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Abstract  

Induction motor (IM) is considered one of the most important machines in industrial applications, 

which requires precise and effective control of its behavior in order to improve its performance. In 

this paper, three control strategies based on the development of inverse artificial neural networks 

(IANNs) were proposed in order to control the current (Ias), electromagnetic torque (Ce), and speed 

(Wr) of an asynchronous machine IM.  These inverse artificial neural networks have been learned 

from conventional control system (PI controller and vector control) data using MATLAB software. 

Comparison between the responses of both the classical controller and the IANNs showed the ability 

and effectiveness of the latter in precisely controlling the three properties of the asynchronous 

motor, and it also achieved better dynamic motor behavior, speed without overtaking, and good load 

disturbance rejection, which proves the high performance of these developed IANNs. 

Keywords: Induction Motor, PI-Controller, Vector Control, Inverse ANNs 
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Nomenclature 

[Vs]     Stator voltage Vector 

[Vr]     Rotor voltage Vector 

[Is]     Stator current Vector 

[Ir]    Rotor current Vector 

[φs]     Stator flux Vector 

[φr]    Rotor flux Vector 

Ids and Iqs   d and q axis components of the stator current 

Idr and Iqr   d and q axis component of the rotor current 

Vds and Vqs   d and q axis components of the stator voltage. 

Lm [H]    Stator-Rotor mutual inductance 

Ls [H]    Stator's own cyclic inductance 

Lr [H]    Rotor's own cyclic inductance 

Rs [Ω]    Stator resistance 

Rr [Ω]    Rotor resistance 

IM            Induction Motor 

MAS   Asynchronous Machine 

ANN   Artificial Neural Network 

FFNNM    Structure of the Feed Forward Neural Network Model 

p   Number of pole pairs 

[P]    Park Matrix 

1. Introduction 

In recent years, interest in asynchronous machines (induction motors IM) has increased very 

significant due to their widespread use in industrial applications (Mekrini & Bri, 2018; Kouadria et  

al., 2024) and in various sectors such as automotive, railways, mining and even in the gas and oil 

sectors (Atif et al., 2024; Shekher et al., 2024). In addition, these asynchronous motors have 

interesting advantages such as durability, reliability, simple construction, relatively low cost, and 

less maintenance, as well as being available for all power ratings (Kouadria et al., 2024; EL-

Merrassi et al., 2022; Chandrasekaran et al., 2021). 

Induction motors require precise control of their speed and torque (Shekher et al., 2024; 

Alitasb, 2024), in order to improve their performance, by increasing the voltage in proportion to the 

required frequency, which necessitated the use of several control techniques. Conventional 

proportional integer (PI) control is widely used to control induction motors due to its precise and 

rapid control of their speed during variable operating conditions, especially in steady-state 

performance (Alitasb, 2024; Gaythri & Thivay Prasad, 2019; Kada et al., 2021). 

Recently, artificial neural network (َANN) has witnessed very wide use as a mathematical 

model inspired by biological neural networks, based on the working principle of human nerves, so 

that it included various fields; especially the field of induction motors (Mahfoud et al., 2024; Junior 

et al., 2022; Karami-Shahnani et al., 2023). Neural networks are considered a promising approach 

that allows optimizing and developing control algorithms for asynchronous machines by learning 

from data, which allows the relationship between the inputs and outputs of the control system to be 

represented accurately and effectively (Mahfoud et al., 2024; Barik & Jaladi, 2016; Kada et al., 

2020), and this is what makes them replace classical controllers. 

In this work, three control strategies for induction motor, including current, electromagnetic 

torque and speed, have been proposed based on replacing the classical PI control (PI controller and 

decoupling by compensating the voltages of the vector control) by developed inverse ANNs. In 

order to determine the most efficient and high-performance IANN controller, a qualitative 

comparison was made between the results of these proposed strategies and those obtained from the 



The Journal of Engineering and Exact Sciences – jCEC 

3 

classical controller. MATLAB/SIMULINK software was used to develop the three-phase induction 

motor and various controller models as well as to verify the performance of these controllers. 

 

2. Mathematical modeling 
2.1.   Dynamic model of IM and its vector control 

In order to obtain a simpler formulation and reduce the complexity of the machine model, the 

establishment of its mathematical model was developed on the basis of simplifying hypotheses, 

namely that the machine is symmetrical, operates in unsaturated mode and that the various losses as 

well as the effect of the shock absorbers are negligible (Karami-Shahnani et al., 2023). 

 
Figure 1 – Electrical representation of a three-phase asynchronous motor. 

 
Figure 2 – d-q axes superimposed onto a three-phase IM. 

The differential equations of the asynchronous motor in the abc frame are: 

Stator and rotor voltage equation: 

[𝑉𝑆𝑎𝑏𝑐] = [

𝑣𝑠𝑎
𝑣𝑠𝑏
𝑣𝑠𝑐
] , [𝐼𝑆𝑎𝑏𝑐] = [

𝑖𝑠𝑎
𝑖𝑠𝑏
𝑖𝑠𝑐

] , [𝜑𝑆𝑎𝑏𝑐] = [

𝜑𝑠𝑎
𝜑𝑠𝑏
𝜑𝑠𝑐

]                         (1) 

[𝑉𝑟𝑎𝑏𝑐] = [

𝑣𝑟𝑎 = 0
𝑣𝑟𝑏 = 0
𝑣𝑟𝑐 = 0

] , [𝐼𝑟𝑎𝑏𝑐] = [
𝑖𝑟𝑎
𝑖𝑟𝑏
𝑖𝑟𝑐

] , [𝜑𝑟𝑎𝑏𝑐] = [

𝜑𝑟𝑎
𝜑𝑟𝑏
𝜑𝑟𝑐

]                                 (2) 

Stator and rotor flux equation: 

[𝜑𝑠] = [𝐿𝑠𝑠][𝐼𝑠] + [𝑀𝑠𝑟]
𝑇[𝐼𝑟]                                                        (3) 

[𝜑𝑟] = [𝐿𝑟𝑟][𝐼𝑟] + [𝑀𝑟𝑠]
𝑇[𝐼𝑠]                                                        (4) 

The relationship between the equations in the abc frame and the Park frame can be written as: 

 

as 

d 

q 
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   [

𝐼𝑑𝑠
𝐼𝑞𝑠
𝐼𝑜𝑠

] = [𝑃(𝜃𝑠)] [

𝐼𝑎𝑠
𝐼𝑏𝑠
𝐼𝑐𝑠

] , [

𝑉𝑑𝑠
𝑉𝑞𝑠
𝑉𝑜𝑠

] = [𝑃(𝜃𝑠)] [

𝑉𝑎𝑠
𝑉𝑏𝑠
𝑉𝑐𝑠

]  𝑒𝑡 [

𝜑𝑑𝑠
𝜑𝑞𝑠
𝜑𝑜𝑠

] = [𝑃(𝜃𝑠)] [

𝜑𝑎𝑠
𝜑𝑏𝑠
𝜑𝑐𝑠

]   

Where 𝑃(𝜃) is the transformation matrix in the Park transform and given as follows: 

[𝑃(𝜃)] =
3

2
.

[
 
 
 
 
 
 
cos 𝜃    
−sin 𝜃  
1

√2

 

cos (𝜃 −
2𝜋

3
)

  −sin (𝜃 −
2𝜋

3
)

1

√2

  cos (𝜃 −
4𝜋

3
)

  −sin (𝜃 −
4𝜋

3
)

1

√2 ]
 
 
 
 
 
 

                            (5) 

{
 
 
 
 

 
 
 
 𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 +

𝑑𝜑𝑑𝑠
𝑑𝑡

−
𝑑𝜃𝑠
𝑑𝑡

𝜑𝑞𝑠

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 +
𝑑𝜑𝑞𝑠

𝑑𝑡
−
𝑑𝜃𝑠
𝑑𝑡

𝜑𝑑𝑠

0 = 𝑅𝑟𝐼𝑑𝑟 +
𝑑𝜑𝑑𝑟
𝑑𝑡

−
𝑑𝜃𝑟
𝑑𝑡

𝜑𝑞𝑟

0 = 𝑅𝑟𝐼𝑞𝑟 +
𝑑𝜑𝑞𝑟

𝑑𝑡
−
𝑑𝜃𝑟
𝑑𝑡

𝜑𝑑𝑟

                                                         (6) 

{
 

 
𝜑𝑑𝑠 = 𝐿𝑠𝐼𝑑𝑠 +𝑀𝐼𝑑𝑟
𝜑𝑞𝑠 = 𝐿𝑠𝐼𝑞𝑠 +𝑀𝐼𝑞𝑟
𝜑𝑑𝑟 = 𝐿𝑟𝐼𝑑𝑟 +𝑀𝐼𝑑𝑠
𝜑𝑞𝑟 = 𝐿𝑟𝐼𝑞𝑟 +𝑀𝐼𝑞𝑠

                                                                     (7) 

Where, 𝐿𝑠 = 𝑙𝑠 −𝑚𝑠, 𝐿𝑟 = 𝑙𝑟 −𝑚𝑟 𝑒𝑡 𝑀 = 𝐿𝑚 =
3

2
𝑀𝑠𝑟 are the cyclic inductances stator, rotor and 

mutual, respectively. 

The stator and rotor currents are given as a function of flux.  

{
 
 
 
 

 
 
 
 𝐼𝑑𝑠 =

1

𝜎𝐿𝑠
𝜑𝑑𝑠 −

𝑀

𝜎𝐿𝑠𝐿𝑟
𝜑𝑑𝑟

𝐼𝑞𝑠 =
1

𝜎𝐿𝑠
𝜑𝑞𝑠 −

𝑀

𝜎𝐿𝑠𝐿𝑟
𝜑𝑞𝑟

𝐼𝑑𝑟 = −
𝑀

𝜎𝐿𝑠𝐿𝑟
𝜑𝑑𝑠 +

1

𝜎𝐿𝑟
𝜑𝑑𝑟

𝐼𝑞𝑟 = −
𝑀

𝜎𝐿𝑠𝐿𝑟
𝜑𝑞𝑠 +

1

𝜎𝐿𝑟
𝜑𝑞𝑟

                                               (8) 

Where 𝜎 = 1 −
𝑀2

𝐿𝑠𝐿𝑟
 is the dispersion coefficient. 

The expression of the electromagnetic torque is given by: 

𝐶𝑒 =
3

2
𝑃
𝑀

𝐿𝑟
(𝜑𝑑𝑟𝐼𝑞𝑠 −𝜑𝑞𝑟𝐼𝑑𝑠)                                                  (9) 

The objective of vector control is to find the decoupling between the flux and the 

electromagnetic torque. The principle of this control is based on the exploitation of the dynamic 

model of the motor and consists of choosing an axis system (d,q) and orienting it according to the 

rotor flux, by canceling the quadrature component φqr, to keep only the direct component φdr.

 The rotor flux is then aligned on the direct axis and the magnetic equations become: 

φdr = φr  , φqr = 0                                                            (10) 
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This makes it possible to control the torque via the current Isq and the flux using the current 

Isd.  The new expression for the electromagnetic torque can then be written: 

Ce = P
3Lm
2Lr

(φr. Iqs)                                                           (11) 

   

 
 

Figure 3 – Diagram of the decoupling principle for MAS by analogy with MCC. 

2.2.   Inverse artificial neural network model 

The inverse artificial neural network (IANN) model plays an important role in systems control 

theory. The structure of the inverse ANN is shown in figure 4. As shown in this structure, and in 

order to reach the set-point, the ANN inverse is provided with the present and past inputs (u(k-1), 

u(k)) and the desired set-point y(k+1) as well as the past outputs (y(k), y(k-n+1)), to predict the 

desired input u(k) (Rajesh et al., 2015).    

 
Figure 4 – Inverse ANN structure. 

The dynamic system that links the inputs to the outputs of the inverse ANN can be described 

by equation 12: 

𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘),… , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘),… , 𝑢(𝑘 − 𝑚 + 1))                    (12) 
Where the system's output y(k+1) depends on the (n) previous values of the output and the (m) past 

values of the input. In general, the IANN model of this system can be presented in the following 

form: 

𝑢(𝑘) = 𝑓−1(𝑦(𝑘 + 1), 𝑦(𝑘), … , 𝑦(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑚))              (13) 

MAS 
M

L

Ids 

Iqs 

Ia IcIb

MC

If I a 

𝑪𝒆 = 𝑲𝒕
′    𝑰𝒂   𝑰𝒇 𝑪𝒆 = 𝑲𝒕

′    𝑰𝒅𝒔   𝑰𝒒𝒔 

Flow component 

Torque component 

y(k+1) 

y(k) 

y(k-n+1) 

u(k-1) 

u(k) 

u(k-m+1) 

u(k) 
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Where u(k) and y(k) are the inputs and outputs of this system, respectively, as well as the non-

linear function f is supposed unknown. In this study, the focus was on the dynamic part of the 

system's response and the structure of the feed forward neural network model (FFNNM) shown in 

Figure 4 was adopted. 

Multi-layer perceptron networks can be used to develop the inverse neural model of the system 

using MLP type. These MLP networks present the simplest solution, however the representation of 

the dynamic aspect of the system remains problematic. Applying delays to the input layer of this 

type of network can provide the solution to remedy the static aspect of MLPs. This solution has the 

advantage of allowing the application of the traditional gradient back-propagation algorithm for 

learning multi-layer networks (Kada et al., 2020; Salem et al., 2007). Figure 5 shows the general 

learning architecture of IANNs. 

The parameters of the FFNN model are estimated using the back-propagation algorithm and 

the criterion to respect minimized is given by: 

E (w) = ∑((u(k ) −  û(k , w))
2
)

𝑛

𝑘=1

                                                  (14) 

 

 

 
 

Figure 5 – General learning architecture. 

3. Simulation details  

To test the efficiency and performance of the proposed control strategies for a three-phase 

asynchronous motor, as an asynchronous machine (induction machine), which has the parameters 

shown in Table 1, numerical simulations were performed under MATLAB/Simulink software. 

Figure 6 represents the complete structural blocks of this asynchronous machine, PI controller and 

vector control which are based on their mathematical models. To carry out this study, IANNs were 

developed to replace the PI controller and decoupling by compensating the voltages (𝑉𝑑𝑠 et 𝑉𝑞𝑠) of 

the vector control. These IANNs were learned from simulation results obtained by classical control 

system (PI controller and vector control) with back propagation learning algorithm. The three 

control strategies proposed in this study are based on replacing PI controller, vector control and PI 

with vector control by the developed inverse ANNs, respectively. In order to properly test these 

control strategies, a resistive torque of 10 N.m was applied and eliminated on our system in moments 

1s and 2s respectively for a speed setpoint of 100 rad/sec. 

- 

+ 
en û(k) u(k) System  
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Figure 6 – General structure of IM based on PI controller and vector control. 

Table 1 – Basic parameters of asynchronous machine. 

Parameters Values 

Star/delta voltage 380/220 V 

Stator resistance 4.85    

Rotor resistance 3.805  

Stator inductance 0.274  H 

Rotor inductance 0.274  H 

Mutual inductance 0.258   H 

Number of pole pairs 2 

Moment of inertia 0.031 kg .m2 

Friction coefficient 0.08 N.m.s/rad 

Rated speed 1500     tr/mn 

Frequency 50hz 

Figures 7-a and 7-b represent the block diagrams of the developed artificial neural networks,  

as Multi-layer perceptron networks, for PI controller and vector control respectively, which show 

the different inputs and outputs of each inverse ANN. 

 

Figure 7 – Block diagrams of IANNs for, a) PI controller, b) Vector control. 

4. Results and discussions 

In the three-phase asynchronous motor, the decoupling between the flux and the 

electromagnetic torque was made by vector control. Figure 8 shows that the rotor flux is kept 

constant and only the direct component Ids determines the rotor flux amplitude in the classical 
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control system (PI controller and vector control), while the torque depends only on the quadrature 

component Iqs.  This shows that the stator current has been decomposed into two terms corresponding 

to flux and torque respectively, and as a result a structure similar to that of a direct current (DC) 

machine is obtained. 

 
Figure 8 – Rotor flux vectors vs time. 

The different responses (Figures 11, 12 and 13 in red) of the classical control system show 

rapid rejection of load disturbances with zero overshoot rate and negligible error at steady state. The 

results obtained by simulating the behavior of the classical control system of this induction machine 

were exploited to develop the two inverse ANNs. 

Figure 9 shows the developed architectures for the inverse ANN controller and the inverse 

ANN control respectively, as well as performance details and analysis parameters. Figures 10-a and 

10-b present the evolution of the quadratic errors as a function of iteration number for the developed 

IANNs. According to these results, the quadratic errors have a non-linear evolution characterized 

by a slope at the beginning, i.e. a high convergence speed, then it becomes slower and slower, and 

the latter decreasing depending on the number of iterations. 

   
Figure 9 – IANNs architecture for, a) PI Controller (ANN Controller), b) vector control 

(ANN Control). 
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(a) 

 
(b) 

Figure 10 – IANNs performance diagram for current, torque and speed data, a) ANN 

Controller, b) ANN Control. 

According to the results obtained, in conventional control and various control strategies based 

on inverse ANNs, the current with which the motor starts is double the current that supplies the 

motor in the steady state and this does not represent any risk to the motor because its duration is 

short. The electromagnetic torque also pulsates strongly at the first moment of starting the machine, 

and this phenomenon is reflected by the presence of noise generated by the mechanical part (moment 

of inertia), it reaches the no-load regime. The rotation speed of this machine is decreased when a 

resistive torque is applied and increases when this torque is released, then this speed returns to the 

reference value 100rad/s. 

In the case of replacing the PI controller (of the classic control) by its inverse neural network 

(ANN controller) and the starting moment of the induction machine: The stator inrush currents 

increase to 8.178 A and 8.15 A for the classical control and the neural controller respectively, as 

shown in Figure 11-a, due to the increase in load torque. The electromagnetic torque of the 

conventional control is strongly pulsating with a peak value of 26.96N.m and for the neural 

controller the peak value of the torque is 26.9N.m. With the application and elimination of resistive 
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torque, the current and electromagnetic torque values of the neural controller are slightly lower 

compared to the conventional control as shown in Table 2. These results show that the ANN 

controller reduces the risks on the machine in the different operating regimes. 

Figure 11-c shows the evolution of the speed of the asynchronous machine as a function of 

time. This figure shows that the neural controller is characterized by a slightly better response time 

compared to the conventional control (Table 2). The application of torque results in a decrease in 

motor speed of 96.7 rad/s - 96.74 rad/s for the conventional control system and the nervous control 

system respectively. On the other hand, with the removal of this torque, the speed increases to 

103.459 rad/s – 103.54 rad/s. 

 
(a) 

 
(b) 

0 1 2 3 4 5 6
-10

-8

-6

-4

-2

0

2

4

6

8

10

t(s)

Ia
s
(A

)

 

 

ANN Controller-Vector Control

PI Controller-Vector Control

0.02 0.04 0.06 0.08 0.1 0.12 0.14
-10

-5

0

5

 

 

1 1.05

-5

0

5

 

 

0 1 2 3 4 5 6
-5

0

5

10

15

20

25

30

t(s)

C
e

(N
.m

)

 

 

ANN Controller-Vector Control

PI Controller-Vector Control

1.02 1.04 1.06 1.08
10

11

12

13

14

 

 

2.022.042.062.08

-2

-1

0

1

 

 

0.1 0.2 0.3

0

10

20

 

 



The Journal of Engineering and Exact Sciences – jCEC 

11 

 
(c) 

 Figure 11 – Classical Control and ANN-Controller/Victor-Control responses, a) Current 

Ias, b) Electromagnetic torque Ce, c) Speed Wr. 

In the case of the strategy based on the replacement of the vector control by the ANN control, 

and at the instant of starting the machine, the current and the electromagnetic torque of this strategy 

have higher values compared to the classical control.  When applying resistive torque, these values 

of the ANN control are very close to those of the classical control, which shows that this strategy 

provides less protection for the induction motor from risks than the classical control, especially 

during the start-up of this machine.  From Figure 12-c and table 2, the inverse artificial neural 

network control has a relatively fast response compared to the classical control. 
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(b) 

 
(c) 

Figure 12 – Classical Control and PI-Controller/ANN-Control responses, a) Current Ias, b) 

Electromagnetic torque Ce, c) Speed Wr.      
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from risks. On the other hand, during the rest of the operating times, the values of this current and 

electromagnetic torque for the ANN controller/ANN control and the conventional control are very 

similar, as well as the response time of both control systems (Table 2). 
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(a) 

 
(b) 

            
(c)             

Figure 13 – Classical Control and ANN-Controller/ANN-Control responses, a) Current Ias, 

b) Electromagnetic torque Ce, c) Speed Wr. 

0 1 2 3 4 5 6
-10

-8

-6

-4

-2

0

2

4

6

8

10

t(s)

Ia
s
(A

)

 

 

ANN Controller-ANN Control

PI Controller-Vector Control

0 1 2 3 4 5 6
-5

0

5

10

15

20

25

30

t(s)

C
e

(N
.m

)

 

 

ANN Controller-ANN Control

PI Controller-Vector Control

0.1 0.2 0.3
0

5

10

15

20

25

 

 

ANN Controller-ANN Control

PI Controller-Vector Control

1 1.1 1.2
9

10

11

12

13

14

 

 
ANN Controller-ANN Control

PI Controller-Vector Control

2.05 2.1

-2

-1

0

1

2

 

 

0 1 2 3 4 5 6
0

20

40

60

80

100

120

t(s)

W
r(

ra
d

/s
)

 

 

ANN Controller-ANN Control

Reference

PI Controller-Vector Control

0.29 0.292 0.294 0.296 0.298
99.98

99.99

100

100.01

 

 

1 1.1

97

98

99

100

 

 

2 2.05 2.1

100

101

102

103

104

 

 



The Journal of Engineering and Exact Sciences – jCEC 

14 

According to the different results obtained,  the control strategies developed in this study, 

which are based on inverse artificial neural networks, have proven their effectiveness and worthiness 

to replace classical control, especially during the steady state operation of this induction motor. In 

addition, the ANN controller/vector control strategy is considered a good proposed control 

technique for the asynchronous machine in terms of low consumption current and electromagnetic 

torque, as well as its good fast response compared to other proposed strategies. 

Table 2 – Basic parameters of the control systems. 

Parameters Time PI Controller- 

Vector Control 

ANN Controller- 

Vector Control 

PI Controller – 

ANN Control 

ANN Controller 

– ANN Control 

 

Current  

(A) 

t=0s  8.178 8.15 10.3 11.1 

t=1s * 4.809 4.18 4.23 4.06 

t=2s # 3.332 2.82 3.38 3.2 

 

Torque 

(N.m) 

t=0s 26.96 26.9 36.3 26.51 

t=1s * 13.918 13.44 13.95 13.47 

t=2s # -2.168 -1.955 -2.094 -1.895 

 

Speed 

(rad/s) 

t=0s 98.6 98.7 98.5 98.9 

t=1s * 96.7 96.74 96.68 96.7 

t=2s # 103.459 103.54 103.45 103.35 

Response time (s) 0.2932 0.288 0.2567 0.292 

* Application of the resistant torque (10N.m). # Elimination of the resisting torque 

5. Conclusion  

 

In this paper, inverse artificial neural networks (IANNs) are developed in order to replace the 

PI controller and vector control of classical controller with the aim of improving the tracking 

performance of induction motor. These networks were trained from induction motor responses, 

current, torque and speed, using the classical controller in order to reach at their optimal 

architectures with very small prediction error. The control technique using inverse neural networks 

allows the speed to be little affected by disturbances and to track its set point, which lends itself well 

to adjusting the speed of this asynchronous motor, as well as ensuring good orientation of the rotor 

flux. These IANNs architectures have made it possible, on the one hand, to improve the dynamic 

and static performances of the machine and, on the other hand, to ensure robustness against 

disturbances, giving it a wide application in the field of electric drive. 
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