
The Journal of Engineering and Exact Sciences – jCEC, Vol. 10 N. 09 (2024)
journal homepage: https://periodicos.ufv.br/jcec

eISSN: 2527-1075
ISSN: 2446-9416

1

A novel approach for solving bi-level mono-objective and multi-objective

programming problems using evolutionary algorithms

Article Info:

Article history: Received 2024-09-09 / Accepted 2024-12-17 / Available online 2024-12-17

doi: 10.18540/jcecvl10iss9pp20661

Wafa Bouguern

ORCID: https://orcid.org/0000-0002-5565-3581

Mathematical Analysis and Applications Laboratory, Department of Mathematics, University

Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser 34030, Algeria

E-mail: wafa.bouguern@univ-bba.dz

Smail Addoune

ORCID: https://orcid.org/0000-0001-9158-9874

Mathematical Analysis and Applications Laboratory, Department of Mathematics, University

Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser 34030, Algeria

E-mail: smail.addoune@univ-bba.dz

Hanene Debbiche

ORCID: https://orcid.org/ 0009-0008-1291-173X

Mathematical Analysis and Applications Laboratory, Department of Mathematics, University

Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El Anasser 34030, Algeria

E-mail: hanene.debbiche@univ-bba.dz

Abstract

Bi-level programming problems (BLP) constitute an important class of non-convex optimization

problems, which makes it challenging to find a global optimal solution. In this article, we propose

an efficient technique to solve this category of problems. We reformulated the initial problem as a

single-level optimization problem using the optimal value function of the lower-level problem. To

solve the latter, we employed a technique based on 𝛼-dense curves to approximate the value

function of the lower-level problem. Two evolutionary algorithms were then used to solve the

reformulated problem. Furthermore, we extended our method to address multi-objective bi-level

programming problems with a single objective at the upper level and multiple objectives at the

lower level, known as a semi-vectorial bi-level programming problem. Several numerical

experiments on nonlinear BLP show the outstanding efficiency of our approach.

Keywords: Nonlinear bi-level programming. Multi-objective optimization. Global optimization.

𝛼-dense curves. Evolutionary algorithms.

Nomenclature

For 𝑥, 𝑢, 𝑣 ∈ 𝑅𝑛2 , ‖𝑥‖ represents the Euclidean norm of 𝑥. The notation 𝑢 ⋅ 𝑣 denotes the Hadamard

product of the vectors 𝑢 and 𝑣, i.e. , (𝑢 ⋅ 𝑣)𝑖 = 𝑢𝑖𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, and 𝑒 is the all-one vector, 𝑢 <
𝑣 would mean 𝑢𝑖 < 𝑣𝑖 for all 𝑖 = 1,… , 𝑛. The computation time is denoted by the symbol 𝑡,
measured in seconds (𝑠).

https://periodicos.ufv.br/jcec
https://orcid.org/0000000255653581
mailto:wafa.bouguern@univ-bba.dz
about:blank
mailto:%20smail.addoune@univ-bba.dz
about:blank
mailto:%20smail.addoune@univ-bba.dz

The Journal of Engineering and Exact Sciences – jCEC

2

1. Introduction

Bi-level programming problems are a special type of hierarchical optimization problem.

They are divided into two decision-making levels, namely, the upper and the lower levels, where

the lower-level parametric optimization problem forming some of the constraints for the upper-

level problem. Since a bi-level programming problem is typically non-convex, solving it is a

challenging task. Over the past time, numerous approaches have been proposed in the literature for

solving this problem, such as the Karush-Kuhn-Tucker approach (see, e.g., Dempe and Franke

(2019) and references therein), penalty methods (Anandalingam and White (1990)), and branch

and bound methods (Bard and Moore (1990)), etc.

In recent years, meta-heuristic algorithms have been increasingly popular for addressing

BLP problems because of their beneficial characteristics. For example, Mathieu et al. (1994)

have developed one of the initial evolutionary algorithms (EAs) intended for this objective. The

Genetic Algorithm (GA) is the most prevalent version among these algorithms, with numerous

adaptations examined in diverse research. Additional significant methods encompass the Bat

Algorithm (BA) (Srivastava and Sahana (2019)), Differential Evolution (DE) (Angelo et al.

(2014)), and Particle Swarm Optimisation (PSO) (Zhang et al. (2017)). The Grey Wolf Optimizer

(GWO), a prominent meta-heuristic technique, was introduced by Mirjalili et al. (2014) and

simulates the natural leadership structure and hunting tactics of grey wolves; it has been used in

many scientific fields (see, e.g., Nouri et all. (2023)).

Certain studies have concentrated on the application of EAs to bi-level multi-objective

optimization problems (BLMOP) (refer to, for instance, Ruuska and Miettinen (2012), Joao and

Paulo (2014) and associated references), which can be divided into three types: multiple objectives

at the upper level with a single objective at the lower level; a single objective at the upper level

with multiple objectives at the lower level; and multiple objectives at both levels.

Addressing bi-level programming problems directly can be exceedingly difficult. As a

result, certain academics have focused on converting BLPs into single-level optimization

problems. There are two principal approaches for this reformulation. The initial technique entails

substituting the lower-level problem with the KKT optimality conditions. This approach

necessitates strong assumptions to establish that the optimal solution of the bi-level optimization

problem aligns with that of the reformulated problem (see Dempe and Dutta (2012) for further

details). The second method is referred to as lower-level value function reformulation (VFR),

which was originally suggested for numerical applications (Outrata (1990)). The optimality

conditions related to this strategy are examined in Ye and Zhu (1995). Significantly, VFR has

demonstrated superior numerical performance compared to KKT reformulation, as indicated in

Zemkoho and Zhou (2021).

Numerous studies advocate for a nested methodology in resolving BLP issues, wherein a

classical technique manages the lower level and an EA solves the upper level (see, e.g., Zhao and

Gu (2006), Jialin et all., and Jie (2016)). This strategy may be computationally intensive and

ineffective for large-scale issues. We suggest a more effective approach to mitigate these

limitations, intending to decrease computing costs and expedite the solution process. In this work,

we utilize the value function reformulation approach. We establish a technique that calculates an

approximation of the lower-level value function, employing the implementation of 𝛼-dense curves

within the feasible domain, as first introduced by Mora and Cherruault (1997). These curves have

been effectively applied in various fields of applied mathematics (see, e.g., Mora and Mora-Porta

(2005), Butz (1972)). Our methodology is based on evolutionary algorithms, which have proven

effective in various applied scientific fields for solving large-scale nonlinear problems.

Furthermore, we offer a concise examination of employing the same methodology to address

semi-vectorial, bi-level programming problems.

The rest of this paper is organized as follows: Section 2 presents the bi-level programming

problem formulation, where some definitions and properties are stated. In Section 3, evolutionary

The Journal of Engineering and Exact Sciences – jCEC

3

algorithms are introduced. In Section 4, a novel proposed technique is presented. In Section 5, we

use the same method to solve the semi-vectorial bi-level programming problem. In Section 6, the

experimental results of the proposed algorithm are presented. Also, a comparison between two

types of evolutionary algorithms is made. Finally, Section 7 provides a conclusion and future

work.

2. Problem Formulation

In this paper, we examine a class of nonlinear bi-level programming problems, where the

lower-level problem is a parametric optimization problem with box constraints. This problem can

be defined as follows:

 (𝑃)

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑔(𝑥, 𝑦) ≤ 0,

𝑦 ∈ Ψ(𝑥),

where 𝛹(𝑥) is the set of optimal solutions to the lower-level problem

 (𝑃𝑥) {

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑦

 𝑓(𝑥, 𝑦)

𝑠. 𝑡.
𝑐 ≤ 𝑦 ≤ 𝑑

There are two classes of variables in this problem: the upper-level variables 𝑥 ∈ 𝑅𝑛1 and

the lower-level variables 𝑦 ∈ 𝑅𝑛2 . The functions 𝐹, 𝑓 ∶ 𝑅𝑛1 × 𝑅𝑛2 → 𝑅 are, respectively the

upper and lower objective functions, 𝑔 ∶ 𝑅𝑛1 × 𝑅𝑛2 → 𝑅𝑚 represents the upper-level

constraints, 𝑎, 𝑏 ∈ 𝑅𝑛1 , 𝑐, 𝑑 ∈ 𝑅𝑛2 with 𝑛1, 𝑛2 and 𝑚 are integers. The current research indicates

that the following definitions are essential for studying (𝑃).

1. The feasible set of the lower level problem (𝑃𝑥) for every fixed 𝑥:

𝑆 = {𝑦 ∈ 𝑅𝑛2 | 𝑐 ≤ 𝑦 ≤ 𝑑} .

2. The constraint region of (𝑃):

Ŝ = {(𝑥, 𝑦) ∈ 𝑅𝑛1 × 𝑅𝑛2 | 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑, 𝑔(𝑥, 𝑦) ≤ 0}.

3. The rational reaction set of the lower level, for every fixed 𝑥, is:

𝑅(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓(𝑥, 𝑦), 𝑦 ∈ 𝑆}.

4. The inducible region of (𝑃):

𝐼𝑅 = {(𝑥, 𝑦) ∈ 𝑅𝑛1 × 𝑅𝑛2 | (𝑥, 𝑦) ∈ Ŝ, 𝑦 ∈ 𝑅(𝑥)} .

The definitions of feasible and optimal solutions for (𝑃) are given as follows:

Definition 1 A point (x, y) is feasible of (P) if (x, y) ∈ IR.

Definition 2 A point (x∗, y∗) is an optimal solution of (P) if (x∗, y∗) ∈ IR, and F(x∗, y∗) ≤
F(x, y) for all (x, y) ∈ IR.

The Journal of Engineering and Exact Sciences – jCEC

4

3. Evolutionary Algorithms

Evolutionary algorithms are stochastic, population-based direct search techniques that

emulate natural evolution. This section provides a succinct summary of two metaheuristic

techniques, Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO), along with an

explanation of their functional mechanics.

3.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart (1995), simulates

the behavior of fish and birds in groups. The methodology employs mathematical equations that

specify the positions and velocities of particles, allowing them to traverse the solution space

effectively. A particle 𝑖 is designated by 𝑥𝑖, representing its position, while its velocity is indicated

by 𝑣𝑖. The following is the updating rule for both position and velocity:

𝑣𝑖
𝑘+1 = 𝑤 𝑣𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1 (𝑃𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘) + 𝑐2𝑟𝑎𝑛𝑑2(𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘) (1)

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (2)

where 𝑘 indicates the current iteration, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two random numbers uniformly

distributed in [0,1], 𝑐1 and 𝑐2 are the acceleration coefficients, the factor 𝑤 is the inertia weight;

𝑃𝑖
𝑏𝑒𝑠𝑡 is the best solution previously found for the 𝑖𝑡ℎ particle; and 𝑃𝑔𝑏𝑒𝑠𝑡 is the best solution

previously found in the swarm (global best solution).

3.1 Grey Wolf Optimizer (GWO)

Grey Wolf Optimization is a population-based metaheuristic algorithm that draws

inspiration from nature. Presented by Mirjalili et al. (2014), it is based on how grey wolves

behave. The GWO algorithm uses a mathematical model of the grey wolf social hierarchy. The

optimization method concentrates on three principal solutions: the best solution, denoted as 𝛼; the

second-best solution, denoted as 𝛽; and the third solution, denoted as 𝜎. The following equations

are suggested:

𝐴 = 2𝑎(𝑘) ⋅ 𝑟𝑎𝑛𝑑1 − 𝑎
(𝑘) (3)

𝐶 = 2𝑟𝑎𝑛𝑑2 (4)
𝐷 = |𝐶 ⋅ 𝑋𝑝

𝑘 − 𝑋𝑘| (5)

𝑋𝑘+1 = 𝑋𝑝
𝑘 − 𝐴 ⋅ 𝐷 (6)

where 𝑎(𝑘) = 𝜆𝑘𝑒 with the scalar 𝜆𝑘 defined by the following formula:

𝜆𝑘 = 2 −
2𝑘

𝑚𝑎𝑥
 (7)

where 𝑚𝑎𝑥 is the maximum number of iterations, and 𝑘 is the current iteration. The vectors 𝐴 and

𝐶 represent acceleration coefficients, the prey's location vector is indicated as 𝑋𝑝; the grey wolf's

position vector is denoted by 𝑋. Additionally, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two random vectors in the

interval [0,1].
Since the prey's location is unknown, we will replace it with the three best solutions:𝑋𝛼, 𝑋𝛽,

and 𝑋𝜎. So the wolves use these equations to update their positions.

𝐷𝛼 = |𝐶1 ⋅ 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝐶2 ⋅ 𝑋𝛽 − 𝑋|, 𝐷𝜎 = |𝐶3 ⋅ 𝑋𝜎 − 𝑋|,

𝑋1 = 𝑋𝛼 − 𝐴1 ⋅ 𝐷𝛼 , 𝑋2 = 𝑋𝛽 − 𝐴2 ⋅ 𝐷𝛽 , 𝑋3 = 𝑋𝜎 − 𝐴3 ⋅ 𝐷𝜎 ,

The Journal of Engineering and Exact Sciences – jCEC

5

𝑋𝑘+1 =
𝑋1 + 𝑋2 + 𝑋3

3
 (8)

Here, |𝑋| denotes the vector of absolute values of each component of 𝑋.

4. The New Proposed Technique

The first step in this section is to convert (𝑃) into a single-level optimization problem. Using

the optimal value function reformulation (VFR), we get the following equivalent problem:

 (𝑃)

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

𝑔(𝑥, 𝑦) ≤ 0,

𝑓(𝑥, 𝑦) − 𝑉(𝑥) ≤ 0,

where the optimal value function is defined by

𝑉(𝑥) = 𝑚𝑖𝑛
𝑦
{𝑓(𝑥, 𝑦) | 𝑐 ≤ 𝑦 ≤ 𝑑}.

The problem (𝑃) is intricate and requires significant effort to solve due to its non-convexity

and the presence of the non-differentiable function 𝑉(𝑥). The presence of non-convexity hampers

the resolution of optimization problems, and the involvement of typically non-differentiable

functions further exacerbates the issue. Addressing such issues frequently necessitates specialized

methodologies and a comprehensive analysis of the problem's framework and attributes.

Many researchers have used the VFR approach to develop optimality conditions (see, e.g.,

Stephan et all. (2007), Jane (2005)). However, few recent studies have focused on numerical

techniques (see, e.g., Lin et all. (2014), Xu and Ye (2014)).

In order to solve (𝑃), we can use an exact penalty function approach and formulate it as

follows:

(𝑃𝜇)

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 𝐹(𝑥, 𝑦) + 𝜇𝐻(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

where

𝐻(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑓(𝑥, 𝑦) − 𝑉(𝑥), 0} + ∑𝑚𝑎𝑥 {0, 𝑔𝑖(𝑥, 𝑦)}

𝑚

𝑖=1

.

Our principal study focuses on resolving the penalty problem (𝑃𝜇) through the application of

EAs. A multitude of scholars have employed EAs to address bi-level programming challenges.

Numerous studies solve the lower-level problem for each particle in the population using classical

methods, thereafter addressing the upper-level problem with EAs (see, e.g., Zhao and Gu (2006),

Jialin et al. (2016)). This approach is often computationally demanding.

We suggest a viable and inexpensive technique that converts the two-level problem into a

single-level problem, as previously described. EA cannot be directly implemented because of the

The Journal of Engineering and Exact Sciences – jCEC

6

characteristics of the function 𝑉(𝑥); therefore, we must focus on the optimal value function 𝑉(𝑥).
The basic idea for determining 𝑉(𝑥) is to substitute it with an appropriate approximation, as

described below:

𝑉(𝑥) = 𝑚𝑖𝑛
𝑦
{ 𝑓(𝑥, 𝑦) ∣∣ 𝑐 ≤ 𝑦 ≤ 𝑑 }

 ≈ 𝑚𝑖𝑛{ 𝑓(𝑥, 𝑦1), 𝑓(𝑥, 𝑦2), … , 𝑓(𝑥, 𝑦𝑝) ∣∣ 𝑐 ≤ 𝑦𝑗 ≤ 𝑑, 𝑗 = 1, … , 𝑝 }.

where {𝑦1, 𝑦2, … 𝑦𝑝} are 𝑝 points of the set [𝑐, 𝑑]. We aim to cover the set [𝑐, 𝑑] by distributing the

points {𝑦1, 𝑦2, … , 𝑦𝑝} across it. To do this, we will convert the multidimensional lower-level

problem into a one-dimensional problem by employing a parametric 𝛼-dense curve (see Mora and

Cherruault (1997)). The primary characteristic of these curves is their ability to represent 𝑛

variables with just one variable. Let us recall the definition of an 𝛼-dense curve.

Definition 3 Let α > 0, a subset D ⊂ S is said to be α-dense in S if, for every y ∈ S, there exists

a point y̅ ∈ D such that ‖y − y̅‖ ≤ α.

Definition 4 A curve γ ∶ [0, β] → S, where β > 0, is said to be α-dense in S if γ([0, β]) is α-

dense in S, i.e., for every y ∈ S there exists t ∈ [0, β] such that ‖𝑦 − 𝛾(𝑡)‖ ≤ α, where γ(t) =
 (γ1(t), γ2(t),… , γn2(t)).

Theorem 1 (Ziadi and Bencherif-Madani (2023)) Let γ(t) = (γ1(t), γ2(t),… , γn2(t)) ∶ [0, β] →

 [c, d] be a continuous parametrized curve. Additionally, let θ1, θ2, … , θn2−1 , α be strictly positive

numbers satisfying the following conditions:

1. γn2 is surjective.

2. For any i = 1, … , n2−1, γi reaches its bounds ci and di within every closed interval of

length θi

3. For any i = 1, … , n2 − 1 and any interval I ⊆ [0, β], we have

 μ(I) < θi ⟹ μ(γi+1(I)) <
α

√n2−1
,

where μ(⋅) is the Lebesgue measure . Given these conditions, the conclusion is that the curve γ is

α-dense in [c, d].

The unidimensional problem, which depends on the single variable 𝑡:

min
t ∈[0,β]

f ∗(x, t)

where 𝑓∗(𝑥, 𝑡) = 𝑓(𝑥, 𝛾(𝑡)) represents an approximation of the multidimensional problem (𝑃𝑥).

In this formulation, the objective function 𝑓∗(𝑥, 𝑡) is an approximation of the objective function

𝑓(𝑥, 𝑦) in the problem (𝑃𝑥).

The density curve that we will use in our work is given by the following formula (taken from

Ziadi and Bencherif-Madani (2023)). Let 𝛼 > 0 be a given number; consider the function 𝛾 ∶

[0, 𝜋

𝜃𝑛2
] → [𝑐, 𝑑] such that

The Journal of Engineering and Exact Sciences – jCEC

7

𝛾1(𝑡) =
𝑐1 + 𝑑1
2

−
𝑐1 − 𝑑1
2

cos 𝜃1 𝑡,

𝛾2(𝑡) =
𝑐2 + 𝑑2
2

−
𝑐2 − 𝑑2
2

cos 𝜃2 𝑡,

⁝

𝛾𝑛2(𝑡) =
𝑐𝑛2 + 𝑑𝑛2

2
−
𝑐𝑛2 − 𝑑𝑛2

2
cos 𝜃𝑛2 𝑡,

where 𝜃1, 𝜃2,. . . , 𝜃𝑛2 are the parameters specified by:

θ1 = 1,

𝜃2 =
𝛼

𝜋(|𝑐2| + |𝑑2|)
,

𝜃3 =
𝛼2

𝜋2(|𝑐2| + |𝑑2|)(|𝑐3| + |𝑑3|)

⁝

𝜃𝑛2 =
𝛼𝑛2−1

𝜋𝑛2−1(|𝑐2| + |𝑑2|)(|𝑐3| + |𝑑3|)⋯ (|𝑐𝑛2| + |𝑑𝑛2|)
.

By Theorem 1, the parametrized curve 𝛾(𝑡) = (𝛾1(𝑡), … , 𝛾𝑛2(𝑡)) is 𝛼-dense in [𝑐, 𝑑].

Figure 1 illustrates the densification of the square [−1,1] × [−1,1] by the support of the provided

curve for 𝛼 = 0.3 and 𝛼 = 0.1. It is evident that the curve more effectively covers the

designated area when 𝛼 is smaller.

Figure 1 – the densification of the squar [−𝟏, 𝟏]𝟐 by the curve 𝜸.

After establishing our comprehension of 𝛼-dense curves, we now focus on their application

in populating the set 𝑆. By choosing a minimal value for 𝛼, we guarantee a high density, thereby

covering a significant portion of the set 𝑆. Our objective is to uniformly distribute the points

{𝑦1, 𝑦2, … , 𝑦𝑝} along this curve, where 𝑝 denotes the number of points in the set [𝑐, 𝑑], as seen in

Figure 2. The number of points 𝑝 in the distribution along the curve can be modified as required. It

is clear that augmenting 𝑝 results in a superior approximation of the set 𝑆.

The Journal of Engineering and Exact Sciences – jCEC

8

Figure 2 – The distribution points of the curve for 𝟏𝟎𝟎 points with 𝜶 = 𝟎. 𝟑.

Consequently, we can resolve the following problem:

(𝑃𝜇
′)

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) + 𝜇𝐻𝑎𝑝𝑝(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

where

𝐻𝑎𝑝𝑝(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑓(𝑥, 𝑦) − 𝑉𝑎𝑝𝑝(𝑥), 0} + ∑𝑚𝑎𝑥 {0, 𝑔𝑖(𝑥, 𝑦)}

𝑚

𝑖=1

and

𝑉𝑎𝑝𝑝(𝑥) = 𝑚𝑖𝑛
𝑦

{𝑓 (𝑥, 𝛾(𝑡𝑗)) : 𝑗 = 1, … , 𝑝}

where {𝑡1, 𝑡2, … , 𝑡𝑝} represents a subdivision of the interval [0, 𝜋

𝜃𝑛2
] . The steps in this subdivision

should be small, meaning that for a small 𝜀 > 0,

𝑚𝑎𝑥
1≤𝑖≤𝑝−1

 {𝑡𝑖+1 − 𝑡𝑖} < 𝜀.

We can also use a uniform subdivision by setting 𝑡𝑖 = 𝑖 ℎ, where ℎ =
𝜋

𝑝 𝜃𝑛2
 for 𝑖 = 0, … , 𝑝. In

this case, the step size ℎ decreases as 𝑝 increases.

Below, we provide two algorithms (BL-GWO, BL-PSO) based on PSO and GWO to address

the final approximate problem.

The Journal of Engineering and Exact Sciences – jCEC

9

Algorithm 1 BL-GWO Algorithm

Step 0. Configure the parameters: population size 𝑛, maximum number of iterations 𝑚𝑎𝑥,

penalty parameter 𝜇 > 0, density 𝛼 > 0, and number of distribution points 𝑝.

Step 1. Initialization

1. Randomly initialize the grey wolf population 𝑃 = {(𝑥𝑖, 𝑦𝑖): 𝑖 = 1, … , 𝑛}
2. Generate the distribution points 𝑧𝑖 = 𝛾(𝑡𝑖), 𝑖 = 1,… , 𝑝, and set

 𝑉𝑎𝑝𝑝(𝑥) = 𝑚𝑖𝑛
1≤𝑖≤𝑝

 {𝑓(𝑥, 𝑧𝑖)}.

3. Set 𝐻(𝑥, 𝑦) = max{𝑓(𝑥, 𝑦) − 𝑉𝑎𝑝𝑝(𝑥), 0} + ∑ max {0, 𝑔𝑖(𝑥, 𝑦)}
𝑚
𝑖=1 .

4. Set 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) + 𝜇 𝐻(𝑥, 𝑦).

To begin, calculate the fitness values 𝐺(𝑥𝑖, 𝑦𝑖) of each individual of the population and choose the

three best solutions: 𝑋_𝛼 the best solution, 𝑋_𝛽 is the second-best solution, 𝑋𝜎 is the third-best

solution.

Step 2. Treatment

1. For 𝑖 = 1 𝑡𝑜 𝑚𝑎𝑥 do

2. For each 𝑋 ∈ 𝑃 do

i. Update 𝑎(𝑘), 𝐴, and 𝐶 using formulas (7), (3), (4).

ii. Update the position according to equation (8).

iii. Calculate its fitness value.

3. End For

4. Update the solutions 𝑋𝛼, 𝑋𝛽, and 𝑋𝜎 and set 𝑖 ∶= 𝑖 + 1.

5. End For

6. return 𝑋𝛼.

Algorithm 2 BL- PSO Algorithm

Step 0. Configure the parameters: population size 𝑛, maximum number of iterations 𝑚𝑎𝑥,

penalty parameter 𝜇 > 0, density 𝛼 > 0, number of distribution points 𝑝, acceleration

coefficients 𝑐1and 𝑐2, and inertia weight 𝑤.

Step 1. Initialization

1. Randomly initialize the particle population 𝑃 = { (𝑥𝑖, 𝑦𝑖): 𝑖 = 1, … , 𝑛 } and their velocity

equals zero for all components.

2. Generate the distribution points 𝑧𝑖 = 𝛾(𝑡𝑖), 𝑖 = 1,… , 𝑝, and set

 𝑉𝑎𝑝𝑝(𝑥) = 𝑚𝑖𝑛
1≤𝑖≤𝑝

 {𝑓(𝑥, 𝑧𝑖)}.

3. Set 𝐻(𝑥, 𝑦) = max{𝑓(𝑥, 𝑦) − 𝑉𝑎𝑝𝑝(𝑥), 0} + ∑ max {0, 𝑔𝑖(𝑥, 𝑦)}
𝑚
𝑖=1 .

4. Set 𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) + 𝜇 𝐻(𝑥, 𝑦).
5. Determine the global best solution (𝑃𝑔𝑏𝑒𝑠).

The Journal of Engineering and Exact Sciences – jCEC

10

Step 2. Treatment

1. For 𝑖 = 1 𝑡𝑜 𝑚𝑎𝑥 do

2. For each 𝑋 ∈ 𝑃 do

i. Update the position and velocity using equations (1), (2).

ii. Calculate its fitness value. 𝐺(𝑥𝑖, 𝑦𝑖).

iii. Update the personal best position 𝑃𝑏𝑒𝑠𝑡.

iv. Update the global best position 𝑃𝑔𝑏𝑒𝑠𝑡.

3. End For

4. Set 𝑖 ∶= 𝑖 + 1.

5. End For

6. return 𝑃𝑔𝑏𝑒𝑠𝑡.

5. Semivectorial Bi-level Programming Problem

This section begins with preliminary knowledge of the multi-objective optimization

problems discussed in this paper. It then provides a detailed description of the application of our

algorithm (BL-PSO) in solving semi-vectorial bi-level programming problems.

A general multi-objective programming problem (MOP) can be formulated as

(𝑀𝑂𝑃) {
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥
 𝑓(𝑥) ∶= (𝑓1 (𝑥),… , 𝑓𝑞(𝑥))

𝑠. 𝑡
𝑥 ∈ 𝑋.

where 𝑋 is a non-empty subset of 𝑅𝑛, and 𝑓: 𝑋 → 𝑅𝑞 (with 𝑞 ≥ 2), the space 𝑅𝑛 containing the

set 𝑋 of admissible points is called the decision space. The set 𝑌 = 𝑓(𝑋), called the set of

admissible vectors, is in the criterion space 𝑅𝑞.

Definition 5 A point �̅� ∈ 𝑋 is Pareto optimal (or efficient) if there is no 𝑥 ∈ 𝑋 that is better than

it. This means that there is no point 𝑥 ∈ 𝑋 such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(�̅�) for all 𝑖 = 1, … , 𝑞 and

𝑓𝑘(𝑥) < 𝑓𝑘(�̅�) for at least one 𝑘.

Definition 6 A point 𝑥∗ ∈ 𝑋 is weakly efficient if there is no point 𝑥 ∈ 𝑋 such that 𝑓(𝑥) <
𝑓(𝑥∗).

One of the most commonly employed methods for solving (MOP) is the weighted sum

scalarization method. This approach facilitates the identification of efficient solutions for (MOP)

by solving the following single-objective optimization problem:

(𝑊𝑆𝜆) { 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥∈𝑋

 ∑𝜆𝑖𝑓𝑖(𝑥),

𝑞

𝑖=1

where 𝜆 represents the scalar weights, with 𝜆 ∈ Σ𝑞, and

Σ𝑞 = {𝜆 ∈ 𝑅
𝑞: 𝜆 ≥ 0,∑𝜆𝑖

𝑞

𝑖=1

= 1}

The Journal of Engineering and Exact Sciences – jCEC

11

The following propositions, as presented in Ehrgott (2005), illustrate the relationship between the

multi-objective optimization problem (MOP) and the weighted sum (𝑊𝑆𝜆) problem.

Proposition 1 (Ehrgott (2005)) Let 𝑥∗ be an optimal solution of the weighted sum problem

(𝑊𝑆𝜆). The following statements hold.

• If 𝜆 ∈ Σ𝑞 , then 𝑥∗ is weakly efficient.

• If 𝜆 ∈ Σ𝑞
+, then 𝑥∗ is efficient, where Σ𝑞

+ = {𝜆 ∈ 𝑅𝑞: 𝜆 > 0, ∑ 𝜆𝑖
𝑞
𝑖=1 = 1}.

Proposition 2 (Ehrgott (2005)) Let 𝑓𝑘, for 𝑘 = 1, … , 𝑞, be convex functions, and 𝑋 be a convex

set, then 𝑥∗ is weakly efficient if and only if there exists 𝜆 ∈ Σ𝑞, such that 𝑥∗ is an optimal

solution of (𝑊𝑆𝜆).
Now, we examine a class of semi-vectorial bi-level programming problems in which the

lower-level problem is a parametric multi-objective optimization problem with box constraints.

The problem can be formulated as follows:

(𝐵𝑀𝑃)

{

 Minimize

𝑥,𝑦
 𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑔(𝑥, 𝑦) ≤ 0,
𝑦 ∈ Ψ𝑤𝑒(𝑥),

where Ψ𝑤𝑒(𝑥) is the set of weakly efficient solutions of the lower level problem

 (𝑀𝑃𝑥) {
 Minimize

𝑦
 𝑓(𝑥, 𝑦) ∶= (𝑓1 (𝑥, 𝑦), 𝑓2(𝑥, 𝑦),… , 𝑓𝑞(𝑥, 𝑦))

𝑠. 𝑡.
𝑐 ≤ 𝑦 ≤ 𝑑,

where 𝐹 ∶ 𝑅𝑛1 × 𝑅𝑛2 → 𝑅, 𝑔 ∶ 𝑅𝑛1 × 𝑅𝑛2 → 𝑅𝑚, 𝑓𝑖 ∶ 𝑅

𝑛1 × 𝑅𝑛2 → 𝑅, 𝑖 = 1,… , 𝑞.

𝛹𝑤𝑒(𝑥) = {𝑦 ∈ 𝑆 ∶ ∄ �̅� ∈ 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥, �̅�) < 𝑓(𝑥, 𝑦)}.

To rewrite problem (BMP) as a single-level problem, we assume that fi(x, y), for i =
 1, … , q, are convex in y when x is fixed. By applying the weighted sum scalarization to the

lower-level problem, (BMP) can be reformulated as follows:

(𝐵𝑀𝑃𝑠)

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦,𝜆

 𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,

0 ≤ 𝜆 ≤ 1, ∑𝜆𝑖

𝑞

𝑖=1

= 1,

𝑔(𝑥, 𝑦) ≤ 0,
𝑦 ∈ 𝑆(𝑥, 𝜆),

where 𝑆(𝑥, 𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐≤𝑦≤𝑑

 ∑ 𝜆𝑖𝑓𝑖(𝑥, 𝑦)
𝑞
𝑖=1 .

The Journal of Engineering and Exact Sciences – jCEC

12

This conversion has been utilized by various researchers (see, e.g., Gupta and Ong (2015), Li and

L.Zhang (2021)). The relationship between the scalarized problem (𝐵𝑀𝑃𝑠) and the original bi-

level multiobjective problem (𝐵𝑀𝑃) has been examined in Dempe and Zemkoho (2013) and

Dempe and Mehlitz (2019). Results concerning local optimality are discussed in Dempe and

Zemkoho (2013) and corrected in Dempe and Mehlitz (2019). It has been established that the

problems (𝐵𝑀𝑃) and (𝐵𝑀𝑃𝑠) are equivalent in terms of global optimal solutions (see Dempe and

Mehlitz (2019)).

Using the optimal value function reformulation and an exact penalty function approach we

get the following problem:

(𝐵𝐿𝜇)

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦,𝜆
 𝐹(𝑥, 𝑦) + 𝜇𝐻(𝑥, 𝑦, 𝜆)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

 0 ≤ 𝜆𝑖 ≤ 1, 𝑖 = 1, … , 𝑞,

where

𝐻(𝑥, 𝑦, 𝜆) = 𝑚𝑎𝑥 {∑𝜆𝑖𝑓𝑖(𝑥, 𝑦) − 𝑉(𝑥), 0

𝑞

𝑖=1

 } + ∑𝑚𝑎𝑥 {0, 𝑔𝑖(𝑥, 𝑦)}

𝑚

𝑖=1

+ |∑𝜆𝑖 − 1

𝑞

𝑖=1

|

and the optimal value function is defined by

𝑉(𝑥, 𝜆) = 𝑚𝑖𝑛
𝑦
{∑𝜆𝑖𝑓𝑖(𝑥, 𝑦)

𝑞

𝑖=1

 | 𝑐 ≤ 𝑦 ≤ 𝑑}.

Finally, we apply our proposed algorithm, BL-PSO, to solve (𝐵𝐿𝜇).

6. Computational Tests

In this section, we implement our algorithm on several nonlinear bi-level programming

problems to illustrate the efficacy of the suggested method. Furthermore, we compare the

solutions obtained by the proposed algorithm with those found in related references. We evaluate

the computational efficiency of BL-GWO and BL-PSO in terms of computational time and

solution quality. The parameters for BL-PSO are established as follows: acceleration coefficients

𝑐1 = 𝑐2 = 1.2, inertia weight 𝑤 = 0.8, population size 𝑛 = 1000, and 𝛼 = 0.01. We

implement the algorithm using Julia 1.10.1.

6.1 Test Problems

Problem 1. (Mitsos and Barton (2006)) Problem 2. (Mitsos and Barton (2006))

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 (𝑥 +

1

2
)
2

+
1

2
𝑦2

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 1,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
−1≤𝑦≤1

1

2
𝑥𝑦2 +

1

4
𝑦4

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

 𝑦

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 1,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
−0.8≤𝑦≤1

 𝑥 (16𝑦4 + 2𝑦3 − 8𝑦2 −
3

2
𝑦 +

1

2
)

The Journal of Engineering and Exact Sciences – jCEC

13

Problem 3. (Oduguwa and Roy (2002)) Problem 4.(Mitsos and Barton(2006)).

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 (𝑥 − 1)2 + (𝑦 − 1)2

𝑠. 𝑡.
𝑥 ≥ 0,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
𝑦≥0

1

2
𝑦2 + 500𝑦 − 50𝑥𝑦

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

 𝑥2 − 𝑦

𝑠. 𝑡.
0 ≤ 𝑥 ≤ 1,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤3

((𝑦 − 1 − 0.1𝑥)2 − 0.5 − 0.5𝑥)2

Problem 5. (Mitsos and Barton (2006)) Problem 6. (Mitsos and Barton (2006))

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

 𝑥1𝑦1 + 𝑥2𝑦2
2 + 𝑥1𝑥2𝑦3

3

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 1,

0.1 − 𝑥1
2 ≤ 0,

1.5 − 𝑦1
2 − 𝑦2

2 − 𝑦3
2 ≤ 0,

−2.5 + 𝑦1
2 + 𝑦2

2 + 𝑦3
2 ≤ 0,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
−1≤𝑦≤1

 𝑥1𝑦1
2 + 𝑥2𝑦2

2 + (𝑥1 − 𝑥2)𝑦3
2

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 (𝑥 − 3)2 + (𝑦 − 2)2

𝑠. 𝑡.
0 ≤ 𝑥 ≤ 8,
−2𝑥 + 𝑦 ≤ 1,
𝑥 − 2𝑦 ≤ −2,
𝑥 + 2𝑦 ≤ 14,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤10

 (𝑦 − 5)2

Problem 7. (Shimizu and Aiyoshi (1981))

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
 (𝑥1 − 30)

2 + (𝑥2 − 20)
2 − 20𝑦1 + 20𝑦2

𝑠. 𝑡.
−𝑥1 − 2𝑥2 + 30 ≤ 0,
𝑥1 + 𝑥2 − 25 ≤ 0,
𝑥2 − 15 ≤ 0,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤10

(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2

Problem 8. (Ma and Wang (2020))

{

 Minimize

𝑥,𝑦
∑(|𝑥𝑖 − 1| + |𝑦𝑖|

10

𝑖=1

)

𝑠. 𝑡.

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
−𝜋≤𝑦≤𝜋

exp([1 +∑(𝑦𝑖
2 4000) −⁄

10

𝑖=1

∏cos(𝑦𝑖 √𝑖⁄)

10

𝑖=1

]∑𝑥𝑖
2

10

𝑖=1

)

Problem 9. (Dempe and Mehlitz (2019)) Problem 10. (João et all (2015))

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

 𝑦 − 𝑥

𝑠. 𝑡.
0 ≤ 𝑥 ≤ 1,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤1

 (𝑥𝑦, 1 − 𝑦)

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

 (𝑦1 − 1)
2 + 𝑦2

2 + 𝑥2

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 2,

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
−1≤𝑦≤2

 (𝑦1
2 + 𝑦2

2, (𝑦1 − 𝑥)
2 + 𝑦2

2)

6.2 Results

The experiments for each example are repeated 20 runs, ensuring that the best solution from

each run is selected as the respective global optimum.

 Table 1 specifies the parameters for 𝑝, 𝑚𝑎𝑥, and 𝜇. Table 2 compares the solutions

obtained with the proposed algorithm against those found in relevant references, showing the best

solutions (𝑥∗, 𝑦∗) and the corresponding value 𝐹∗ achieved at the upper level. Table 3 presents a

The Journal of Engineering and Exact Sciences – jCEC

14

comparative study between the two evolutionary algorithms, BL-PSO and BL-GWO. Table 4

compares our algorithm with the one proposed by Zhao and Gu (2006).

Table 1 – Parameters of 𝝁, 𝒑, and 𝒎𝒂𝒙 for solving problems 𝟏 − 𝟏𝟎.

Problems 𝝁 𝒑 𝒎𝒂𝒙

𝒑𝟏 106 1000 100

𝒑𝟐 100 1000 100

𝒑𝟑 − 𝒑𝟔 106 1000 100

𝒑𝟕 100 6000 100

𝒑𝟖 100 1000 200

𝒑𝟗 100 1000 100

𝒑𝟏𝟎 100 1000 200

Table 2 – Comparison between the best solutions found by our proposed algorithm and the

results obtained in the corresponding references.

Problems.

BL-PSO

(𝒙∗, 𝒚∗)

𝑭∗
Ref.

(𝒙∗, 𝒚∗)

𝑭∗
𝑷𝟏 (−0.25,± 0.5) 0.1868 (−0.25,± 0.5) 0.1875

𝑷𝟐 (4.68 ×

10−11, −0.8)
−0.8 (0, −0.8) −0.8

𝑷𝟑 (1, 0) 1 (10.04, 0.1429) 82.44

𝑷𝟒 (0.21, 1.80) −1.75 (0.21,1.79) −1.75

𝑷𝟓 (−1,−1,1,
 ±1, −0.7071)

−2.35 (−1,−1,1,
1,−0.707)

−2.35

𝑷𝟔 (3, 4.99) 8.95 (3, 5) 9

𝑷𝟕 (20, 4.99, 10, 4.82) 221.511 (20, 5, 9.77, 4.95) 228.7

𝑷𝟖

(0.996, 0.999,
 1.000, 0.999,
0.999, 1.000,
 0.999, 0.999,
1.000, 1.000
−0.001, 0.005,
−7.395 × 10−5,
−0.0013,

0.000, 0.000,
 −0.000, 0.002,
0.001,−0.000)

0.018

(1.00,1.00,1.00,
1.00,1.00, 0.999,
1.00,0.999,1.00,
1.00,3.56 ×

10−6, −2.11
× 10−7, 7.38 ×

10−7, 5.02 ×
10−7, −5.38 ×
 10−7, −1.26 ×
10−6, −9.99 ×
10−7, −2.30 ×
10−6, −9.08 ×

10−8, 1.7
× 10−6)

3.26 × 10−3

Comments. First, we mention that Problems 1, 2, 4, 5, and 6 are taken from the reference Mitsos

and Barton (2006), which provide theoretical solutions to these problems. When we compared

these theoretical solutions with our obtained results, we found that our algorithm consistently

produced perfect solutions. Notably, for Problem 5, our algorithm revealed the presence of two

global solutions, whereas only one solution was indicated in Mitsos and Barton (2006). The

algorithm referenced in Oduguwa and Roy (2002) fails to attain the global optimum for Problem

The Journal of Engineering and Exact Sciences – jCEC

15

3, while our algorithm successfully achieves it. For Problems 7 and 8, our algorithm yields highly

satisfactory results. Table 3 provides an overview of the comparison results between BL-GWO

and BL-PSO. The results show that both algorithms perform similarly in terms of solution quality,

but BL-GWO takes more time than BL-PSO.

Table 3 – Performance comparison between BL-PSO and BL-GWO.

 BL-GWO BL-PSO

Problems. (𝑥∗, 𝑦∗) 𝐹∗ 𝑡/𝑠 (𝑥∗, 𝑦∗) 𝐹∗ 𝑡/𝑠
𝑷𝟏 (−0.25, 0.5) 0.186 6.8 (−0.25, 0.5) 0.186 4.8

𝑷𝟐 (4.0833 ×

 10−20, −0.8)
−0.8 8.6 (4.688 ×

10−11, −0.8)
−0.8 5.4

𝑷𝟑 (1, 0) 1 4.3 (1, 0) 1 3.2

𝑷𝟒 (0.21, 1.80) −1.75 5.0 (0.21, 1.80) −1.75 3.2

𝑷𝟓 (−1,−1, 1,
−1,−0.7070)

−2.353 4.7 (−1,−1, 1

−1,−0.7071)
−2.353 3.2

𝑷𝟔 (3, 4.99) 8.952 3.4 (3, 4.99) 8.952 2.4

𝑷𝟕 (19.99, 5.001,
10, 4.82)

221.54 25.5 (20, 4.99,
10, 4.82)

221.51 16.5

𝑷𝟖

(0.999, 0.999,
0.999, 1.000,
1.000, 1.000,
0.999, 0.999,
1.000, 0.999

0.007, 0.002,
0.003, −0.012,
−0.035, 0.001,
0.008, −0.012

−0.003, 0.001)

 0.094

307.9

(0.996,0.999,
 1.000,0.999,
0.999,1.000,
 0.999,0.999,
1.000,1.000
−0.001,0.005,
−7.39 × 10−5,
−0.0013,
0.000,0.000,
 −0.000,0.002,
0.001,−0.000)

0.018

235.0

Comparison between our algorithm and the algorithm proposed by Zhao and Gu (2006)

This part compares the performance of our algorithm with that of the algorithm proposed by Zhao

and Gu (2006). We selected Problems 3, 6, and 7 for comparison, using parameters 𝑛 = 40,

𝑚𝑎𝑥 = 100, 𝑝 = 1000, and 𝛼 = 0.01. Table 4 presents the results.

Table 4 – Comparing our algorithm with the one proposed by Zhao and Gu (2006).

Problems.

BL-PSO

(𝒙∗, 𝒚∗)

𝒕/𝒔

 \cite{Zhao2006}

(𝒙∗, 𝒚∗)

𝒕/𝒔

𝑷𝟑 (1.0, 0.0) 0.15 (1.0, −9.974 ×
 10−9)

50.19

𝑷𝟔 (3.000, 4.992) 0.10 (3.0, 4.9999) 46.27

𝑷𝟕 (19.997, 5.001,
10.0, 4.758)

0.40 (19.837, 5.109,
10.00, 5.109)

83.87

Although our approach relies on approximating the value function of the lower level,

resulting in approximate solutions, it is significantly faster and more efficient in computational

time compared to the algorithm proposed by Zhao and Gu (2006).

The Journal of Engineering and Exact Sciences – jCEC

16

Results of the two examples 9, 10: In Problem 9, the set of weakly efficient solutions to the

lower-level problem is the interval [0,1] for all 𝑥 ∈ [0,1]. Hence, (𝑥∗, 𝑦∗) = (1, 0) represents the

unique optimal solution. When we apply our BL-PSO algorithm, we also find (𝑥∗, 𝑦∗) = (1, 0)
with 𝜆 = (1, 0).

For the Problem 10, we apply the weighted sum approach to the lower-level problem

{

 Minimize
𝑦

(𝑦1
2 + 𝑦2

2, (𝑦1 − 𝑥)
2 + 𝑦2

2)

𝑠. 𝑡.
−1 ≤ 𝑦 ≤ 2,

Using different values of 𝜆𝑖, (where 𝑖 = 1,2), with the constraint that 𝜆1 + 𝜆2 = 1, we obtain the

set of efficient points shown in Figure 3. Since 𝑦2 is zero in all efficient solutions, we plot the

graph using the 𝑦1 and 𝑥 axes.

The theoretical optimal solution is the point (𝑥∗, 𝑦∗) = (0.5, 0.5, 0), When we apply our

algorithm BL-PSO, we find: (𝑥∗, 𝑦∗) = (0.48, 0.54, 5.46 × 10−5), with 𝜆 = (0, 1).
Based on Examples 9 and 10, we conclude that our technique can be extended to semi-

vectorial bi-level problems. However, this extension poses certain challenges that require further

investigation and resolution.

6. Conclusion and future work

In this paper, we have proposed an effective method for solving bi-level programming

problems using evolutionary algorithms. We demonstrated the effectiveness of our algorithm by

applying it to several problems. Our approach is computationally efficient; unlike studies that

solve the lower-level problem using classical methods and apply evolutionary algorithms to the

upper-level problem (Zhao and Gu (2006), Jialin et al. (2016)), our method reduces the overall

computational effort. We also compared the performance of two evolutionary algorithms: PSO

and GWO. Additionally, we extended our approach to semi-vectorial bi-level programming

problems, achieving satisfactory results for small-scale problems. In future work, we aim to

develop an algorithm capable of handling large-scale semi-vectorial bi-level programming

problems while also incorporating additional constraints into the lower-level problem.

The Journal of Engineering and Exact Sciences – jCEC

17

References

Anandalingam, G., & White, D. (1990). A solution method for the linear static stackelberg

problem using penalty functions. IEEE, 35, 1170-1173. doi: https://doi.org/10.1109/9.58565

Angelo, S., Krempser, E., & Barbosa, H. J. (2014). Differential evolution assisted by a surrogate

model for bilevel programming problems. 2014 IEEE Congress on Evolutionary,

Computation (CEC), 1784–1791. doi: https://doi.org/10.1109/CEC.2014.6900529

Bard, J. F., & Moore, J. T. (1990). A branch and bound algorithm for the bi-level programming

problem. SIAM Journal on Scientific and Statistical Computing, 11, 128-290. doi:

https://doi.org/10.1137/0911017

Butz, A. (1972). Solution of nonlinear equations with space filling curves. Journal of

Mathematical Analysis and Applications, 37, 351-383. doi: https://doi.org/10.1016/0022-

247X(72)90280-6

Dempe, S., & Dutta, J. (2012). Is bi-level programming a special case of a mathematical program

with complementarity constraints?. Mathematical Programming, 131, 37-48. doi:

https://doi.org/10.1007/s10107-010-0342-1

Dempe, S., & Franke, S. (2019). Solution of bi-level optimization problems using the kkt

approach.Optimization, 68,1471-1489. doi: https://doi.org/10.1080/02331934.2019.1581192

Dempe, S., & Mehlitz, P.(2019). Semi-vectorial bi-level programming versus scalar bi-level

programming. Optimization,157,657-679 .doi:https://doi.org/1 0.1080/023319 34.2019.1625

900

Dempe, S., & Zemkoho, A. (2013). New optimality conditions for the semi-vectorial bi-level

optimization problem. Journal of Optimization Theory and Applications, 157, 54-74. doi:

https://doi.org/10.1007/s10957-012-0161-z

Ehrgott, M. (2005). Multicriteria optimization. Springer Science and Business Media, 491 . doi:

https://doi.org/10.1007/3-540-27659-9

Gupta, A., & Ong, Y. S. (2015). An evolutionary algorithm with adaptive scalarization for multi-

objective bi-level programs. 2015 IEEE Congress on Evolutionary Computation (CEC),

1636-1642. https://doi:10.1109/CEC.2015.7257083

Jane, J. Y. (2005). Necessary and sufficient optimality conditions for mathematical programs with

equilibrium constraints. Journal of Mathematical Analysis and Applications, 307, 350-369.

doi: https://doi.org/10.1016/j.jmaa.2004.10.032

Jialin, H., Guangquan, Z., Yaoguang, H., & Jie, L. (2016). A solution to bi/tri-level programming

problems using particle swarm optimization. Information Sciences, 370, 519-537. doi:

https://doi.org/10.1016/j.ins.2016.08.022

Joao, A. M., & Paulo, C. J. (2014). An algorithm based on particle swarm optimization for multi-

objective bi-level linear problems. Applied Mathematics and Computation, 247, 547-561.

doi: https://doi.org/10.1016/j.amc.2014.09.013

João, A. M., Antunes, C. H., & Carrasqueira, P. (2015). A pso approach to semi-vectorial bi-level

programming: pessimistic, optimistic and deceiving solutions. Proceedings of the 2015

Annual Conference on Genetic and Evolutionary Computation, 599-606. doi:

https://doi.org/10.1145/2739480.2754644

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95-

international conference on neural networks, 4, 1942-1948. doi:

https://doi.org/10.1109/ICNN.1995 .488968

Li, H., & L.Zhang. (2021). An efficient solution strategy for bi-level multi-objective optimization

problems using multi-objective evolutionary algorithm. Soft Computing, 25, 8241-8261. doi:

https://doi.org/10.1007/s00500-021-05750-0

https://doi.org/10.1109/9.58565
https://doi.org/10.1109/CEC.2014.6900529
https://doi.org/10.1137/0911017
https://doi.org/10.1016/0022-247X(72)90280-6
https://doi.org/10.1016/0022-247X(72)90280-6
https://doi.org/10.1007/s10107-010-0342-1
https://doi.org/10.1080/02331934.2019.1581192
https://doi.org/1%200.1080/023319%2034.2019.1625%20900
https://doi.org/1%200.1080/023319%2034.2019.1625%20900
https://doi.org/10.1007/s10957-012-0161-z
https://doi.org/10.1007/3-540-27659-9
https://doi:10.1109/CEC.2015.7257083
https://doi.org/10.1016/j.jmaa.2004.10.032
https://doi.org/10.1016/j.ins.2016.08.022
https://doi.org/10.1016/j.amc.2014.09.013
https://doi.org/10.1145/2739480.2754644
https://doi.org/10.1109/ICNN.1995%20.488968
https://doi.org/10.1007/s00500-021-05750-0

The Journal of Engineering and Exact Sciences – jCEC

18

Lin, G. H., Xu, M., & Ye, J. J. (2014). On solving simple bi-level programs with a non convex

lower level program. Mathematical Programming, 144, 277-305. doi: https://doi.o rg/10.10

07/s10107-013-0633-4

Ma, L., & Wang, G. (2020). A solving algorithm for nonlinear bi-level programing problems

based on human evolutionary model. Algorithms, 13, 260-272. doi: https://doi.

org/10.3390/a13100260

Mathieu, R., Pittard, L., & Anandalingam, G. (1994). Genetic algorithm based approach to bi-

level linear programming. RAIRO-Operations Research, 28, 1-21.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering

Software, 69, 46-61. doi: https://doi.org/10.1016/j.advengsoft.2013.12.007

Mitsos, A., & Barton, P. (2006). A test set for bi-level programs. Available at

https://www.researchgate.net/publication/228455 291 .

Mora, G., & Cherruault, Y. (1997). Characterization and generation of _-dense curves. Computers

and Mathematics with Applications, 33, 83-91. doi: https://doi.org/10.1016/S0898-

1221(97)00067-9

Mora, G., & Mora-Porta, G. (2005). Dimensionality reducing multiple integrals by alpha-dense

curves. International Journal of Pure and Applied Mathematics, 22, 103-114.

Nouri, A., Abdenacer, N., & Sahraoui, D. (2023). Accurate range-based distributed localization of

wireless sensor nodes using grey wolf optimizer. The Journal of Engineering and Exact

Sciences, 9, 15920–01e. doi: https://doi.org/10.18540/jcecvl9iss4pp15920-01e

Oduguwa, V., & Roy, R. (2002). Bi-level optimisation using genetic algorithm. Proceedings 2002

IEEE International Conference on Artificial Intelligence Systems, 322-327. doi:

https://doi.org/10.1109/ICAIS.2002.1048121

Outrata, J. V. (1990). On the numerical solution of a class of stackelberg problems. Zeitschrift für

Operations Research, 34, 255-277. doi: https://doi.org/10.1007/BF01416737

Ruuska, S., & Miettinen, K. (2012). Constructing evolutionary algorithms for bi-level

multiobjective optimization. 2012 IEEE congress on evolutionary computation, 1-7. doi:

https://doi.org/10.1109/CEC.2012.6256156

Shimizu, K., & Aiyoshi, E. (1981). A new computational method for stackelberg and min-max

problems by use of a penalty method. IEEE Transactions on Automatic Control, 26, 460-

466. doi: https://doi.org/10.1109/TAC.1981.1102607

Srivastava, S., & Sahana, S. K. (2019). Application of bat algorithm for transport network design

problem. Applied Computational Intelligence and soft computing, 2019, 9864090. doi:

https://doi.org/10.1155/2019/9864090

Stephan, D., Joydeep, D., & Mordukhovich, B. (2007). New necessary optimality conditions in

optimistic bi-level programming. Optimization, 56, 577-604. doi: https ://doi.org/ 10.108 0/

02331930701617551

Xu, M., & Ye, J. J. (2014). A smoothing augmented lagrangian method for solving simple bi-level

programs. Computational Optimization and Applications, 59, 353-377. doi: http s://do i.org/

10.1007/s10589-013-9627-7

Ye, J. J., & Zhu, D. L. (1995). Optimality conditions for bi-level programming problems.

Optimization, 33, 9-27. doi: https://doi.org/10.1080/02331939508844060

Zemkoho, A., & Zhou, S. (2021). Theoretical and numerical comparison of the karush–Kuhn

tucker and value function reformulations in bi-level optimization. Computational

Optimization and Applications, 78, 625-674. doi: https://doi.org/10.1007/s10589-020-

00250-7

Zhang, T., Chen, Z., & Chen, J. (2017). A cooperative coevolution pso technique for complex

bilevel programming problems and application to watershed water trading decision making

problems. Journal of Nonlinear Sciences and Applications(JNSA), 10. doi: https://doi.org/10

.224 36 /jns a .010.04.65

https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/S0898-1221(97)00067-9
https://doi.org/10.1016/S0898-1221(97)00067-9
https://doi.org/10.18540/jcecvl9iss4pp15920-01e
https://doi.org/10.1109/ICAIS.2002.1048121
https://doi.org/10.1007/BF01416737
https://doi.org/10.1109/CEC.2012.6256156
https://doi.org/10.1109/TAC.1981.1102607
https://doi.org/10.1155/2019/9864090
https://doi.org/10.1080/02331930701617551
https://doi.org/10.1080/02331930701617551
https://doi.org/10.1007/s10589-013-9627-7
https://doi.org/10.1007/s10589-013-9627-7
https://doi.org/10.1080/02331939508844060
https://doi.org/10.1007/s10589-020-00250-7
https://doi.org/10.1007/s10589-020-00250-7
https://doi.org/10%20.224%2036%20/jns%20a%20.010.04.65
https://doi.org/10%20.224%2036%20/jns%20a%20.010.04.65

The Journal of Engineering and Exact Sciences – jCEC

19

Zhao, Z., & Gu, X. (2006). Particle swarm optimization based algorithm for bi-level programming

problems. Sixth International Conference on Intelligent Systems Design and Applications, 2,

951-956. doi: https://doi.org/10.1109/ISDA.2006.253740

Ziadi, R., & Bencherif-Madani, A. (2023). A mixed algorithm for smooth global optimization.

Journal of Mathematical Modeling, 11, 207-228. doi: http s://do i.org/10. 22124/JM M.202

2.23133.2061

https://doi.org/10.1109/ISDA.2006.253740
https://doi.org/10.22124/JMM.2022.23133.2061
https://doi.org/10.22124/JMM.2022.23133.2061

