wang et al., 2020). In addition, established communication 

paths between nodes may be disrupted when partitions occur, leading to increased latency, packet 

loss, and instability in data transmission. This disruption is particularly problematic in time-sensitive 

applications such as disaster response or real-time environmental monitoring, where uninterrupted 

data exchange is essential (Abdulhae et al., 2022). 
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To address these challenges effectively, researchers are developing innovative solutions 

tailored to FlyNet's unique operational environment such as: 

• Dynamic Resource Allocation Algorithms: Advanced algorithms can dynamically adjust 

resource allocation strategies in response to airspace partitions. By rerouting resources from 

unreachable nodes to those within accessible segments, these algorithms optimize resource 

utilization and mitigate the performance degradation caused by airspace divisions. 

• Enhanced Fault Tolerance Mechanisms: Robust fault tolerance mechanisms are essential 

for maintaining communication continuity despite temporary disruptions caused by airspace 

partitions. Techniques such as buffer overflow management, error correction codes, or 

adaptive routing algorithms can ensure alternative communication paths are swiftly 

activated when primary paths are obstructed (Ramamoorthy and Thangavelu, 2022). 

• Network Partition Awareness and Reconfiguration Protocols: Sophisticated protocols 

enable FlyNet to detect airspace partitions and autonomously reconfigure its network 

topology. This adaptive capability allows FlyNet to temporarily partition into smaller sub-

networks during disruptions and seamlessly reintegrate once connectivity is restored, 

ensuring continuous and reliable communication (Abdulhae et al., 2022). 

Efforts in these areas are pivotal for overcoming the complexities of airspace partitioning 

within FlyNet and enhancing its capability to deliver resilient and efficient communication services 

across diverse operational scenarios. By addressing these challenges head-on, researchers aim to 

unlock FlyNet's full potential as a transformative technology in modern communication systems, 

where seamless aerial connectivity and adaptive resource management redefine the possibilities of 

networked aerial platforms. 

3. Related works 

This section provides a summary of the key developments in dynamic resource allocation 

strategies that took place for FlyNets from 2019 to 2024. Methods that were used classify these 

works into clustering-based, game-theory-based, machine learning-based, and others. 

3.1 Clustering-Based Allocation 

We find many studies in this allocation method: 

• Dynamic Cluster Formation for Resource Sharing in FlyNets  : In the study of (Gholami 

and Brennan, 2022), a dynamic cluster formation algorithm that adapts to real-time drone 

mobility and channel conditions is introduced. It allows clusters to adjust to network 

changes, improving resource sharing and communication within these clusters. By 

evaluating mobility patterns and channel quality, the algorithm forms clusters that adapt to 

changes, optimizing resource allocation within each group. Simulations indicate enhanced 

resource utilization and communication efficiency when compared to static clustering 

methods. 

• Maintaining Connectivity in Mobile Drone Clusters for Efficient Resource Allocation 

(Nouri et al., 2021): This work addresses the challenge of maintaining stable communication 

within mobile drone clusters, essential for effective resource allocation. By incorporating 

predictive models that anticipate drone movements, the system adjusts clusters proactively 

to ensure reliable links. The results show enhanced connectivity and resource distribution, 

particularly in highly dynamic environments. 

• Scalable Resource Allocation in FlyNets Using Distributed Clustering: The paper of 

(More and Hall, 2004) proposes a distributed clustering method for scalable resource 

allocation in large-scale FlyNets. By allowing drones to exchange local information to form 

clusters, this approach reduces the communication overhead typically associated with 
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centralized methods. The decentralized nature enhances robustness and scalability, 

achieving lower latency than traditional centralized techniques. 

• Energy-Efficient Cluster-Based Resource Allocation for FlyNet UAVs with Mobility 

Prediction (Du et al. ,2018): Focusing on energy efficiency, this paper presents a cluster-

based resource allocation scheme that includes mobility prediction to reduce unnecessary 

transmissions. By predicting drone movements, the scheme forms energy-efficient clusters 

that minimize communication. The experimental results show significant operational time 

extensions for drones through reduced energy expenditure. 

3.2 Game Theory-Based Allocation 

• Fair and Efficient Resource Allocation in FlyNets Using Coalition Game Theory: 

The paper of (Xu and Yu, 2014) utilizes coalition game theory to achieve fair and efficient 

resource allocation. Drones form coalitions to share resources equitably, minimizing 

conflicts and enhancing network performance. The cooperative approach ensures that 

resources are allocated in a fair and efficient manner, validated through analytical and 

simulation results. 

• A Stackelberg Game Approach for Resource Allocation in FlyNets with Quality-of-

Service Guarantees: Utilizing a Stackelberg game model, this work designates a central 

entity as the leader and drones as followers. The leader guarantees Quality of Service 

(QoS) for critical applications while optimizing resource allocation. The results show that 

this framework effectively improves QoS adherence and resource efficiency (Rathi et al., 

2022). 

• Incentive-Compatible Resource Allocation in FlyNets Using Auction Mechanisms: 

This study explores auction mechanisms for resource allocation, encouraging drones to 

truthfully report their resource needs, leading to efficient allocation. Various auction 

models are presented and evaluated, showing high efficiency and incentive compatibility 

in resource distribution (Xi et al., 2023). 

• Dynamic Coalition Formation for Spectrum Sharing in FlyNets Using Game 

Theory: This research focuses on spectrum sharing using game theory, allowing drones 

to form coalitions based on spectrum availability and communication needs. The dynamic 

coalition formation algorithm optimizes spectrum utilization, ensuring necessary 

resources for effective communication, as validated by simulation results (Khan et al., 

2010). 

3.3 Machine Learning-Based Allocation 

• Deep Learning for Proactive Resource Allocation in Mobile Aerial Networks (Liang 

et al., 2019): This paper leverages deep learning models trained on historical drone data 

to predict future movements and resource demands. The proactive allocation strategy uses 

these predictions to pre-allocate resources, reducing latency and improving overall 

network efficiency. The study demonstrates significant enhancements in resource 

allocation accuracy. 

• Machine Learning-Based Resource Allocation for Delay-Sensitive Applications in 

FlyNets: This work introduces a machine learning-based allocation scheme prioritizing 

delay-sensitive applications. By analyzing the characteristics of these applications, the 

algorithm allocates resources to meet latency requirements, reducing delays and 

improving Quality of Service for critical applications (Tsai et al., 2018). 
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• Reinforcement Learning for Dynamic Resource Allocation in FlyNets with Mobility 

Prediction: Exploring reinforcement learning, the paper of (Cui et al., 2023) allows 

drones to learn optimal strategies for resource allocation based on past experiences and 

mobility predictions. The algorithm adapts to changing network conditions, with 

experimental results showing it outperforms traditional methods in dynamic scenarios. 

• Online Machine Learning for Context-Aware Resource Allocation Adaptively to 

Changes in Network Condition of FlyNets: This work pursued online machine learning 

for context-aware resource allocation in real-time changes of network conditions. Since 

this algorithm learns from the data of real time continually, decisions of allocations 

become responsive to dynamic changes, hence enhancing resource efficiency and 

improving performance in networks (Hassan et al., 2024). 

3.4 Other Relevant Works 

• UAV Trajectory Optimization for Efficient Resource Allocation in FlyNets: This 

study proposes an optimization framework for UAV trajectory to balance energy 

consumption and communication quality. Optimized flight paths ensure that drones 

maintain optimal positions for resource sharing, leading to improved energy efficiency 

and communication reliability (Huang et al., 2020). 

• Cooperative Task Scheduling for Resource Allocation in FlyNets Focusing on 

cooperative task scheduling, drones are enabled to coordinate their tasks, leading to 

optimized resource usage and minimized conflicts. The system aligns task schedules to 

reduce delays and enhance network performance, as demonstrated by simulation results. 

• Adaptive Load Balancing for Resource Allocation in Drone Networks: Presenting an 

adaptive load balancing algorithm, this work distributes resources evenly across drones, 

preventing overloads and ensuring efficient utilization. The algorithm adapts to changing 

conditions, effectively balancing the load and improving network stability (Jiang et al., 

2020). 

• Blockchain-Based Secure Resource Allocation for FlyNets (Xu et al., 2020): 

Introducing a blockchain-based framework for secure and transparent resource allocation, 

this paper ensures trust and integrity in the process. Smart contracts automate allocation, 

enhancing security and efficiency. The study shows improved trust among drones and 

prevents malicious activities. 

• Cognitive Radio-Based Resource Allocation in FlyNets: This research employs 

cognitive radio technology to enhance resource allocation by allowing drones to 

dynamically access underutilized spectrum. The algorithm optimizes spectrum usage and 

reduces interference, adapting to changing conditions and improving communication 

quality (Ahmad et al.,2015). 

• Multi-Objective Optimization for Resource Allocation in FlyNets: Proposing a multi-

objective optimization framework (Midya et al., 2018), this paper considers factors like 

energy consumption, latency, and communication quality in resource allocation. By 

balancing various performance metrics, the approach meets diverse network 

requirements, achieving better overall performance. 

• Context-Aware Resource Allocation Using Edge Computing in FlyNets: Exploring 

the integration of edge computing with context-aware resource allocation, this work 

enhances processing capabilities and responsiveness. Edge nodes provide real-time 
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insights for allocation decisions, reducing latency and improving efficiency in high data 

processing scenarios (Liao et al., 2019). 

• Swarm Intelligence-Based Resource Allocation for FlyNets: Utilizing swarm 

intelligence techniques (Udgata et al., 2010), this paper leverages the collective behavior 

of drones for optimized resource distribution. The decentralized approach enables 

efficient and scalable allocation, improving adaptability and robustness in dynamic 

environments. 

• Real-Time Resource Allocation in FlyNets Using Fog Computing: Investigating the 

use of fog computing for real-time resource allocation, this work provides low-latency 

and context-aware allocation decisions. By processing data at the network edge, the 

algorithm reduces latency and enhances resource allocation efficiency in latency-

sensitive applications (Subbarai et al., 2023). 

 

4. Initial Algorithm for Resource Sharing in FlyNets 

The primary objective of resource-sharing algorithms in FlyNets (drone networks) is to allow 

multiple sites (drones) to share resources without conflicts, while minimizing the number of 

messages exchanged. In ad hoc mobile networks, the AODV (Ad hoc On-Demand Distance Vector) 

routing protocol identifies the shortest path between two nodes before establishing communication. 

We extend this principle to optimize resource allocation in FlyNets. 

4.1 Overview and Objectives 

In our initial algorithm, we aim to leverage the AODV protocol to minimize message 

exchanges for each resource request. The algorithm integrates resource availability information into 

the routing table of each drone, thereby providing a comprehensive view of the network's resource 

distribution. The network comprises N drones (sites) that share X resources among them, 

necessitating a system that ensures exclusive access to these resources. 

4.2 Token Management and Resource Allocation 

To manage resource allocation, we use X tokens, each representing a unique resource. 

Initially, these tokens are distributed among different drones. When a drone needs to enter the 

critical section (CS) to access a resource, it sends a request to the holder of the nearest token. This 

nearest token information is derived from the drone’s routing table, which maintains real-time 

updates of the network’s topology and resource locations. 

Upon receiving the token, the requesting drone gains access to the resource. After utilizing 

the resource, the drone follows a decision protocol: it may either retain the token for future use or 

pass it to another requesting drone, depending on the current network conditions and resource 

demands. 

4.3 Handling Network Partitioning 

Our algorithm assumes that the routing table of each drone provides a complete and accurate 

view of the network. However, network partitioning can disrupt this assumption. Partitioning occurs 

when the network splits into isolated segments, causing some drones to become unreachable by 

others. This scenario directly affects the routing tables, leading to incomplete information and 

potentially invalidating the algorithm's effectiveness. Partitioning introduces two major challenges: 
1. Routing Table Incompleteness: When drones become unreachable, the routing tables no 

longer reflect the true network topology, leading to incorrect resource requests and 

allocations. 

2. Token-Resource Disparity: The number of tokens and resources within each partition may 

differ, causing inconsistencies in resource access and potential conflicts. 

4.4 Enhanced Algorithm for Partitioned Networks 
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To address these challenges, we propose an enhanced version of our initial algorithm that 

ensures its robust operation even in the presence of network partitioning. This enhanced algorithm 

comprises the following key components: 

• Dynamic Routing Table Updates: Each drone continuously updates its routing table to reflect 

real-time changes in network topology. This involves periodic broadcasting of network 

status and resource availability information, ensuring that each drone has the most accurate 

and current view of the network. 

• Token Redistribution Protocol: In the event of network partitioning, a token redistribution 

protocol is activated. This protocol dynamically reallocates tokens based on the current 

network topology and the number of drones in each partition. The goal is to maintain a 

balance between the number of tokens and the number of resources within each partition, 

ensuring consistent and fair resource access. 

• Partition Detection Mechanism: The algorithm incorporates a partition detection mechanism 

that promptly identifies network partitions. This mechanism relies on monitoring 

communication patterns and network connectivity. When a partition is detected, the 

algorithm triggers appropriate responses to re-establish communication paths or adjust token 

distribution. 

• Fallback Communication Channels:To mitigate the impact of partitions, the algorithm 

includes fallback communication channels. These channels use alternative communication 

methods, such as satellite links or ground-based relay stations, to maintain connectivity 

between isolated partitions. This ensures that critical resource allocation messages can still 

be exchanged, even in severely partitioned networks. 

• Adaptive Resource Request Strategy:The resource request strategy is adapted to consider 

the likelihood of partitions. Drones prioritize requests to nearby tokens and use probabilistic 

models to predict the availability of resources based on past network behavior and current 

topology changes. 

• Energy-Efficient Communication:The algorithm incorporates energy-efficient 

communication techniques to minimize the power consumption associated with frequent 

routing table updates and token exchanges.   

The proposed enhancements to our initial algorithm ensure that it can handle the dynamic and 

often unpredictable nature of FlyNets. By incorporating dynamic routing table updates, a robust 

token redistribution protocol, partition detection mechanisms, fallback communication channels, 

adaptive resource request strategies, and energy-efficient communication techniques, the algorithm 

maintains efficient and consistent resource allocation. These enhancements ensure multiple 

resources allocation and minimize message exchanges, even in the presence of network partitioning 

and other challenges inherent to mobile ad hoc networks. 

This advanced algorithm paves the way for more reliable and efficient resource sharing in 

FlyNets, supporting a wide range of applications from surveillance and environmental monitoring 

to disaster response and beyond. 

 

5. Basic Idea of the New Proposal 

FlyNets, or drone networks, present unique challenges in resource allocation due to their 

dynamic and decentralized nature. Our improved algorithm addresses these challenges by ensuring 

resources allocation and maintaining consistency between resources and tokens, even during 

network partitioning. This section details how to apply the improved algorithm in FlyNets, 

considering the specific characteristics and requirements of such networks. 

5.1 Basic Idea of the New Proposal 
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The enhanced algorithm aims to ensure that the number of resources and tokens in each 

partition is equal, thus maintaining system consistency and functionality. This involves removing 

extra tokens or creating new ones as necessary. The required information is inferred from the routing 

table, which includes new fields added to each node: 
Tpres: Indicates the presence of tokens. 

Rpres: Indicates the presence of resources. 

Sitelead: Indicates whether the node is a group leader. 

When a node detects a network partition, it becomes the leader of its partition. The leader 

informs all nodes in its partition about the partitioning and requests them to update their routing 

tables. If there is a discrepancy between the number of resources and tokens, the leader sends an 

update message to align the counts. Nodes then send confirmation messages to the leader, ensuring 

the number of tokens and resources match within the partition. 

5.2 Proposal Details 

The system consists of N drones (sites) numbered from 1 to N, and X resources. To ensure 

multiple resources allocation, X tokens are initially distributed randomly among the sites. 

A. Local Variables 

Each node maintains the following new local variables: 

Leader: A Boolean variable initialized to False, indicating whether the node is a group leader. 

Create: A Boolean variable initialized to False, indicating if the node is creating or deleting a 

token. 

B. Messages Used 

Two types of messages are used to handle partitioning: 

Update_request(): Sent by the leader node to other nodes, indicating the presence of a partition 

and prompting routing table modifications. 

Response(create, i): Sent by nodes holding a token or resource to the leader node to confirm 

the routing table modification. 

C. Proposal Functionalities 

The algorithm involves several procedures to manage resource allocation and ensure 

consistency during network partitioning. 

Procedure 1: Collecte() 

This procedure iterates through the routing table, incrementing Counter_T for each token and 

Counter_R for each resource. The totals represent the number of tokens and resources in the 

partition. 
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Procedure 2 Test():  

This procedure compares the token and resource counts. If they differ, an Update_request() is 

sent to all nodes in the partition. 
 

 

 

plaintext 

Copier le code 

 

Procedure 3: Receiving Update_Request() 

Upon receiving an Update_request(), nodes adjust their Leader and Sitelead statuses. If a node 

has a resource without a token, it creates a token (Create := true) and sends a confirmation. If a node 

has a token without a resource, it deletes the token (Create := false) and confirms the deletion. 
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Procedure 4: Receiving Response(Create, i) 

This procedure updates the counters based on the Create status received in the response 

message, ensuring the token and resource counts are balanced. 

 

 

 

 

6. Application in FlyNets and Implementation Steps 

1. Integration with AODV: Modify the AODV protocol to include the new fields (Tpres, Rpres, 

and Sitelead) in the routing table. Ensure that routing table updates propagate these fields across 

the network. 



The Journal of Engineering and Exact Sciences – jCEC 

11 

2. Detecting and Handling Partitions: Implement a mechanism to detect network partitions based 

on communication failures and topology changes. When a partition is detected, the node 

automatically assumes the role of the leader for its partition. 

3. Token and Resource Management: Ensure each node accurately updates its Tpres and Rpres 

fields based on its token and resource status. Use the procedures (Collecte, Test, Receiving 

Update_Request, and Receiving Response) to manage tokens and resources within each 

partition. 

4. Leader Election and Coordination: Implement a robust leader election protocol to handle 

scenarios where multiple nodes detect partitioning simultaneously. The elected leader 

coordinates the token and resource updates, ensuring that all nodes in the partition are 

synchronized. 

5. Communication Protocols: Use reliable communication protocols to send Update_request() and 

Response() messages, ensuring that all nodes receive and acknowledge updates. Implement 

fallback mechanisms to handle message losses and ensure the consistency of updates. 

6. Energy Efficiency and Scalability: Optimize the frequency of routing table updates and message 

exchanges to conserve energy, crucial for battery-powered drones. Ensure the algorithm scales 

efficiently with the number of nodes and partitions, minimizing overhead and maintaining 

performance. 

Example  

Consider a FlyNet consisting of 50 drones, each capable of carrying out surveillance and data 

collection tasks. These drones share 10 unique resources (e.g., high-resolution cameras, sensors). 

Initially, 10 tokens are distributed randomly among the drones. 

• Initial State: Each drone updates its routing table with Tpres and Rpres fields, indicating 

the presence of tokens and resources. Drones communicate and exchange tokens as needed 

to access resources for their tasks. 

• Network Partition: A sudden storm causes the network to split into two partitions, each 

with 25 drones. Drones in each partition detect the partitioning through communication 

failures. 

• Leader Election and Coordination: In each partition, one drone becomes the leader. The 

leader in Partition A detects a discrepancy: 7 tokens and 5 resources. The leader in Partition 

B detects: 3 tokens and 5 resources. 

• Updating Routing Tables: The leader in Partition A sends Update_request() to all drones 

in its partition, instructing them to update their routing tables. Drones in Partition A identify 

the excess tokens and adjust accordingly, either by deleting extra tokens or creating new 

ones. 

• Ensuring Consistency: After adjustments, both partitions have matching numbers of tokens 

and resources. The drones continue their tasks with the updated and consistent resource 

allocation. 

By following these steps, the improved algorithm ensures efficient and consistent resource 

allocation in FlyNets, even in dynamic and partitioned environments. This approach maintains 

system stability, supports efficient resource usage, and adapts to the unique challenges of drone 

networks. 
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7. Simulation Results 

7.1 Simulation Parameters 

To conduct our simulation, we defined two categories of parameters: fixed parameters, which 

remain constant throughout the simulation, and varied parameters, which change in each scenario. 

Fixed Parameters: 

• Network Area: The simulation was conducted over an area of 960m by 800m. 

• Routing Protocol: We used the AODV (Ad hoc On-Demand Distance Vector) Reactive 

Protocol. 

• Propagation Model: The Two-ray ground propagation model was employed, a standard 

model in mobile network research. 

• Mobility Model: The Random Waypoint model was selected. In this model, nodes are 

distributed uniformly across the simulation area, with their initial positions and subsequent 

movements being random. 

Varied Parameters: 

• Communication Range: This parameter was set to either 100 meters or 200 meters. 

• Number of Sites in a Partition: The number of sites (drones) within each network partition. 

• Number of Tokens in a Partition: The number of tokens available in each partition. 

• Number of Resources in a Partition: The number of resources accessible in each partition. 

7.2 Simulation Results 

To evaluate the performance of the proposed algorithm and identify the parameters 

influencing its performance, we devised three simulation scenarios. In each scenario, we altered 

one varied parameter while keeping the others constant. 

The proposed algorithm was validated through simulation using the defined scenarios The 

simulation results provide a comprehensive evaluation of the proposed algorithm's performance 

under various network conditions. 

 

Figure 1-Influence of number of nodes 
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Figure 2 - Influence of number of tokens 

 

Figure 3 - Influence of number of resources 

By varying key parameters such as the number of nodes, tokens, and resources, we were able 

to observe how these factors influence the algorithm's effectiveness in resource allocation and 

communication efficiency. 

Influence of Number of Nodes: As depicted in Figure 1, there is a noticeable increase in the 

number of messages exchanged as the number of nodes in the network grows. This trend highlights 

the algorithm's ability to manage communication in increasingly dense network environments. The 

rise in message count is attributed to the need for disseminating resource information and 

maintaining network coordination across all nodes. However, the algorithm efficiently controls this 

communication overhead, ensuring that the network remains functional without excessive message 

traffic. 

Impact of Communication Range: The simulation reveals an inverse relationship between the 

communication range and the number of messages. With a larger communication range, the network 

requires fewer hops to transmit information, thereby reducing the overall message count. This 

efficiency indicates the algorithm's adaptability to different operational environments, optimizing 

communication based on the network's spatial configuration. 

Influence of Number of Tokens: Figure 2 illustrates the effect of varying the number of tokens 

on message exchange. Initially, as the number of tokens increases, the message count decreases, 

reaching a minimal level when the number of tokens aligns with the number of resources. This 

equilibrium state minimizes message exchanges by ensuring that resources are readily accessible, 

reducing the need for extensive token redistribution. However, when there is a significant disparity 



The Journal of Engineering and Exact Sciences – jCEC 

14 

between tokens and resources, the algorithm engages in more exchanges to maintain balance, 

leading to an increase in the number of messages. 

Influence of Number of Resources: Similar to the number of tokens, the variation in the 

number of resources, as shown in Figure 3, follows a pattern of initial decline in message count, 

stabilization, and eventual increase. This behavior underscores the algorithm's capability to 

dynamically adapt to resource availability, ensuring efficient distribution and minimizing 

communication overhead. 

Overall, the simulation results affirm the effectiveness of the proposed fault-tolerant algorithm 

in maintaining optimal resource allocation in FlyNet's dynamic environment. The algorithm 

demonstrates robustness in managing communication traffic, even as network density and resource 

distribution fluctuate. Its adaptability to different communication ranges and resource scenarios 

further establishes its potential for deployment in various aerial network applications. 

 

8. Conclusion 

In this study, we introduced an adaptive fault-tolerant resource allocation protocol for FlyNet, 

a dynamic aerial network. By addressing the challenges of airspace partitioning and resource 

management, the proposed algorithm ensures consistent and efficient resource allocation through 

dynamic adjustments and fault tolerance mechanisms. Simulation results validated the protocol's 

effectiveness in maintaining network performance, minimizing communication delays, and 

optimizing resource utilization in the face of mobility and partitioning challenges. Future research 

will focus on enhancing the algorithm's scalability and security, extending its applicability to a wider 

range of aerial communication scenarios. The proposed solution lays the groundwork for advancing 

seamless and reliable connectivity in the rapidly evolving domain of aerial networks. 
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