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Abstract  

Bi-level programming problems (BLP) constitute an important class of non-convex optimization 

problems, which makes it challenging to find a global optimal solution. In this article, we propose 

an efficient technique to solve this category of problems. We reformulated the initial problem as a 

single-level optimization problem using the optimal value function of the lower-level problem. To 

solve the latter, we employed a technique based on 𝛼-dense curves to approximate the value 

function of the lower-level problem. Two evolutionary algorithms were then used to solve the 

reformulated problem. Furthermore, we extended our method to address multi-objective bi-level 

programming problems with a single objective at the upper level and multiple objectives at the 

lower level, known as a semi-vectorial bi-level programming problem. Several numerical 

experiments on nonlinear BLP show the outstanding efficiency of our approach. 

Keywords: Nonlinear bi-level programming. Multi-objective optimization. Global optimization.  

𝛼-dense curves. Evolutionary algorithms. 

 

Nomenclature 

For 𝑥, 𝑢, 𝑣 ∈  𝑅𝑛2 , ‖𝑥‖ represents the Euclidean norm of 𝑥. The notation 𝑢 ⋅ 𝑣 denotes the Hadamard 

product of the vectors 𝑢 and 𝑣, i.e. , (𝑢 ⋅ 𝑣)𝑖 = 𝑢𝑖𝑣𝑖  for all 1 ≤ 𝑖 ≤ 𝑛, and 𝑒 is the all-one vector, 𝑢 <
𝑣 would mean 𝑢𝑖 < 𝑣𝑖  for all 𝑖 = 1,… , 𝑛. The computation time is denoted by the symbol 𝑡, 
measured in seconds (𝑠). 
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1. Introduction  

Bi-level programming problems are a special type of hierarchical optimization problem.  

They are divided into two decision-making levels, namely, the upper and the lower levels,  where 

the lower-level parametric optimization problem forming some of the constraints for the  upper-

level problem. Since a bi-level programming problem is typically non-convex, solving  it is a 

challenging task. Over the past time, numerous approaches have been proposed in the literature for 

solving this problem, such as the Karush-Kuhn-Tucker approach (see, e.g., Dempe and Franke 

(2019) and references therein), penalty methods (Anandalingam and White  (1990)), and branch 

and bound methods (Bard and Moore (1990)), etc. 

In recent years, meta-heuristic algorithms have been increasingly popular for addressing 

BLP problems because of their beneficial characteristics. For example, Mathieu et al.  (1994)  

have developed one of the initial evolutionary algorithms (EAs) intended for this objective. The 

Genetic Algorithm (GA) is the most prevalent version among these algorithms, with numerous 

adaptations examined in diverse research. Additional significant methods encompass the Bat 

Algorithm (BA) (Srivastava and Sahana (2019)), Differential Evolution (DE) (Angelo et al.  

(2014)), and Particle Swarm Optimisation (PSO) (Zhang et al. (2017)). The Grey Wolf Optimizer 

(GWO), a prominent meta-heuristic technique, was introduced by Mirjalili et al. (2014) and 

simulates the natural leadership structure and hunting tactics of grey wolves; it has been used in 

many scientific fields (see, e.g., Nouri et all. (2023)). 

Certain studies have concentrated on the application of EAs to bi-level multi-objective 

optimization problems (BLMOP) (refer to, for instance, Ruuska and Miettinen (2012), Joao and 

Paulo (2014) and associated references), which can be divided into three types: multiple objectives 

at the upper level with a single objective at the lower level; a single objective at the upper level 

with multiple objectives at the lower level; and multiple objectives at both levels. 

Addressing bi-level programming problems directly can be exceedingly difficult. As a 

result, certain academics have focused on converting BLPs into single-level optimization 

problems. There are two principal approaches for this reformulation. The initial technique entails 

substituting the lower-level problem with the KKT optimality conditions. This approach 

necessitates strong assumptions to establish that the optimal solution of the bi-level optimization 

problem aligns with that of the reformulated problem (see Dempe and Dutta (2012) for further 

details). The second method is referred to as lower-level value function reformulation (VFR), 

which was originally suggested for numerical applications (Outrata (1990)). The optimality 

conditions related to this strategy are examined in Ye and Zhu (1995). Significantly, VFR has 

demonstrated superior numerical performance compared to KKT reformulation, as indicated in 

Zemkoho and Zhou (2021). 

Numerous studies advocate for a nested methodology in resolving BLP issues, wherein a 

classical technique manages the lower level and an EA solves the upper level (see, e.g., Zhao and 

Gu (2006), Jialin et all., and Jie (2016)). This strategy may be computationally intensive and 

ineffective for large-scale issues. We suggest a more effective approach to mitigate these 

limitations, intending to decrease computing costs and expedite the solution process. In this work, 

we utilize the value function reformulation approach. We establish a technique that calculates an 

approximation of the lower-level value function, employing the implementation of 𝛼-dense curves 

within the feasible domain, as first introduced by Mora and Cherruault (1997). These curves have 

been effectively applied in various fields of applied mathematics (see, e.g., Mora and Mora-Porta 

(2005), Butz (1972)). Our methodology is based on evolutionary algorithms, which have proven 

effective in various applied scientific fields for solving large-scale nonlinear problems. 

Furthermore, we offer a concise examination of employing the same methodology to address 

semi-vectorial, bi-level programming problems. 

The rest of this paper is organized as follows: Section 2 presents the bi-level programming 

problem formulation, where some definitions and properties are stated. In Section 3, evolutionary 
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algorithms are introduced. In Section 4, a novel proposed technique is presented. In Section 5, we 

use the same method to solve the semi-vectorial bi-level programming problem. In Section 6, the 

experimental results of the proposed algorithm are presented. Also, a comparison between two 

types of evolutionary algorithms is made. Finally, Section 7 provides a conclusion and future 

work. 

 

2. Problem Formulation 

In this paper, we examine a class of nonlinear bi-level programming problems, where the 

lower-level problem is a parametric optimization problem with box constraints. This problem can 

be defined as follows: 

 

  (𝑃)   

{
 
 

 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑔(𝑥, 𝑦) ≤ 0,

𝑦 ∈  Ψ(𝑥),
                                 

 

 

where 𝛹(𝑥) is the set of optimal solutions to the lower-level problem  

 (𝑃𝑥)   {

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑦

  𝑓(𝑥, 𝑦)

𝑠. 𝑡.
𝑐 ≤ 𝑦 ≤ 𝑑

 

There are two classes of variables in this problem: the upper-level variables 𝑥 ∈  𝑅𝑛1   and 

the lower-level variables 𝑦 ∈  𝑅𝑛2 . The functions 𝐹, 𝑓 ∶  𝑅𝑛1 × 𝑅𝑛2  →  𝑅 are, respectively the 

upper and lower objective functions, 𝑔 ∶  𝑅𝑛1  ×  𝑅𝑛2  → 𝑅𝑚 represents the upper-level 

constraints, 𝑎, 𝑏 ∈  𝑅𝑛1 , 𝑐, 𝑑 ∈  𝑅𝑛2  with 𝑛1, 𝑛2 and 𝑚 are integers. The current research indicates 

that the following definitions are essential for studying (𝑃). 

1. The feasible set of the lower level problem (𝑃𝑥) for every fixed 𝑥:  

𝑆 =  {𝑦 ∈  𝑅𝑛2  | 𝑐 ≤  𝑦 ≤  𝑑} . 

2.  The constraint region of (𝑃): 

Ŝ =  {(𝑥, 𝑦)  ∈  𝑅𝑛1 × 𝑅𝑛2 | 𝑎 ≤  𝑥 ≤  𝑏, 𝑐 ≤  𝑦 ≤  𝑑, 𝑔(𝑥, 𝑦)  ≤  0}. 

3. The rational reaction set of the lower level, for every fixed 𝑥, is:  

𝑅(𝑥) =  𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓(𝑥, 𝑦), 𝑦 ∈ 𝑆}. 

4. The inducible region of (𝑃): 

𝐼𝑅 =  {(𝑥, 𝑦) ∈  𝑅𝑛1   ×  𝑅𝑛2 | (𝑥, 𝑦) ∈ Ŝ, 𝑦 ∈  𝑅(𝑥)} . 

The definitions of feasible and optimal solutions for (𝑃) are given as follows: 

 

Definition 1  A point (x, y) is feasible of (P) if (x, y) ∈  IR. 

 

Definition 2 A point (x∗, y∗) is an optimal solution of (P) if (x∗, y∗) ∈  IR, and F(x∗, y∗)  ≤
F(x, y)  for all (x, y) ∈  IR.  
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3. Evolutionary Algorithms 

Evolutionary algorithms are stochastic, population-based direct search techniques that 

emulate natural evolution. This section provides a succinct summary of two metaheuristic 

techniques, Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO), along with an 

explanation of their functional mechanics. 

 

3.1 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart (1995), simulates 

the behavior of fish and birds in groups. The methodology employs mathematical equations that 

specify the positions and velocities of particles, allowing them to traverse the solution space 

effectively. A particle 𝑖 is designated by 𝑥𝑖, representing its position, while its velocity is indicated 

by 𝑣𝑖. The following is the updating rule for both position and velocity: 

 

𝑣𝑖
𝑘+1  =  𝑤 𝑣𝑖

𝑘  + 𝑐1𝑟𝑎𝑛𝑑1 (𝑃𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘) +  𝑐2𝑟𝑎𝑛𝑑2(𝑃𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘)                                           (1) 

𝑥𝑖
𝑘+1  =  𝑥𝑖

𝑘  + 𝑣𝑖
𝑘+1                                                                                                                      (2) 

 

where 𝑘 indicates the current iteration, 𝑟𝑎𝑛𝑑1 and  𝑟𝑎𝑛𝑑2 are two random numbers uniformly 

distributed in [0,1],  𝑐1 and 𝑐2 are the acceleration coefficients, the factor 𝑤 is the inertia weight; 

𝑃𝑖
𝑏𝑒𝑠𝑡 is the best solution previously found for the  𝑖𝑡ℎ particle; and 𝑃𝑔𝑏𝑒𝑠𝑡 is the best solution 

previously found in the swarm (global best solution). 

 

3.1 Grey Wolf Optimizer (GWO) 

Grey Wolf Optimization is a population-based metaheuristic algorithm that draws 

inspiration from nature. Presented by Mirjalili et al. (2014), it is based on how grey wolves 

behave. The GWO algorithm uses a mathematical model of the grey wolf social hierarchy. The 

optimization method concentrates on three principal solutions: the best solution, denoted as 𝛼; the 

second-best solution, denoted as  𝛽; and the third solution, denoted as 𝜎. The following equations 

are suggested: 

 

𝐴 = 2𝑎(𝑘) ⋅ 𝑟𝑎𝑛𝑑1 − 𝑎
(𝑘)                                                                                                               (3) 

𝐶 = 2𝑟𝑎𝑛𝑑2                                                                                                                                                          (4) 
𝐷 = |𝐶 ⋅  𝑋𝑝

𝑘 − 𝑋𝑘|                                                                                                                                      (5)   

𝑋𝑘+1 = 𝑋𝑝
𝑘 − 𝐴 ⋅ 𝐷                                                                                                                         (6) 

 

where 𝑎(𝑘)  = 𝜆𝑘𝑒 with the scalar 𝜆𝑘 defined by the following formula: 

 

𝜆𝑘  =  2 −
2𝑘

𝑚𝑎𝑥
                                                                                                                                (7) 

 

where 𝑚𝑎𝑥 is the maximum number of iterations, and 𝑘 is the current iteration. The vectors 𝐴 and 

𝐶 represent acceleration coefficients, the prey's location vector is indicated as 𝑋𝑝; the grey wolf's 

position vector is denoted by 𝑋. Additionally, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two random vectors in the 

interval [0,1]. 
Since the prey's location is unknown, we will replace it with the three best solutions:𝑋𝛼, 𝑋𝛽, 

and 𝑋𝜎.  So the wolves use these equations to update their positions. 

 

𝐷𝛼 = |𝐶1 ⋅  𝑋𝛼 − 𝑋|,  𝐷𝛽 = |𝐶2 ⋅  𝑋𝛽 − 𝑋|,  𝐷𝜎 = |𝐶3 ⋅  𝑋𝜎 − 𝑋|, 

 

𝑋1 = 𝑋𝛼 − 𝐴1 ⋅  𝐷𝛼 ,    𝑋2 = 𝑋𝛽 − 𝐴2 ⋅  𝐷𝛽 ,    𝑋3 = 𝑋𝜎 − 𝐴3 ⋅  𝐷𝜎 , 
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𝑋𝑘+1 = 
𝑋1 + 𝑋2 + 𝑋3

3
                                                                                                                                    (8) 

 

Here, |𝑋| denotes the vector of absolute values of each component of 𝑋. 
 

4. The New Proposed Technique 

The first step in this section is to convert (𝑃) into a single-level optimization problem. Using 

the optimal value function reformulation (VFR), we get the following equivalent problem: 

 

  (𝑃)   

{
 
 
 

 
 
 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

𝑔(𝑥, 𝑦) ≤ 0,

𝑓(𝑥, 𝑦) − 𝑉(𝑥)  ≤ 0,
                                 

 

where the optimal value function is defined by 

 

𝑉(𝑥) =  𝑚𝑖𝑛 
𝑦
{𝑓(𝑥, 𝑦) | 𝑐 ≤  𝑦 ≤  𝑑}. 

 

The problem (𝑃) is intricate and requires significant effort to solve due to its non-convexity 

and the presence of the non-differentiable function 𝑉(𝑥).  The presence of non-convexity hampers 

the resolution of optimization problems, and the involvement of typically non-differentiable 

functions further exacerbates the issue. Addressing such issues frequently necessitates specialized 

methodologies and a comprehensive analysis of the problem's framework and attributes. 

Many researchers have used the VFR approach to develop optimality conditions (see, e.g., 

Stephan et all. (2007), Jane (2005)). However, few recent studies have focused on numerical 

techniques (see, e.g., Lin et all. (2014), Xu and Ye (2014)). 

In order to solve (𝑃), we can use an exact penalty function approach and formulate it as 

follows: 

 

(𝑃𝜇)  

{
 

 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  𝐹(𝑥, 𝑦) + 𝜇𝐻(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

 

 
where  

𝐻(𝑥, 𝑦) = 𝑚𝑎𝑥  {𝑓(𝑥, 𝑦) − 𝑉(𝑥),   0} + ∑𝑚𝑎𝑥 {0,   𝑔𝑖(𝑥, 𝑦)}

𝑚

𝑖=1

. 

Our principal study focuses on resolving the penalty problem (𝑃𝜇) through the application of 

EAs. A multitude of scholars have employed EAs to address bi-level programming challenges. 

Numerous studies solve the lower-level problem for each particle in the population using classical 

methods, thereafter addressing the upper-level problem with EAs (see, e.g., Zhao and Gu (2006), 

Jialin et al. (2016)). This approach is often computationally demanding. 

We suggest a viable and inexpensive technique that converts the two-level problem into a 

single-level problem, as previously described. EA cannot be directly implemented because of the 
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characteristics of the function 𝑉(𝑥); therefore, we must focus on the optimal value function 𝑉(𝑥). 
The basic idea for determining 𝑉(𝑥) is to substitute it with an appropriate approximation, as 

described below: 

 

𝑉(𝑥) = 𝑚𝑖𝑛
𝑦
{  𝑓(𝑥, 𝑦) ∣∣ 𝑐 ≤ 𝑦 ≤ 𝑑 } 

          ≈ 𝑚𝑖𝑛{  𝑓(𝑥, 𝑦1), 𝑓(𝑥, 𝑦2), … , 𝑓(𝑥, 𝑦𝑝) ∣∣ 𝑐 ≤ 𝑦𝑗 ≤ 𝑑,   𝑗 = 1, … , 𝑝 }.  

 

where {𝑦1, 𝑦2, … 𝑦𝑝} are 𝑝 points of the set [𝑐, 𝑑]. We aim to cover the set [𝑐, 𝑑] by distributing the 

points {𝑦1, 𝑦2, … , 𝑦𝑝} across it. To do this, we will convert the multidimensional lower-level 

problem into a one-dimensional problem by employing a parametric 𝛼-dense curve (see Mora and 

Cherruault (1997)). The primary characteristic of these curves is their ability to represent 𝑛 

variables with just one variable. Let us recall the definition of an 𝛼-dense curve. 

 

Definition 3  Let α > 0, a subset D ⊂  S is said to be α-dense in S if,  for every y ∈ S, there exists 

a point  y̅ ∈  D such that  ‖y − y̅‖  ≤ α. 
 

Definition 4  A curve γ ∶ [0, β] →  S, where β > 0, is said to be α-dense in S if  γ([0, β]) is α-

dense in S, i.e.,  for every y ∈ S there exists  t ∈  [0, β] such that  ‖𝑦 − 𝛾(𝑡)‖ ≤ α, where γ(t)  =
 (γ1(t), γ2(t),… , γn2(t)). 

 

Theorem 1 (Ziadi and Bencherif-Madani (2023)) Let γ(t) = (γ1(t), γ2(t),… , γn2(t)) ∶  [0, β] →

 [c, d] be a continuous parametrized curve. Additionally, let θ1, θ2, … , θn2−1 , α  be strictly positive 

numbers satisfying the following conditions:   

1. γn2 is surjective. 

2. For any  i =  1, … , n2−1, γi reaches its bounds ci and di within every closed interval of 

length θi 

3. For any i =  1, … , n2 − 1 and any interval I ⊆  [0, β], we  have   

            μ(I) < θi  ⟹  μ(γi+1(I)) <  
α

√n2−1
,  

where μ(⋅) is the Lebesgue measure   . Given these conditions, the conclusion is that the curve γ is 

α-dense in [c, d]. 

The unidimensional problem, which depends on the single variable 𝑡:  

min
t ∈[0,β]

f ∗(x, t)  

where 𝑓∗(𝑥, 𝑡) =  𝑓(𝑥, 𝛾(𝑡)) represents an approximation of the multidimensional problem (𝑃𝑥). 

In this formulation, the objective function 𝑓∗(𝑥, 𝑡)  is an approximation of the objective function 

𝑓(𝑥, 𝑦) in the problem (𝑃𝑥).  

The density curve that we will use in our work is given by the following formula (taken from 

Ziadi and Bencherif-Madani (2023)). Let 𝛼 > 0 be a given number; consider the function 𝛾 ∶

[0, 𝜋

𝜃𝑛2
] →  [𝑐, 𝑑] such that  
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𝛾1(𝑡) =
𝑐1 + 𝑑1
2

−
𝑐1 − 𝑑1
2

cos 𝜃1 𝑡, 

𝛾2(𝑡) =
𝑐2 + 𝑑2
2

−
𝑐2 − 𝑑2
2

cos 𝜃2 𝑡, 

⁝ 

𝛾𝑛2(𝑡) =
𝑐𝑛2 + 𝑑𝑛2

2
−
𝑐𝑛2 − 𝑑𝑛2

2
cos 𝜃𝑛2 𝑡, 

 

where 𝜃1, 𝜃2,. . . , 𝜃𝑛2 are the parameters specified by: 

 

θ1 = 1, 

𝜃2 = 
𝛼

𝜋(|𝑐2| + |𝑑2|)
, 

𝜃3 = 
𝛼2

𝜋2(|𝑐2| + |𝑑2|)(|𝑐3| + |𝑑3|)
 

⁝ 

𝜃𝑛2 = 
𝛼𝑛2−1

𝜋𝑛2−1(|𝑐2| + |𝑑2|)(|𝑐3| + |𝑑3|)⋯ (|𝑐𝑛2| + |𝑑𝑛2|)
. 

 

By Theorem 1, the parametrized curve 𝛾(𝑡)  =  (𝛾1(𝑡), … , 𝛾𝑛2(𝑡)) is 𝛼-dense in [𝑐, 𝑑]. 

Figure 1 illustrates the densification of the square [−1,1] × [−1,1] by the support of the provided 

curve for 𝛼 =  0.3 and 𝛼 =  0.1. It is evident that the curve more effectively covers the 

designated area when 𝛼 is smaller. 

 
Figure 1 – the densification of the squar [−𝟏, 𝟏]𝟐 by the curve 𝜸. 

 

After establishing our comprehension of 𝛼-dense curves, we now focus on their application 

in populating the set 𝑆. By choosing a minimal value for 𝛼, we guarantee a high density,  thereby 

covering a significant portion of the set 𝑆. Our objective is to uniformly distribute the points 

{𝑦1, 𝑦2, … , 𝑦𝑝} along this curve, where 𝑝 denotes the number of points in the set [𝑐, 𝑑], as seen in 

Figure 2. The number of points 𝑝 in the distribution along the curve can be modified as required. It 

is clear that augmenting 𝑝 results in a superior approximation of the set 𝑆. 
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Figure 2 – The distribution points of the curve for 𝟏𝟎𝟎 points with 𝜶 = 𝟎. 𝟑. 

 

Consequently, we can resolve the following problem: 

 

(𝑃𝜇
′)  

{
 

 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  𝐺(𝑥, 𝑦) =  𝐹(𝑥, 𝑦) + 𝜇𝐻𝑎𝑝𝑝(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

 

 
where  

𝐻𝑎𝑝𝑝(𝑥, 𝑦) = 𝑚𝑎𝑥  {𝑓(𝑥, 𝑦) − 𝑉𝑎𝑝𝑝(𝑥),   0} + ∑𝑚𝑎𝑥 {0,   𝑔𝑖(𝑥, 𝑦)}

𝑚

𝑖=1

 

and 

 

𝑉𝑎𝑝𝑝(𝑥) =  𝑚𝑖𝑛 
𝑦

{𝑓 (𝑥, 𝛾(𝑡𝑗)) :  𝑗 = 1, … , 𝑝} 

 

where {𝑡1, 𝑡2, … , 𝑡𝑝} represents a subdivision of the interval [0, 𝜋

𝜃𝑛2
] . The steps in this subdivision 

should be small, meaning that for a small 𝜀 > 0, 

 

𝑚𝑎𝑥 
1≤𝑖≤𝑝−1

 {𝑡𝑖+1 − 𝑡𝑖} < 𝜀. 

 

We can also use a uniform subdivision by setting 𝑡𝑖  =  𝑖 ℎ, where ℎ =
𝜋

𝑝 𝜃𝑛2
 for 𝑖 =  0, … , 𝑝. In 

this case, the step size ℎ decreases as 𝑝 increases. 

Below, we provide two algorithms (BL-GWO, BL-PSO) based on PSO and GWO to address 

the final approximate problem. 
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Algorithm 1 BL-GWO Algorithm 

Step 0. Configure the parameters: population size 𝑛, maximum number of iterations 𝑚𝑎𝑥, 

penalty parameter 𝜇 >  0, density 𝛼 >  0, and number of distribution points 𝑝. 

Step 1. Initialization 

1. Randomly initialize the grey wolf population 𝑃 =  {(𝑥𝑖, 𝑦𝑖): 𝑖 =  1, … , 𝑛} 
2. Generate the distribution points 𝑧𝑖  = 𝛾(𝑡𝑖), 𝑖 = 1,… , 𝑝, and set  

              𝑉𝑎𝑝𝑝(𝑥) = 𝑚𝑖𝑛 
1≤𝑖≤𝑝

 {𝑓(𝑥, 𝑧𝑖)}. 

3. Set  𝐻(𝑥, 𝑦) =  max{𝑓(𝑥, 𝑦) − 𝑉𝑎𝑝𝑝(𝑥), 0} + ∑ max {0,   𝑔𝑖(𝑥, 𝑦)}
𝑚
𝑖=1 .    

4. Set  𝐺(𝑥, 𝑦)  =  𝐹(𝑥, 𝑦)  + 𝜇 𝐻(𝑥, 𝑦). 

To begin, calculate the fitness values 𝐺(𝑥𝑖, 𝑦𝑖) of each individual of the population and choose the 

three best solutions: 𝑋_𝛼 the best solution, 𝑋_𝛽 is the second-best solution, 𝑋𝜎 is the third-best 

solution. 

Step 2. Treatment 

1. For 𝑖 =  1 𝑡𝑜 𝑚𝑎𝑥 do 

2. For each 𝑋 ∈  𝑃 do 

i. Update 𝑎(𝑘), 𝐴, and 𝐶 using formulas (7), (3), (4). 

ii. Update the position according to equation (8). 

iii. Calculate its fitness value. 

3. End For 

4. Update the solutions 𝑋𝛼, 𝑋𝛽, and 𝑋𝜎 and set 𝑖 ∶=  𝑖 +  1. 

5. End For 

6. return 𝑋𝛼. 

 

Algorithm 2 BL- PSO Algorithm 

Step 0. Configure the parameters: population size 𝑛, maximum number of iterations 𝑚𝑎𝑥, 

penalty parameter 𝜇 >  0, density 𝛼 >  0, number of distribution points 𝑝, acceleration 

coefficients 𝑐1and 𝑐2, and inertia weight 𝑤. 

Step 1. Initialization 

1. Randomly initialize the particle population 𝑃 = { (𝑥𝑖, 𝑦𝑖): 𝑖 =  1, … , 𝑛 } and their velocity 

equals zero for all components. 

2. Generate the distribution points 𝑧𝑖  = 𝛾(𝑡𝑖), 𝑖 = 1,… , 𝑝, and set  

             𝑉𝑎𝑝𝑝(𝑥) = 𝑚𝑖𝑛 
1≤𝑖≤𝑝

 {𝑓(𝑥, 𝑧𝑖)}. 

3. Set  𝐻(𝑥, 𝑦) =  max{𝑓(𝑥, 𝑦) − 𝑉𝑎𝑝𝑝(𝑥), 0} + ∑ max {0,   𝑔𝑖(𝑥, 𝑦)}
𝑚
𝑖=1 .    

4. Set  𝐺(𝑥, 𝑦)  =  𝐹(𝑥, 𝑦)  + 𝜇 𝐻(𝑥, 𝑦). 
5. Determine the global best solution (𝑃𝑔𝑏𝑒𝑠). 
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Step 2. Treatment 

1. For 𝑖 =  1 𝑡𝑜 𝑚𝑎𝑥 do 

2. For each 𝑋 ∈  𝑃 do 

i. Update the position and velocity using equations (1), (2). 

ii. Calculate its fitness value. 𝐺(𝑥𝑖, 𝑦𝑖). 

iii. Update the personal best position 𝑃𝑏𝑒𝑠𝑡. 

iv. Update the global best position 𝑃𝑔𝑏𝑒𝑠𝑡. 

3. End For 

4. Set 𝑖 ∶=  𝑖 +  1. 

5. End For 

6. return 𝑃𝑔𝑏𝑒𝑠𝑡. 

 

5. Semivectorial Bi-level Programming Problem 

This section begins with preliminary knowledge of the multi-objective optimization 

problems discussed in this paper. It then provides a detailed description of the application of our 

algorithm (BL-PSO) in solving semi-vectorial bi-level programming problems. 

A general multi-objective programming problem (MOP) can be formulated as 

 

(𝑀𝑂𝑃)   {
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥
  𝑓(𝑥) ∶= (𝑓1 (𝑥),… , 𝑓𝑞(𝑥))

𝑠. 𝑡
𝑥 ∈ 𝑋.

 

 

where 𝑋 is a non-empty subset of 𝑅𝑛, and 𝑓: 𝑋 →  𝑅𝑞 (with 𝑞 ≥  2), the space 𝑅𝑛 containing the 

set 𝑋 of admissible points is called the decision space. The set 𝑌 =  𝑓(𝑋), called the set of 

admissible vectors, is in the criterion space 𝑅𝑞. 

 

Definition 5  A point  𝑥̅ ∈ 𝑋 is Pareto optimal (or efficient) if there is no 𝑥 ∈ 𝑋 that is better than 

it. This means that there is no point 𝑥 ∈ 𝑋 such that 𝑓𝑖(𝑥) ≤  𝑓𝑖(𝑥̅) for all 𝑖 =  1, … , 𝑞 and 

𝑓𝑘(𝑥)  <  𝑓𝑘(𝑥̅) for at least one 𝑘. 

 

Definition 6  A point 𝑥∗ ∈  𝑋 is weakly efficient if there is no point 𝑥 ∈  𝑋 such that 𝑓(𝑥) <
𝑓(𝑥∗).  
 

One of the most commonly employed methods for solving (MOP) is the weighted sum 

scalarization method. This approach facilitates the identification of efficient solutions for (MOP) 

by solving the following single-objective optimization problem: 

 

(𝑊𝑆𝜆)   {  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥∈𝑋

 ∑𝜆𝑖𝑓𝑖(𝑥),

𝑞

𝑖=1

 

where 𝜆 represents the scalar weights, with  𝜆 ∈ Σ𝑞, and 

 

Σ𝑞  =  {𝜆 ∈  𝑅
𝑞: 𝜆 ≥  0,∑𝜆𝑖 

𝑞

𝑖=1

=  1} 
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The following propositions, as presented in Ehrgott (2005), illustrate the relationship between the 

multi-objective optimization problem (MOP) and the weighted sum (𝑊𝑆𝜆) problem. 

 

Proposition 1 (Ehrgott (2005)) Let 𝑥∗ be an optimal solution of the weighted sum problem 

(𝑊𝑆𝜆). The following statements hold.  

• If  𝜆 ∈  Σ𝑞 , then 𝑥∗ is weakly efficient. 

• If 𝜆 ∈ Σ𝑞
+, then 𝑥∗ is efficient, where Σ𝑞

+  =  {𝜆 ∈ 𝑅𝑞: 𝜆 >  0, ∑ 𝜆𝑖 
𝑞
𝑖=1 =  1}.  

   

Proposition 2 (Ehrgott (2005)) Let 𝑓𝑘, for 𝑘 =  1, … , 𝑞, be convex functions, and 𝑋 be a convex 

set, then 𝑥∗ is weakly efficient if and only if there exists 𝜆 ∈ Σ𝑞, such that 𝑥∗ is an optimal 

solution of (𝑊𝑆𝜆). 
Now, we examine a class of semi-vectorial bi-level programming problems in which the 

lower-level problem is a parametric multi-objective optimization problem with box constraints. 

The problem can be formulated as follows: 

 

(𝐵𝑀𝑃)  

{
 
 

 
 
 Minimize

𝑥,𝑦
  𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑔(𝑥, 𝑦) ≤ 0,
𝑦 ∈ Ψ𝑤𝑒(𝑥),

 

 

where Ψ𝑤𝑒(𝑥) is the set of weakly efficient solutions of the lower level problem 

 

  (𝑀𝑃𝑥)   {
 Minimize

𝑦
  𝑓(𝑥, 𝑦) ∶= (𝑓1 (𝑥, 𝑦), 𝑓2(𝑥, 𝑦),… , 𝑓𝑞(𝑥, 𝑦))

𝑠. 𝑡.
𝑐 ≤ 𝑦 ≤ 𝑑,

 

 
where 𝐹 ∶ 𝑅𝑛1 × 𝑅𝑛2 →  𝑅, 𝑔 ∶ 𝑅𝑛1 × 𝑅𝑛2 → 𝑅𝑚, 𝑓𝑖 ∶ 𝑅

𝑛1 × 𝑅𝑛2 →  𝑅, 𝑖 = 1,… , 𝑞. 
 

𝛹𝑤𝑒(𝑥)  = {𝑦 ∈ 𝑆 ∶  ∄   𝑦̅ ∈  𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑓(𝑥, 𝑦̅)  <  𝑓(𝑥, 𝑦)}. 

 

To rewrite problem (BMP) as a single-level problem, we assume that fi(x, y), for  i =
 1, … , q, are convex in y when  x  is fixed. By applying the weighted sum scalarization to the 

lower-level problem, (BMP) can be reformulated as follows: 
 

(𝐵𝑀𝑃𝑠)  

{
 
 
 
 

 
 
 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦,𝜆

  𝐹(𝑥, 𝑦)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,

0 ≤ 𝜆 ≤ 1,   ∑𝜆𝑖 

𝑞

𝑖=1

=  1,

𝑔(𝑥, 𝑦) ≤ 0,
𝑦 ∈ 𝑆(𝑥, 𝜆),

 

 

where   𝑆(𝑥, 𝜆) =   𝑎𝑟𝑔𝑚𝑖𝑛
𝑐≤𝑦≤𝑑

 ∑ 𝜆𝑖𝑓𝑖(𝑥, 𝑦)
𝑞
𝑖=1 . 
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This conversion has been utilized by various researchers (see, e.g., Gupta and Ong (2015), Li and 

L.Zhang (2021)). The relationship between the scalarized problem (𝐵𝑀𝑃𝑠) and the original bi-

level multiobjective problem (𝐵𝑀𝑃) has been examined in Dempe and Zemkoho (2013) and 

Dempe and Mehlitz (2019). Results concerning local optimality are discussed in Dempe and 

Zemkoho (2013) and corrected in Dempe and Mehlitz (2019). It has been established that the 

problems (𝐵𝑀𝑃) and (𝐵𝑀𝑃𝑠) are equivalent in terms of global optimal solutions (see Dempe and 

Mehlitz (2019)). 

Using the optimal value function reformulation and an exact penalty function approach we 

get the following problem: 

 

(𝐵𝐿𝜇) 

{
 
 

 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦,𝜆
  𝐹(𝑥, 𝑦) + 𝜇𝐻(𝑥, 𝑦, 𝜆)

𝑠. 𝑡.
𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 ≤ 𝑦 ≤ 𝑑,

                     0 ≤ 𝜆𝑖 ≤ 1, 𝑖 = 1, … , 𝑞,

 

 
where  

𝐻(𝑥, 𝑦, 𝜆) =  𝑚𝑎𝑥 {∑𝜆𝑖𝑓𝑖(𝑥, 𝑦) − 𝑉(𝑥), 0 

𝑞

𝑖=1

 } +  ∑𝑚𝑎𝑥 {0,   𝑔𝑖(𝑥, 𝑦)} 

𝑚

𝑖=1

+ |∑𝜆𝑖 − 1

𝑞

𝑖=1

| 

 
and the optimal value function is defined by  

 

𝑉(𝑥, 𝜆) =  𝑚𝑖𝑛
𝑦
{∑𝜆𝑖𝑓𝑖(𝑥, 𝑦) 

𝑞

𝑖=1

 | 𝑐 ≤  𝑦 ≤  𝑑}. 

 

Finally, we apply our proposed algorithm, BL-PSO, to solve (𝐵𝐿𝜇). 

 

6. Computational Tests 

In this section, we implement our algorithm on several nonlinear bi-level programming 

problems to illustrate the efficacy of the suggested method. Furthermore, we compare the 

solutions obtained by the proposed algorithm with those found in related references. We evaluate 

the computational efficiency of BL-GWO and BL-PSO in terms of computational time and 

solution quality. The parameters for BL-PSO are established as follows: acceleration coefficients 

𝑐1  =  𝑐2  =  1.2, inertia weight 𝑤 =  0.8, population size 𝑛 =  1000, and 𝛼 =  0.01. We 

implement the algorithm using Julia 1.10.1. 
 

6.1 Test Problems 

 

Problem 1. (Mitsos and Barton (2006))                  Problem 2. (Mitsos and Barton (2006)) 

{
 
 

 
  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  (𝑥 +

1

2
)
2

+ 
1

2
𝑦2

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 1,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
−1≤𝑦≤1

 
1

2
𝑥𝑦2 +

1

4
𝑦4

                           

{
 
 

 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

  𝑦

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 1,

𝑦 ∈  𝑎𝑟𝑔𝑚𝑖𝑛
−0.8≤𝑦≤1

 𝑥 (16𝑦4 + 2𝑦3 − 8𝑦2 −
3

2
𝑦 +

1

2
)
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Problem 3. (Oduguwa and Roy (2002))              Problem 4.(Mitsos and Barton(2006)). 

{
 
 

 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  (𝑥 − 1)2 + (𝑦 − 1)2

𝑠. 𝑡.
𝑥 ≥ 0,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
𝑦≥0

 
1

2
𝑦2 + 500𝑦 − 50𝑥𝑦

                  

{
 
 

 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

  𝑥2 − 𝑦

𝑠. 𝑡.
0 ≤ 𝑥 ≤ 1,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤3

((𝑦 − 1 − 0.1𝑥)2 − 0.5 − 0.5𝑥)2 

    

                    
Problem 5. (Mitsos and Barton (2006))                  Problem 6. (Mitsos and Barton (2006)) 

{
 
 
 
 

 
 
 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

  𝑥1𝑦1 + 𝑥2𝑦2
2 + 𝑥1𝑥2𝑦3

3

𝑠. 𝑡.
−1 ≤  𝑥 ≤  1,

0.1 − 𝑥1
2 ≤  0,

1.5 − 𝑦1
2 − 𝑦2

2 − 𝑦3
2 ≤  0,

−2.5 + 𝑦1
2 + 𝑦2

2 + 𝑦3
2 ≤  0,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
−1≤𝑦≤1

 𝑥1𝑦1
2 + 𝑥2𝑦2

2 + (𝑥1 − 𝑥2)𝑦3
2

      

{
 
 
 
 

 
 
 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  (𝑥 − 3)2 + (𝑦 − 2)2

𝑠. 𝑡.
0 ≤  𝑥 ≤  8,
−2𝑥 + 𝑦 ≤  1,
𝑥 − 2𝑦 ≤  −2,
𝑥 + 2𝑦 ≤  14,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤10

 (𝑦 − 5)2

  

 

Problem 7. (Shimizu and Aiyoshi (1981)) 

{
 
 
 

 
 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑥,𝑦
  (𝑥1 − 30)

2 + (𝑥2 − 20)
2 − 20𝑦1 + 20𝑦2

𝑠. 𝑡.
−𝑥1 − 2𝑥2 + 30 ≤  0,
𝑥1 + 𝑥2 − 25 ≤  0,
𝑥2 − 15 ≤  0,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤10

(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 

 

 

Problem 8. (Ma and Wang (2020)) 

{
  
 

  
  Minimize 

𝑥,𝑦
∑(|𝑥𝑖 − 1| + |𝑦𝑖|

10

𝑖=1

)           

𝑠. 𝑡.

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
−𝜋≤𝑦≤𝜋

exp([1 +∑(𝑦𝑖
2 4000) −⁄

10

𝑖=1

∏cos(𝑦𝑖 √𝑖⁄ )

10

𝑖=1

]∑𝑥𝑖
2

10

𝑖=1

)

 

 

Problem 9. (Dempe and Mehlitz (2019))          Problem 10. (João et all (2015)) 

{
 
 

 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

  𝑦 − 𝑥

𝑠. 𝑡.
0 ≤ 𝑥 ≤ 1,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝑦≤1

 (𝑥𝑦, 1 − 𝑦)

                               

{
 
 

 
 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥,𝑦

   (𝑦1 − 1)
2 + 𝑦2

2 + 𝑥2

𝑠. 𝑡.
−1 ≤ 𝑥 ≤ 2,

𝑦 ∈   𝑎𝑟𝑔𝑚𝑖𝑛
−1≤𝑦≤2

 (𝑦1
2 + 𝑦2

2, (𝑦1 − 𝑥)
2 + 𝑦2

2)

                        

                            

6.2 Results 

The experiments for each example are repeated 20 runs, ensuring that the best solution from 

each run is selected as the respective global optimum. 

 Table 1 specifies the parameters for 𝑝, 𝑚𝑎𝑥, and 𝜇. Table 2 compares the solutions 

obtained with the proposed algorithm against those found in relevant references, showing the best 

solutions (𝑥∗, 𝑦∗) and the corresponding value 𝐹∗ achieved at the upper level. Table 3 presents a 
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comparative study between the two evolutionary algorithms, BL-PSO and BL-GWO. Table 4 

compares our algorithm with the one proposed by Zhao and Gu (2006). 

 

Table 1 – Parameters of 𝝁, 𝒑, and 𝒎𝒂𝒙 for solving problems 𝟏 − 𝟏𝟎. 

Problems    𝝁                           𝒑 𝒎𝒂𝒙 

𝒑𝟏 106 1000 100 

𝒑𝟐 100 1000 100 

𝒑𝟑 − 𝒑𝟔 106 1000 100 

𝒑𝟕 100 6000 100 

𝒑𝟖 100 1000 200 

𝒑𝟗 100 1000 100 

𝒑𝟏𝟎 100 1000 200 

 

Table 2 – Comparison between the best solutions found by our proposed algorithm and the 

results obtained in the corresponding references. 

 
Problems. 

BL-PSO 

(𝒙∗, 𝒚∗) 
 

𝑭∗ 
Ref. 

(𝒙∗, 𝒚∗) 
 

𝑭∗ 
𝑷𝟏 (−0.25,± 0.5) 0.1868 (−0.25,± 0.5) 0.1875 

𝑷𝟐 (4.68 × 

10−11, −0.8) 
−0.8 (0, −0.8) −0.8 

𝑷𝟑 (1, 0) 1 (10.04, 0.1429) 82.44 

𝑷𝟒 (0.21, 1.80) −1.75 (0.21,1.79) −1.75 

𝑷𝟓 (−1,−1,1, 
 ±1, −0.7071) 

−2.35 (−1,−1,1, 
1,−0.707) 

−2.35 

𝑷𝟔 (3, 4.99) 8.95 (3, 5) 9 

𝑷𝟕 (20, 4.99, 10, 4.82) 221.511  (20, 5, 9.77, 4.95) 228.7 

 
 
 
 
 
𝑷𝟖 
 
 
 
 

(0.996, 0.999, 
 1.000, 0.999, 
0.999, 1.000, 
 0.999, 0.999, 
1.000, 1.000 
−0.001, 0.005, 
−7.395 × 10−5, 
−0.0013, 

0.000, 0.000, 
 −0.000, 0.002, 
0.001,−0.000) 

 
 
 
 
 

0.018 
 

(1.00,1.00,1.00, 
1.00,1.00, 0.999, 
1.00,0.999,1.00, 
1.00,3.56 × 

10−6, −2.11 
× 10−7, 7.38 × 

10−7, 5.02 ×  
10−7, −5.38 × 
 10−7, −1.26 ×  
10−6, −9.99 ×   
10−7, −2.30 ×   
10−6, −9.08 × 

10−8, 1.7
× 10−6) 

 
 
 
 
 
3.26 × 10−3 

 

 

 

Comments. First, we mention that Problems 1, 2, 4, 5, and 6 are taken from the reference Mitsos 

and Barton (2006), which provide theoretical solutions to these problems. When we compared 

these theoretical solutions with our obtained results, we found that our algorithm consistently 

produced perfect solutions. Notably, for Problem 5, our algorithm revealed the presence of two 

global solutions, whereas only one solution was indicated  in Mitsos and Barton (2006). The 

algorithm referenced in Oduguwa and Roy (2002) fails to attain the global optimum for Problem 
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3, while our algorithm successfully achieves it. For Problems 7 and 8, our algorithm yields highly 

satisfactory results. Table 3 provides an overview of the comparison results between BL-GWO 

and BL-PSO. The results show that both algorithms perform similarly in terms of solution quality, 

but BL-GWO takes more time than BL-PSO. 

 

Table 3 –  Performance comparison between BL-PSO and BL-GWO. 

  BL-GWO   BL-PSO  

Problems. (𝑥∗, 𝑦∗) 𝐹∗ 𝑡/𝑠 (𝑥∗, 𝑦∗) 𝐹∗ 𝑡/𝑠 
𝑷𝟏 (−0.25, 0.5) 0.186 6.8 (−0.25, 0.5) 0.186 4.8 

𝑷𝟐 (4.0833 × 

 10−20, −0.8) 
−0.8 8.6 (4.688 × 

10−11, −0.8) 
−0.8 5.4 

𝑷𝟑 (1, 0) 1 4.3 (1, 0) 1 3.2 

𝑷𝟒 (0.21, 1.80) −1.75 5.0 (0.21, 1.80) −1.75 3.2 

𝑷𝟓 (−1,−1, 1, 
−1,−0.7070) 

−2.353 4.7 (−1,−1, 1 

−1,−0.7071) 
−2.353 3.2 

𝑷𝟔 (3, 4.99)  8.952 3.4 (3, 4.99) 8.952 2.4 

𝑷𝟕 (19.99, 5.001, 
10, 4.82) 

221.54 25.5 (20, 4.99, 
10, 4.82) 

221.51 16.5 

 

 

 

 

𝑷𝟖 

(0.999, 0.999, 
0.999, 1.000, 
1.000, 1.000, 
0.999, 0.999, 
1.000, 0.999 

0.007, 0.002, 
0.003, −0.012, 
−0.035, 0.001, 
0.008, −0.012 

−0.003, 0.001) 

 

 

 

 

 0.094 

 

 

 

 

307.9 

(0.996,0.999, 
 1.000,0.999, 
0.999,1.000, 
 0.999,0.999, 
1.000,1.000 
−0.001,0.005, 
−7.39 × 10−5, 
−0.0013, 
0.000,0.000, 
 −0.000,0.002, 
0.001,−0.000) 

 

 

 

 

0.018 

 

 

 

 

235.0 

 

Comparison between our algorithm and the algorithm proposed by Zhao and Gu (2006)  

This part compares the performance of our algorithm with that of the algorithm proposed by Zhao 

and Gu (2006). We selected Problems 3, 6, and 7 for comparison, using parameters 𝑛 =  40, 

𝑚𝑎𝑥 =  100, 𝑝 =  1000, and 𝛼 =  0.01. Table 4 presents the results. 

 

Table 4 –  Comparing our algorithm with the one proposed by Zhao and Gu (2006). 

 

Problems. 

BL-PSO 

(𝒙∗, 𝒚∗) 
 

𝒕/𝒔 

 \cite{Zhao2006} 

(𝒙∗, 𝒚∗) 
 

𝒕/𝒔 

𝑷𝟑 (1.0, 0.0) 0.15 (1.0, −9.974 ×  
 10−9) 

50.19 

𝑷𝟔 (3.000, 4.992) 0.10 (3.0, 4.9999) 46.27 

𝑷𝟕 (19.997, 5.001, 
10.0, 4.758) 

0.40 (19.837, 5.109, 
10.00, 5.109) 

83.87 

 

Although our approach relies on approximating the value function of the lower level, 

resulting in approximate solutions, it is significantly faster and more efficient in computational 

time compared to the algorithm proposed by Zhao and Gu (2006). 
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Results of the two examples 9, 10: In Problem 9, the set of weakly efficient solutions to the 

lower-level problem is the interval [0,1] for all 𝑥 ∈  [0,1]. Hence, (𝑥∗, 𝑦∗)  =  (1, 0) represents the 

unique optimal solution. When we apply our BL-PSO algorithm, we also find (𝑥∗, 𝑦∗)  = (1, 0) 
with 𝜆 =  (1, 0). 

For the Problem 10, we apply the weighted sum approach to the lower-level problem 

 

{

 Minimize 
𝑦

(𝑦1
2 + 𝑦2

2, (𝑦1 − 𝑥)
2 + 𝑦2

2)  

𝑠. 𝑡.
−1 ≤ 𝑦 ≤ 2,

 

 

Using different values of 𝜆𝑖, (where 𝑖 = 1,2), with the constraint that 𝜆1 + 𝜆2  =  1, we obtain the 

set of efficient points shown in Figure 3. Since 𝑦2 is zero in all efficient solutions, we plot the 

graph using the 𝑦1 and 𝑥 axes.  

 
The theoretical optimal solution is the point (𝑥∗, 𝑦∗)  =  (0.5, 0.5, 0), When we apply our 

algorithm BL-PSO, we find: (𝑥∗, 𝑦∗)  =  (0.48, 0.54, 5.46 × 10−5), with 𝜆 =  (0, 1). 
Based on Examples 9 and 10, we conclude that our technique can be extended to semi-

vectorial bi-level problems. However, this extension poses certain challenges that require further 

investigation and resolution. 

 

6. Conclusion and future work 

In this paper, we have proposed an effective method for solving bi-level programming 

problems using evolutionary algorithms. We demonstrated the effectiveness of our algorithm by 

applying it to several problems. Our approach is computationally efficient; unlike studies that 

solve the lower-level problem using classical methods and apply evolutionary algorithms to the 

upper-level problem (Zhao and Gu (2006), Jialin et al. (2016)), our method reduces the overall 

computational effort. We also compared the performance of two evolutionary algorithms: PSO 

and GWO. Additionally, we extended our approach to semi-vectorial bi-level programming 

problems, achieving satisfactory results for small-scale problems. In future work, we aim to 

develop an algorithm capable of handling large-scale semi-vectorial bi-level programming 

problems while also incorporating additional constraints into the lower-level problem. 
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