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Abstract  

This study aims to examine the impact of utilizing coal bottom ash (CBA) sourced from an inactive 

power plant on the fresh and hardened properties of lightweight self-compacting concrete 

(LWSCC). To evaluate the workability of the LWSCC mixtures, slump flow, L-box, and sieve 

segregation tests were performed. The mechanical and physical properties were assessed through 

dry density, compressive strength and ultrasonic pulse velocity (UPV) tests. A total of five concrete 

mixes were developed: a control mix and four additional mixtures in which natural coarse aggregate 

was fully substituted with coal bottom ash aggregate (CCBA). Additionally, Portland cement was 

partially replaced with coal bottom ash powder (CBAP) at levels of 15%, 20%, and 25%. The results 

indicated that the use of CBA as a coarse aggregate enhanced the workability of LWSCC, though 

workability decreased as the proportion of CBAP increased. Nonetheless, the workability of all 

mixes remained compliant with the standards specified by the French Association of Civil 

Engineering (AFGC). Minimal variations in dry density and compressive strength were observed 

with the incorporation of CBA; however, these values remained within the acceptable limits for 

structural lightweight concrete. Furthermore, the UPV test demonstrated favorable durability for all 

LWSCC mixtures. Strong linear correlations were identified among the various measured 

properties, reinforcing the conclusion that CBA serves as an effective replacement for natural coarse 

aggregate. Moreover, the use of 15% CBAP as a partial substitute for Portland cement proved to be 

a feasible option for producing sustainable LWSCC. 

Keywords: Coal bottom ash, Lightweight self-compacting concrete, Workability, physical-

mechanical performance, Sustainability. 
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1. Introduction  

The growing demand for concrete, driven by population growth and expanding development, 

is accelerating the depletion of natural resources (Agha et al., 2024). The rate at which materials are 

extracted for concrete production far surpasses the natural replenishment of these resources. This 

extensive reliance on raw materials within the construction sector poses significant challenges in 

terms of sustainability and economic efficiency (Ankur & Singh., 2024). In the 21st century, 

addressing waste reduction and advancing eco-friendly technologies has become imperative. The 

cement and concrete industries, in particular, face increasing criticism due to their substantial 

contribution to global CO₂ emissions. These emissions largely stem from the energy-intensive 

production of Portland cement and the large-scale extraction of natural aggregates (Aygun et al., 

2024). Such practices not only exacerbate environmental degradation but also raise serious concerns 

regarding the long-term sustainability of finite natural resources. In response to these challenges, it 

is crucial to explore alternative materials that promote sustainable development by reducing the 

consumption of natural resources and safeguarding the interests of future generations. Over the 

years, various industrial and agricultural wastes have been incorporated into concrete formulations 

to mitigate environmental impacts and lower production costs  (Hamada et al., 2022).   

These waste materials can function as either binders or aggregates in concrete mixtures. 

Among these, coal bottom ash (CBA) emerges as a promising by-product available in substantial 

quantities worldwide, with potential applications in civil engineering (Aygun et al., 2024, Hamada 

et al., 2022, N. Singh et al., 2020). CBA is generated as a waste by-product during the combustion 

of coal in power plants, which produce significant volumes of ash (Zainal Abidin et al., 2015). The 

disposal of this ash presents major environmental challenges, as it is often deposited in landfills, 

exacerbating ecological concerns. 

 In Algeria, the issue is particularly pressing due to over 50 years of coal mining, resulting in 

the accumulation of slag heaps with an estimated volume of approximately 3.7 million cubic meters 

(Zaouai et al., 2020). The incorporation of CBA into concrete production offers a cost-effective and 

environmentally sustainable solution for waste management. Simultaneously, it helps conserve 

natural resources and advances efforts toward sustainable development. 

       The existing literature indicates that coal bottom ash (CBA) can be effectively utilized in 

concrete, with numerous studies demonstrating satisfactory mechanical properties, including 

compressive, tensile, and flexural strength (Park et al., 2009, Rafieizonooz et al., 2016, Kim & Lee, 

2011, Ankur & Singh., 2024.; M. Singh & Siddique, 2014; N. Singh et al., 2018, Kurama et al., 

2009, Mangi et al., 2019). However, research exploring CBA's potential as both a lightweight coarse 

aggregate and a partial cement replacement in self-compacting concrete (SCC) remains limited. 

Most investigations have concentrated on its application as a fine aggregate (Farhan Hamzah et al., 

2015; Hamzah et al., 2016; Ibrahim et al., 2015; Jamaluddin et al., 2016.; Zainal Abidin et al., 

2014a, 2015b , Kumar & Singh, 2020; Meena et al., 2024; Raju et al., 2022). 

     Self-compacting concrete (SCC) is characterized by its high workability, allowing it to 

flow effortlessly through densely reinforced structures under its own weight, filling voids without 

segregation or material separation. Its stability is achieved through a high paste content and 

optimized particle distribution, eliminating the need for mechanical compaction (Okamura & Ouchi, 

2003). A distinguishing feature of SCC compared to conventional concrete is its increased density, 

largely due to the high quantities of Portland cement, chemical admixtures, and aggregates used. 

     To address the environmental and sustainability challenges associated with SCC, the 

partial or complete replacement of natural aggregates with lightweight aggregates (LWA), along 

with the incorporation of mineral admixtures from industrial by-products, offers a practical solution. 

This approach facilitates the development of lightweight self-compacting concrete (LWSCC) 

(Nahhab & Ketab, 2020; Uysal & Yilmaz, 2011) LWSCC combines the advantages of lightweight 

materials in the hardened state with the desirable fresh-state properties of SCC (Renukuntla & 

Murthi, 2024). Replacing normal-weight gravel with lightweight aggregates in SCC formulations is 

a widely adopted strategy for producing LWSCC (Al-Kabi & Awad, 2024; N. Hilal et al., 2024). 
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     Previous studies have extensively explored the incorporation of various natural and 

artificial lightweight aggregates, as well as industrial and agricultural waste materials, in self-

compacting concrete (SCC) (Ting et al., 2019). For example, Hwang & Hung, (2005) investigated 

the use of fine sediment from reservoirs as a replacement for coarse aggregates in SCC. Similarly, 

Bogas et al., (2012) and Nahhab and Ketab (Nahhab & Ketab, 2020) examined the inclusion of 

expanded clay as a coarse aggregate. Several researchers, including (Topçu & Uygunoǧlu, 2010, 

Uygunoǧlu & Topçu, 2009), Kurt et al., 2016), have studied the use of pumice as a lightweight 

coarse aggregate. Furthermore, Wu et al., (2009)  and  Lo et al., (2007) employed expanded shale 

as a lightweight aggregate (LWA) in SCC.Dolatabad et al., (2020) analyzed the effects of 

incorporating lightweight expanded clay aggregate (LECA), scoria, and perlite on the fresh and 

hardened properties of lightweight self-compacting concrete (LWSCC). Agricultural waste 

materials have also been integrated into SCC, as demonstrated by Kanadasan et al. (Kanadasan & 

Razak, 2014), Ting et al., (2020), and   Hilal et al., (2021), who utilized palm oil clinker, oil palm 

shell, and walnut shells as aggregate replacements. The use of expanded polystyrene beads as 

lightweight aggregates has also been investigated by Medher et al., (2021) and  Hilal et al., (2021). 

Additionally, Kumar et al., (2024) explored the application of sintered fly ash aggregate (SFAA) as 

a complete substitute for natural coarse aggregates to produce environmentally friendly LWSCC 

mixes.  

This study aimed to evaluate the feasibility of utilizing Algerian coal bottom ash (CBA) as a 

replacement for coarse aggregate and as a partial substitute for cement in the production of 

lightweight self-compacting concrete (LWSCC). The research focused on both the fresh properties 

namely, slump flow, filling capacity, and stability and the hardened properties, including 

compressive strength, dry density and ultrasonic pulse velocity (UPV). 

 

2. Materials and methods 

2.1 Materials 

Cement: In this study, Ordinary Portland Cement (CEM I 42.5 N), which complies with both 

the Algerian standard NA 442 and the European standard EN 197-1, was utilized. The chemical 

composition of the cement is presented in Table 1. 

 

 Table 1 - The chemical compositions of the used cement and CBA 

 

 

 

 

 

 

 

 

Aggregate: The natural fine aggregate (NFA 0/3) used in this study was river sand sourced 

from the Bechar region in Algeria. The coarse aggregate (NCA) was obtained from crushed 

limestone from a quarry in Bechar, available in two size ranges: 3/8 and  8/15 mm. Coal bottom ash 

(CBA), collected from a decommissioned thermal power plant in Algeria, was manually crushed 

and further processed using a jaw crusher. After sieving, the CBA was classified into coarse 

aggregate fractions of 3/8 and 8/15 mm. Additionally, the finer portion of the CBA that passed 

through an 80 µm sieve (CBAP) was used as a partial replacement for cement (Figure 1). 

 

  

Composition     
(%) 

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O LOI 

Cement 18.91 4.30 4.74 60.33 3.82 2.29 0.17 0.84 <0.5 

CBA 44.78 15.79 22.90 2.47 1.43 4.37 0.16 2.38 1.2 
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Figure 1 – Production of CBA aggregate. 

 

 

The physical properties of the aggregates are provided in Table 2, while their particle size 

distribution is illustrated in Figure 2. The chemical composition of the coal bottom ash (CBA) was 

determined through X-ray fluorescence (XRF) spectroscopy, with the results summarized in Table 

1. The analysis reveals that silica (SiO₂), iron oxide (Fe₂O₃), and alumina (Al₂O₃) are the 

predominant constituents of CBA, collectively accounting for 83.47% of its total composition. 

According to the ASTM C618 standard, this composition categorizes CBA as a Class "F" pozzolanic 

material. A comprehensive overview of the chemical properties of CBA can be found in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Aggregates granulometric curves. 
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Table 2 - Physical and mechanical properties of used aggregate 

Properties 
0/3 

NFA 

3/8 

NCA 

3/8 

CCBA 

8/15 

NCA 

8/15 

CCBA 

Bulk density (g/cm3) 1.6 1.39 0.70 1.40 0.66 

Absolute density (g/cm3) 2.5 2.66 1.93 2.67 1.81 

Fineness modulus 2.53 / / / / 

Sand equivalent (%) 80.3 / / / / 

Water absorption (%) 1.62 0.85 7 0.95 8 

Los Angeles coefficient (%) / 21.56 27.6 20.72 27.9 

 

 

Figure 3 presents a scanning electron microscopy (SEM) image of the coal bottom ash (CBA), 

which reveals irregular and porous particles with a complex surface texture. Additionally, energy 

dispersive spectroscopy (EDS) was employed to analyze the elemental composition of CBA at a 

microscopic level. As depicted in Figure 4, the primary elements identified in CBA include oxygen, 

aluminum, and silicon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 - CBA Scanning electron microscope image. 

 

 

 

 

 

 

 

 

 

 

Figure 4 - CBA EDS analysis. 
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Superplasticizer and mixing water : To achieve optimal workability, the superplasticizer 

"MAX SUPERFLOW S180," manufactured by the Algerian company "Technachem," was utilized 

in this study. This superplasticizer complies with NF EN 934-2 standards. The mixing water was 

obtained from the treated drinking water supply system of Bechar. 

 

2.2. Mix proportion of SCC 

 Following the guidelines established by  (AFGC, 2008), an initial reference mix without coal 

bottom ash was prepared. Subsequently, the natural coarse aggregate was completely replaced with 

coal bottom ash (CBA), and coal bottom ash powder (CBAP) was incorporated in varying 

proportions, ranging from 15% to 25% in 5% increments. The coal bottom ash used in these mixes 

was in a Saturated Surface Dry (SSD) condition. The different mixes were designated as CSCC-0%, 

CSCC-15%, CSCC-20%, and CSCC-25%, reflecting the percentage of CBAP replacement. The 

quantities of materials used in each mix are detailed in Table 3. 
 

 

 

Table 3 - SCC composition. 

 

 

  

 

2.3 Tests on fresh and mechanical properties  

To confirm the classification of the concrete mixture as self-compacting concrete (SCC), its 

fresh properties were assessed, as shown in Figure 5. The evaluations included the slump flow test, 

the L-box blocking ratio test, and the segregation resistance test. All testing procedures were carried 

out in compliance with the standards established by the AFGC. 

 

 

 

 

 

Composition RSCC 
CSCC-

0% 

CBASCC-

15% 

CBASCC-

20% 

CBASCC-

25% 

Cement (kg/m3) 520 520 442 416 390 

CBAP (kg/m3)  / 78 104 130 

NFA (kg/m3) 900 900 900 900 900 

NCA 3/8 (kg/m3) 150 / / / / 

CCBA3/8 (kg/m3) / 111.36 111.36 111.36 111.36 

NCA 8/15 (kg/m3) 580 / / / / 

CCBA (kg/m3)  394.65 394.65 394.65 394.65 

Water (kg/m3) 256 256 260 260 260 

Superplasticizer (%) 2% 2% 2.1% 2.3% 2.4% 

W/C 0.48 0.48 0.50 0.50 0.50 
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Figure 5 - Fresh state testes: (a) Slump flow test, (b) L-Box test, (c) Sieve stability test. 

 

The hardened properties of the concrete were evaluated by determining the dry density in 

compliance with EN 12390-7. Compressive strength was measured after 7, 28, and 91 days of 

curing, in accordance with EN 12390-3 standards. Additionally, ultrasonic pulse velocity (UPV) 

was assessed using the direct transmission method, as stipulated in EN 12504-4 (Figure 6). 

 

 

 

 

 

 

 

 

 

 
Figure 6 - Hardened state testes: (a) Compressive strength, (b) Dry density, (c) UPV test. 

 

3.  Results and discussion 

3.1 SCC fresh state results 
The experimental results for fresh-state SCC revealed that all concrete mixtures exhibited satisfactory 

workability and stability, meeting the requirements set by AFGC standards. The slump flow values ranged 

from 727 mm to 766 mm (Figure 7). The incorporation of coal bottom ash (CBA) as a coarse aggregate in a 

saturated surface dry (SSD) condition improved the workability relative to the reference mix. Nevertheless, 

as the proportion of coal bottom ash powder (CBAP) increased, a notable decrease in the flowability of the 

mixtures was observed. This reduction in slump flow is attributed to the high porosity of CBA, which resulted 

in increased fluid absorption as its content increased (Zainal Abidin et al., 2014).  
 

Figure 7 - Effect of CCBA and CBAP on SCC slump flow. 

 
 

C 
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Regarding the passing ability, the L-box blocking ratio ranged from 0.82 to 0.94 (Figure 8), indicating 

a slight decline with the use of CBA as a coarse aggregate and higher levels of CBAP incorporation. This 

decrease is primarily due to the irregular shape of the CBA particles, which increases inter-particle friction, 

consequently reducing the viscosity of the SCC mixtures (Jamaluddin et al., 2016.; Zainal Abidin et al., 

2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Effect of CCBA and CBAP on SCC passing ability. 

 

The results of the sieve stability test ranged from 4% to 9.24% (Figure 9), displaying a trend 

consistent with that observed in the L-box test. Sieve segregation decreased with an increase in the 

CBA content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

Figure 9 - Effect of CCBA and CBAP on SCC segregation resistance. 

 

3.2 SCC Hardened state results 

Compressive strength: The compressive strength results for concrete samples at 7, 28, and 90 

days are illustrated in Figure 10. The data reveals that the use of CBA as a coarse aggregate led to 

more porous concrete, which resulted in an approximate 14% reduction in compressive strength at 

28 days. Additionally, an increase in the proportion of coal bottom ash powder (CBAP) in the mix 

further reduced compressive strength. Notably, at 90 days, the CBASCC-15% mix attained nearly 

the same compressive strength as the CSCC-0% mix, which may be attributed to the initially slower 

reactivity of CBAP, with more pronounced strength gains occurring over longer curing durations 

(Cheriaf et al., 1999; N. Singh et al., 2020).  
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These findings align with previous research outcomes (Kim & Lee, 2011; Kumar & Singh, 

2020; Meena et al., 2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 10 - Effect of CCBA and CBAP on SCC compressive strength.  

 

Dry density:  Figure 11 presents the dry density of concrete after 28 days of curing. The results 

indicate that the incorporation of CBA as both an aggregate and a partial cement replacement in 

SCC reduces the dry density to 1811.85 kg/m³, which is below the 2000 kg/m³ threshold, thereby 

classifying it as lightweight self-compacting concrete. This decrease in density is attributed to the 

lower specific gravity of CBA aggregates compared to conventional aggregates (Raju et al., 2022; 

M. Singh & Siddique, 2014). 

 

Figure 11 - Effect of CCBA and CBAP on the dry density of SCC. 

 

Ultrasonic pulse velocity: The pulse velocity test results are depicted in Figure 12. After 28 

days of curing, the pulse velocity values decreased from 4696 m/s to 3058 m/s when coal bottom 

ash was used to replace both the coarse aggregate and cement in SCC. These results suggest that the 

concrete quality conforms to the standards outlined in ASTM C597. The findings are consistent 

Upper limit for lightweight concrete < 

2000 kg/m3 
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with the compressive strength results observed after 28 days of curing. The reduced pulse velocity 

values are attributed to the porous nature of the coal bottom ash (Kumar et al., 2024; Meena et al., 

2024). 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

Figure 12 - Ultrasonic pulse velocity of SCC at 28 days. 

           

              Dry density, compressive strength and UPV correlations:  In this study, a correlation was 

established between the concrete density and both its compressive strength and ultrasonic pulse 

velocity (UPV) for SCC mixtures after 28 days of curing, as shown in Figure 13. These relationships 

were substantiated by high R² values of 0.93 for compressive strength and 0.96 for UPV, indicating 

a strong linear association. The findings reveal that compressive strength decreases as dry density 

decreases, while it increases with higher density. Additionally, Figure 14 illustrates a linear 

relationship between dry density and UPV, demonstrating that UPV decreases as the dry density 

decreases and increases as the density rises (Atyia et al., 2021). 

 

 

Figure 13 - Dry density and compressive strength correlation. 
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Figure 14 - Correlation between dry density and UPV. 

 

4 Conclusions 

            This study assesses the influence of coal bottom ash (CBA) on the fresh properties and 

mechanical performance of self-compacting concrete (SCC). Based on the experimental findings, 

the following conclusions can be drawn: A) The evaluation of fresh concrete properties indicates 

that the use of CBA as a coarse aggregate enhances the workability of SCC. However, substituting 

cement with CBA powder leads to a reduction in workability as the replacement level increases 

from 15% to 25%. Despite this decline, the resulting workability remains adequate for SCC 

applications. - Oven dry density measurements demonstrate that incorporating CBA as both a 

lightweight aggregate and a partial cement replacement reduces the dry density of SCC to below 

2000 kg/m³, thereby meeting the classification criteria for lightweight self-compacting concrete as 

specified by EN 206-1 standards. B) The inclusion of CBA as a lightweight aggregate in SCC led 

to reductions in both compressive strength and ultrasonic pulse velocity (UPV) after 28 days of 

curing, primarily due to the porous nature of CBA. However, replacing 15% of Portland cement 

with CBA powder produced compressive strength values comparable to the control mix (CSCC-

0%) over time, which is attributed to pozzolanic activity observed at 90 days. Thus, the reduction 

in compressive strength and UPV is associated with the reduced density of the concrete. C) A strong 

correlation was observed between compressive strength and UPV with dry density, as evidenced by 

R² values of 0.93 and 0.96, respectively. This research highlights the potential of reusing CBA waste 

as both a coarse aggregate and a cement substitute in SCC to mitigate environmental impact. The 

findings suggest that CBA is a promising material for concrete production; however, further studies 

are recommended to explore its long-term effects and other mechanical and durability-related 

properties. 
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