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Abstract  

Handwritten signature recognition (HSR) is a critical component of biometric systems, widely used 

for securing financial transactions and identity verification. However, the variability of handwritten 

signatures, influenced by individual writing styles, inconsistencies, and environmental factors, 

presents significant challenges for recognition systems. Despite these obstacles, signatures remain 

a reliable and popular biometric trait. This paper introduces a novel deep learning approach utilizing 

a convolutional neural network (CNN) architecture specifically designed for HSR. The proposed 

method was validated using two prominent datasets, MCYT-75 and GPDS-300, with detailed 

descriptions of the CNN structure. Experiments, conducted on a personal computer equipped with 

an NVIDIA Quadro M1200 GPU, an Intel i7 processor, and 32 GB of RAM, demonstrated the 

model’s exceptional performance, achieving validation accuracies of 99.60% on the MCYT-75 

dataset and 99.80% on the GPDS-300 dataset. These results reflect the model’s robustness and 

minimized error rates, outperforming existing techniques and underscoring the effectiveness of deep 

learning for signature recognition. This study highlights the proposed model's potential for real-

world applications and paves the way for further advancements in biometric authentication 

technologies. 

Keywords: Biometric Recognition, Deep Learning (DL), Handwritten Signatures, CNN, MCYT-

75 and GPDS-300 database. 
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1. Introduction 

 

In today’s increasingly digital world, where secure identity verification underpins trust and safety, 

biometric identification has become a cornerstone of modern authentication systems. By leveraging 

unique physiological or behavioral characteristics, biometrics ensures precise and reliable 

identification. Among the numerous biometric modalities such as fingerprints, facial recognition, 

iris patterns, and voice recognition (Albasu et al., 2023; Hezil et al., 2018; Jain et al., 2020), 

handwritten signatures hold a distinctive position. They represent a unique blend of physiological 

traits, seen in the individualistic formation of letters and symbols, and behavioral patterns, linked to 

the act of signing itself (Ferrer et al., 2012; Bhunia et al., 2019). 

One of the most complex applications of biometrics in identity verification is signature verification 

(Diaz et al., 2017; Impedovo et al., 2008). This specialized domain focuses on analyzing signatures 

to authenticate individuals, playing a vital role in fraud prevention and the verification of critical 

documents. Signature verification is widely adopted in financial institutions, legal frameworks, and 

other sectors requiring robust identity confirmation mechanisms (Sharif et al., 2019; Ghosh, 2020; 

Sadak et al., 2022). The importance of this process cannot be overstated, as it underpins trust and 

reliability across transactions, agreements, and secure systems. 

Handwritten signatures are generally classified into two categories: dynamic (online) and static 

(offline). Dynamic signature verification captures real-time signing data, analyzing parameters such 

as speed, pressure, and rhythm to extract behavioral features (Khalil et al., 2009). In contrast, offline 

signature verification relies on static images of signatures, typically scanned from physical 

documents, and evaluates their visual characteristics. Effective offline verification requires a well-

curated dataset of genuine signatures, which is tested against forgeries to assess the system’s 

accuracy and robustness (Alaei et al., 2017). 

A significant body of research has focused on enhancing the accuracy and reliability of offline 

signature verification using advanced methodologies. For example, one study employed rotation-

invariant Local Binary Patterns (LBP) with 8 and 16 neighborhoods, combined with Gray Level Co-

occurrence Matrices (GLCM), to distinguish genuine signatures from forgeries (Vargas et al., 2011). 

By incorporating background removal techniques and a histogram displacement method to mitigate 

the effects of varying writing instruments, the researchers achieved impressive results. Their 

approach was tested on the MCYT database and the GPDS-100Gray signature database (Ortega-

Garcia et al., 2003; Vargas et al., 2007), yielding Equal Error Rates (EERs) of 12.06% and 9.02% 

for 5-sample and 10-sample training sets, respectively, when using a Least Squares Support Vector 

Machine (LS-SVM) classifier (Suykens et al., 2002; Abdoli et al.,  2014). 

Building on advancements in offline signature verification, (Bharadi et al., 2010) introduced a 

method utilizing the Walsh transform applied to horizontal and vertical pixel distributions. Their 

approach achieved a False Acceptance Rate (FAR) of 2.5%, an Equal Error Rate (EER) of 3.29%, 

and a commendable accuracy of 95.08%. Similarly, (Dubey et al., 2012) employed Support Vector 

Machine (SVM) methods, achieving a classification rate of 95%. Their technique involved 

extracting global, directional, and grid features, amounting to 77 distinctive characteristics, and 

utilizing a one-against-all classification strategy to address the multiclass nature of the signature 

recognition problem. 

Another notable methodology focuses on systems leveraging Hidden Markov Models (HMMs), 

which have been applied to datasets containing up to 4,000 signatures (Odeh et al., 2011). 

Enhancements to these models, such as integrating pixel distribution features, have further improved 

their performance (Shah et al., 2016). Additional studies have explored the potential of HMM-based 

techniques to strengthen offline signature verification (Benhur, 2021; Kingma et al., 2017). 

Dynamic Time Warping (DTW) has emerged as a powerful contender in both online and offline 

signature verification. In online applications, DTW often surpasses HMM-based methods, utilizing 

template-matching techniques to great effect (Sanghvirajit, 2021). An enhanced DTW model was 
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proposed by (Kang, 2019), incorporating personalized parameters for individual signers and features 

such as quantized directions, curvature changes, speed, and pressure. Tested on the SUSIG database, 

which includes skilled forgeries, this model achieved an area under the Receiver Operating 

Characteristic (ROC) curve of 99.5% and an EER of 3.48%. 

Additional research highlights the use of SVM models for offline signature verification. (Bindal, 

2019) compared SVM performance with Multi-Layer Perceptrons (MLP), demonstrating the 

potential of machine learning techniques in this domain. Another innovative approach converts 

signature images into time series data through linear scanning, using time series shapelets for feature 

extraction and the Mahalanobis distance for comparison (Bertolini et al., 2010). This technique was 

evaluated on a dataset of 1,287 questioned signatures and 646 reference signatures, yielding an EER 

of 5.8%. Moreover, a system employing an interval symbolic representation and a fuzzy similarity 

measure was tested on a substantial dataset of 16,200 offline signature images, showing its 

scalability and effectiveness (Vinushanth, 2020; Manohar, 2017). 

Handwritten signature recognition (HSR) plays a crucial role in biometric systems for securing 

financial transactions and identity verification, yet it remains challenging due to the variability in 

writing styles, inconsistencies, and environmental factors. This research introduces a novel deep 

learning (DL) technique based on a convolutional neural network (CNN) architecture specifically 

designed for offline HSR. By leveraging publicly available datasets, the proposed method 

demonstrates significant advancements in accuracy and reliability. The approach addresses key 

challenges in HSR, highlighting its importance and novelty while showcasing its potential for real-

world biometric authentication applications. 

 

2. Methodologies 

2.1. Deep Learning, Machine Learning, and Artificial Intelligence 

Artificial Intelligence (AI) (Wang et al., 2023; Kurani et al., 2023), Machine Learning (ML) 

(Haug et al., 2023; Yu et al., 2023), and Deep Learning (DL) (Menghani, 2023; Aslani et al., 2023; 

Liu et al., 2023) are interrelated fields that play pivotal roles in advancing handwritten signature 

recognition systems. AI serves as the overarching domain focused on designing systems capable of 

performing tasks that traditionally require human intelligence, such as pattern recognition and 

decision-making. Within AI, ML represents a subset (illustrated in Figure 1) dedicated to enabling 

algorithms to learn from data and improve their performance over time without explicit 

programming. DL, a further subset of ML, employs artificial neural networks with multiple layers 

to analyze large-scale data, unlocking sophisticated pattern recognition capabilities. 

In the context of handwritten signature recognition, these technologies function 

synergistically. AI provides the foundational framework for designing recognition systems, ML 

enables adaptive learning and performance optimization from diverse signature samples, and DL 

excels in capturing intricate and nuanced features of signatures. This combination enhances the 

system's accuracy and reliability in distinguishing authentic signatures from forgeries, addressing 

challenges in modern identity verification. Thus, the relationship among these three concepts is 

hierarchical: AI encompasses ML, which in turn encompasses DL, each representing a more 

specialized approach to achieving intelligent behavior in machines. 

 

 
Figure 1 - Relationship between AI, ML, and DL 

 

2.2.Convolution Neural Network (CNN) for handwritten signatures recognition  
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A Convolutional Neural Network (CNN) is a specialized deep learning architecture designed 

for a Convolutional Neural Network (CNN) (Akinci et al., 2023; Taşpinar et al., 2023; Cong et al., 

2023; Kshatri et al., 2023) is a specialized deep learning architecture designed for processing grid-

structured data, such as images. Feature extraction in CNNs (depicted in Figure 2) involves 

identifying and selecting critical patterns or attributes from input data, such as signature images. 

CNNs perform this automatically through a series of layers, including convolution, pooling, and 

activation functions, which transform raw input data into structured representations highlighting 

relevant characteristics. 

Following feature extraction, the classification process (also shown in Figure 2) categorizes 

the input into predefined classes or labels. In CNN architectures, fully connected layers often 

succeed the feature extraction layers, interpreting the learned patterns and assigning probabilities to 

each class. This process ensures accurate categorization based on extracted features. Many CNN 

architectures follow the standard pattern described by Equation 1 (Sharif et al., 2019), which 

outlines the relationship between layers and their functionality. 

In this framework (equation 1), IN refers to the input layer, CONV signifies the convolution 

layer, POOL stands for the pooling layer, FC represents the fully connected layer, and OUT 

indicates the output layer. The variables M and N are integers; the symbol “*” denotes a repetition 

of elements, while “?” indicates that something is optional. 

 

IN ⇒ [CONV ⇒ POOL? ] ∗ M ⇒ [FC] ∗ N ⇒ OUT                                (1) 

 

Figure 2 shows CNN architecture for signature recognition. In the realm of signature 

recognition, feature extraction, and classification work together to effectively identify individuals 

based on their unique signatures. CNNs automate the extraction of distinctive features from 

signature images, such as strokes, curves, and angles, which are crucial to differentiating one 

signature from another. After these features are extracted, the classification phase categorizes the 

signatures into defined classes, determining whether a signature is genuine or forged. This 

combination of automated feature extraction and robust classification makes CNNs highly effective 

in verifying signatures with high accuracy and reliability. 

 

 
Figure 2 - CNN architecture for signature recognition 

The Core Components of CNN for handwritten signatures recognition are:  

• Input Layer: The input layer receives the images of handwritten signatures, typically formatted 

in a consistent resolution suitable for further processing. 

• Convolution Layers: These layers apply convolution filters to input images to extract spatial 

hierarchies of features. Each filter moves across the image and generates feature maps that 

capture essential patterns, such as edges and textures, which are crucial in distinguishing 

between different signatures. 
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• Activation Function: Typically, Rectified Linear Unit (ReLU) (see equation 2) is used after 

convolutional layers to introduce non-linearity into the model. This allows the CNN to learn 

complex patterns in the data. 

ReLU(xi) = max(0, xi)                                                       (2) 

 

• Pooling Layers: These layers decrease the spatial dimensions of the feature maps (usually max 

pooling). Pooling helps in making the representation smaller and more manageable, reduces 

computation time, and also provides some degree of translation invariance. 

• Fully Connected Layers (see equation 3): After multiple convolution and pooling layers, fully 

connected layers are used to make the final classification. These layers connect every neuron 

from the previous layer to every neuron in the current layer to learn global features of the 

signature. 

 

xl = Wl ∗ hl−1                                                              (3) 

 

• Output Layer: The output layer typically uses a softmax activation function (see equation 4) for 

multi-class classification, producing probabilities for each class (signature) based on the features 

extracted from the images. This enables model predictions regarding whether a given signature 

is genuine or forged. 

 

softmax(xi) =  
exi

∑ 𝑒
𝑥𝑗

j 
                                                       (4) 

 

CNNs offer several advantages for the recognition of handwritten signatures: 

• Automatic Feature Extraction: CNNs can automatically learn hierarchical features from the 

input images (signatures) without the need for manual feature extraction. This is particularly 

useful for capturing the nuances of different handwriting styles. 

• Translation Invariance: CNNs are designed to be invariant to translation, which means they can 

recognize signatures regardless of their position within the input image. This is critical in 

signature verification where the exact placement can vary. 

• Robustness to Distortions: Handwritten signatures may vary due to human writing style, 

pressure, and speed or different writing instruments. CNNs can effectively generalize and 

remain robust against these variations by capturing essential patterns in the data. 

• Spatial Hierarchy: CNNs effectively capture spatial hierarchies in images by employing multiple 

layers of convolutions and pooling, allowing them to learn hierarchical representations from 

edges to complex shapes in signatures. 

• Reduced overfitting: Through techniques like pooling and dropout, CNNs can reduce the risk of 

overfitting, making them more reliable when working with limited datasets. 

• 4. Reduced Computational Cost: Through the utilization of weight sharing and local receptive 

fields, CNNs require fewer parameters than traditional fully connected networks, resulting in 

lower computational costs and faster training times. 

• High Accuracy: Due to their ability to learn complex patterns in the data, CNNs commonly 

achieve high accuracy. 

 

2.3. Performance evaluation criteria 

The evaluation criteria for signature recognition encompass metrics such as validation 

accuracy, which is derived from true and false positive/negative counts. Alongside accuracy 

measures for training and validation sets, loss metrics track model performance, while the Equal 

Error Rate (EER) serves as an indicator of balance between false acceptance and rejection in the 

system, the system will function better if the error values are lower. These criteria represent essential 

components for assessing the efficacy of signature recognition models. 
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- Validation Accuracy 

A confusion matrix is a performance evaluation tool used in classification problems, including 

those involving CNNs. It is a two-dimensional matrix (see Figure 3) that summarizes the 

performance of a classification model by comparing the actual labels with the predicted labels of a 

dataset.  

 

 
Figure 3 - Confusion Matrix 2*2 

 

The validation accuracy (equation 5) of a signature recognition model can be defined as: 

 

Validation Accuracy =
TP+TN

TP+TN+FP+FN
                                           (5) 

 

Where: 

- TPs are the correctly identified signatures, 

- TNs are the correctly rejected non-signatures, 

- FPs are the incorrectly accepted non-signatures, and  

- FNs are the incorrectly rejected signatures. 

 

- Equal Error Rate 

The EER is a common performance metric used in biometric systems, defined as the point 

where the false acceptance rate (FAR) equals the false rejection rate (FRR). The EER can be 

expressed mathematically as (equation 6): 

 

EER = FAR = FRR                                                           (6) 

Where:  

FRR refers to the percentage of legitimate signatures that the system incorrectly identifies as 

fraudulent (see equation 7). 

FRR =  
FN

TP+FN
                                                                  (7) 

FAR It gives the percentage of forged signatures that the system accepts as genuine (see equation 

8). 

FAR =
FP

FP+TN
                                                                      (8) 

 

2.4. Overview of Datasets    

 This novel technique aims to create a resilient DL model utilizing CNNs for the HSRs, 

leveraging two established benchmark datasets: GPDS-300 and MCYT-75 to assess the efficiency 

of our novel technique. 

 

2.4.1. GPDS-300 Dataset  

The GPDS-300 signatures database (see Figure 4) is a specialized dataset designed for 

research and development in the field of handwriting recognition and signature verification. It 

comprises 300 genuine and forged handwritten signatures from various individuals (Ferrer et al., 

2005; Vargas et al., 2007). Each signature was captured under controlled conditions to ensure 

quality across multiple samples. This database serves as a benchmark for testing algorithms and 
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systems aimed at distinguishing between authentic and forged signatures, facilitating advancements 

in biometrics, security, and document verification technologies.  

 

 
Figure 4 - Example of GPDS-300 signature database 

 

2.4.2. MCYT-75 Dataset 

The MCYT-75 database (see Figure 5) is a comprehensive dataset used primarily for the 

research and development of handwriting recognition and verification systems (Ortega-Garcia et 

al., 2003). It contains 75 different handwriting samples collected from different writers each class 

contains 15 genuine signatures and 15 forgeries.  

 

 
Figure 5 - Example of MCYT-75signature database 

 

These datasets serve as benchmarks for assessing the reliability and effectiveness of 

signature recognition algorithms. 

 

2.5. CNN Architecture for Signature Recognition   

The steps of the CNN architecture are detailed below: 

 

2.5.1. Data Preprocessing: 

Figure 6 illustrates that data preprocessing involves several essential steps to ensure the 

development of a reliable handwritten signature recognition system: 
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Figure 6 - Data Preprocessing for Enhanced Handwritten Signature Recognition 

 

2.5.2. Model Architecture 

This CNN architecture is designed for multi-class classification, extracting features through 

four convolutional layers with max-pooling for dimensionality reduction. Flattened outputs are 

processed by fully connected layers, with dropout layers minimizing overfitting. A softmax output 

layer ensures precise class probability assignments, ideal for tasks like handwritten signature 

recognition as shown in Table 1. 

 

Table 1 – CNN architecture 
1. Convolutional Layer 1 (conv1): 

- Number of filters: 32 

- Filter size: 3x3 

- Activation function: ReLU 

- Output size: 254 x 254 

- Maxpooling Layer 1 (pool1): 

▪ Pooling size: 3x3 

▪ Stride: 1 

▪ Output size: 84 x 84 

2. Convolutional Layer 2 (conv2): 

- Number of filters: 64 

- Filter size: 3x3 

- Activation function: ReLU 

- Output size: 82 x 82 

- Maxpooling Layer 2 (pool2): 

▪ Pooling size: 2x2 

▪ Output size: 41 x 41 

3. Convolutional Layer 3 (conv3): 

- Number of filters: 128 

- Filter size: 3x3 

- Activation function: ReLU 

- Output size: 39 x 39 

- Maxpooling Layer 3 (pool3): 

▪ Pooling size: 2x2 

▪ Output size: 19 x 19 

4. Convolutional Layer 4 (conv4): 

- Number of filters: 256 

- Filter size: 3x3 

- Activation function: ReLU 

- Output size: 17 x 17 

- Maxpooling Layer 4 (pool4): 

▪ Pooling size: 2x2 

▪ Output size: 8 x 8 

5. Flattening Layer: 

- Converts the output from the 

last pooling layer into a 1D 

vector of size 2048. 

6. Fully Connected Layer 1 (FC1): 

- Number of neurons: 512 

- Activation function: ReLU 

 

7. Dropout Layer 1 (dropout1): 

- Dropout rate: 0.5 (to reduce 

overfitting) 

8. Fully Connected Layer 2 (FC2): 

- Number of neurons: 128 

- Activation function: ReLU 

9. Dropout Layer 2 (dropout2): 

- Dropout rate: 0.5 

 

10. Output Layer: 

- Number of neurons: Matches 

the total number of individual 

signatures or author identities in 

the dataset. 
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- Activation function: Softmax 

(suitable for multi-class 

classification). 

 

2.5.3. Training configuration  

• The hardware used for this study is a single GPU for facilitated efficient processing of the 

training data. 

• Loss function: For multi-class classification tasks, we utilize the Categorical Cross-Entropy 

loss function. 

• Optimizer: SGD (Stochastic Gradient Descent) optimizer chosen for efficient convergence 

with an initial learning rate of 0.01. 

• Batch Size: Use a batch 64 size suitable for the hardware. 

• Epochs and Iterations: The model trained for 100 epochs, with 30 iterations per epoch, for a 

total of 3000 iterations.  

 

2.5.4. Validation 

• Evaluate the model using validation datasets to determine accuracy and to ensure the model’s 

ability to generalize. 

• Validation frequency: Validation of the model is performed every 30 iterations during training 

to continuously monitor performance. 

• Monitor performance metrics: validation accuracy throughout the training process and error 

rate. 

 

2.5.5. Results evaluation metrics 

• Accuracy: The percentage of correctly identified signatures. 

• Error Rate (EER): The proportion of incorrectly identified signatures. 

 

The flowchart resumed our approach is shown below (see Figure 7): 

 

 
 

Figure 7 - Flowchart of the proposed approach. 

 

3. Experiments results and discussion 

Dataset Preprocessing 

 

 Data Acquisition 

(MCYT-75, 

GPDS-300) 

Preprocessing steps: 

- Normalization 

- Grayscale conversion 

- Augmentation. 

Training configuration 
Evaluate Model 

- Validation Accuracy 

- EER 

Results & Discussion 

CNN model architecture 

Data splitting 

Validation 

Start 

End                          
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A personal PC with an i7 processor and 32 GB of RAM is used to conduct this experiment in 

MATLAB software. The configuration characteristics of our experimental platform are shown in 

Table 2. 

 

 

Table 2 - Hardware specifications of our experimental platform configuration 

Configuration Version 

System  64-bit operating system, x64 processor 

GPU NVIDIA Quadro M1200 

RAM 32,0 GB 

CPU Intel R Core TM i7-7700HQ @ 2.80GHz 

 

In our deep learning approach to handwritten signature recognition, we utilized a 

Convolutional Neural Network (CNN) and evaluated its performance on the GPDS-300 and MCYT-

75 datasets. The training process was conducted with a fixed learning rate of 0.01 over 100 epochs, 

encompassing 3000 iterations. Validation checks were performed every 30 iterations, ensuring 

consistent monitoring of the model's performance throughout the training phase. 

The training and validation accuracies achieved were remarkable, as depicted in Figures 8 and 

9, highlighting the effectiveness of the proposed method. For the GPDS-300 dataset, the model 

achieved an exceptional validation accuracy of 99.80%, effectively distinguishing genuine 

signatures from forgeries. Similarly, the MCYT-75 dataset recorded an impressive validation 

accuracy of 99.60%, showcasing the robustness of the model across different datasets. 

 

 

Figure 8 - Accuracy and loss curve of signature (MCYT-75 datasets).   
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Figure 9 - Accuracy and loss curve of signature (GPDS-300 datasets) 

    

The high recognition rates achieved on both datasets underscore the robustness of the CNN 

model in identifying complex patterns characteristic of handwritten signatures. The slight difference 

in accuracy between the GPDS-300 and MCYT-75 datasets can be attributed to variations in their 

size and diversity. The larger GPDS-300 dataset likely provides a more comprehensive training set, 

enhancing the CNN model's learning capabilities. The error rates (ERR) for both datasets, as 

illustrated in Figure 10, further demonstrate the model's effectiveness in handwritten signature 

recognition. The consistently low error rates indicate the exceptional performance and reliability of 

the trained CNN model. Overall, these results validate the proposed deep learning approach, 

showcasing its efficacy and minimal error rates across both datasets. 

 

 

Figure 10 - Error rate for handwritten signatures recognition 
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Table 3 presents a comparison with existing techniques, revealing that our method enhances 

performance relative to other works in the literature. Our deep learning approach significantly 

outperforms previous signature recognition methods, underscoring the superior capabilities of the 

CNN architecture in biometric recognition tasks. The validation accuracy achieved illustrates the 

model's effectiveness in learning and extracting relevant features from handwritten signatures in the 

GPDS-300 and MCYT-75 datasets. This outstanding performance is particularly impressive 

considering the inherent challenges of signature recognition, such as variations in signature styles 

and writing conditions. The results highlight the robustness and adaptability of the proposed deep 

learning method, setting a new benchmark for accuracy in signature recognition. 

 

Table 3 - Comparison with other approach 

Authors Approach Accuracy (%) 

(Albasu et al., 2023) Convolutional Siamese 

Neural Networks 

97.5 

(Anamika et al., 2021) ANN Hindi : 95.29, Bengali : 97.79 

(Alajrami et al., 2020) ANN in an 80-20 ratio: 99.7, 

in an 60-40 ratio: 99.7, 

in an 70-30 ratio: 98 

Our work CNN MCYT 75: 99.96 

GPDS 300:  99.98 

 

4. Conclusion  

This study introduces a robust approach for offline handwritten signature recognition (HSR) 

in biometric systems, achieving exceptional accuracy and demonstrating the efficacy of deep 

learning techniques. To evaluate the proposed CNN-based model, experiments were conducted on 

the MCYT-75 and GPDS-300 datasets. The model, trained over 100 epochs with optimal parameters 

selected based on validation loss, achieved remarkable validation accuracies of 99.80% on GPDS-

300 and 99.60% on MCYT-75. The training process, executed efficiently on a single GPU with a 

constant learning rate of 0.01, minimized error rates and highlighted the model's robustness for 

signature recognition tasks. 

These findings underscore the effectiveness of CNN architectures in addressing the challenges 

associated with handwritten signature variability, making the proposed approach highly suitable for 

real-world biometric authentication systems. Furthermore, the research provides valuable insights 

into leveraging deep learning for complex pattern recognition in HSR applications. 

Future work will focus on further enhancing the model's performance through advanced 

techniques such as data augmentation and transfer learning. Additionally, expanding the dataset to 

include a wider range of environmental conditions will be prioritized to improve the model's 

generalizability and robustness in diverse real-world scenarios. 
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