JCEC OPEN ACCESS
The Journal of Engineering and Exact Sciences — jJCEC, Vol. 10 N. 08 (2024)
journal homepage: https://periodicos.ufv.br/jcec
eISSN: 2527-1075
ISSN: 2446-9416

A Dynamic Electro-Elastic Viscoplastic Contact Problem with an Internal

THE JOURNAL OF ENGINEERING
CES

AND EXACT SCIENCE

Variable

Article Info:
Article history: Received 2024-11-11 / Accepted 2024-12-12 / Available online 2024-12-12
doi: 10.18540/jcecvl10iss8pp20858

Ahmed Hamidat

ORCID: https://orcid.org/0000000276376413

Laboratory of Operator Theory and PDE: Foundations and Applications, Faculty of Exact
Sciences, University of El Oued, 39000, El Oued, Algeria

E-mail: hamidat-ahmed@univ-eloued.dz

Hakim Bagua

ORCID: https://orcid.org/0000000251658609

Department of Electronics and Telecommunication, Faculty of New Technologies of Information
and Communication, University of Ouargla, 30000, Ouargla, Algeria

E-mail: bagua.hakim@univ-ouargla.dz

Abstract
In this paper, we examine a dynamic contact problem involving an electro-elastic-viscoplastic body

and a deformable base. The contact is characterized by an instantaneous normal response, and the
behavior is described by an electro-elastic-viscoplastic law with an internal variable. We present
both the mechanical and variational formulations of the problem, establishing the existence and
uniqueness of the solution. Our proof relies on the theory of variational equations and fixed-point
arguments.

Keywords: Electro-viscoplastic. Dynamic. Differential equations. Fixed point.

1. Introduction
Contact mechanics is a comprehensive field that encompasses various phenomena involving

the contact between a deformable or solid body and a foundation. Our contributions to this field are
detailed in references [5, 6, 7, 8, 13]. These contact phenomena are prevalent in everyday life,
significantly impacting structural mechanics, particularly in industries such as automotive and
aeronautics (e.g., cracks in composites and fiber/matrix interfaces), energy production (e.g.,
assembly of structures, welding joint failures), and transmission systems. As a result, substantial
efforts have been devoted to their modeling and numerical simulation, as demonstrated by works
such as [4, 11, 12, 14] and related literature.

Piezoelectricity is a property of certain materials that allows them to become electrically
polarized when subjected to mechanical stress, known as the direct piezoelectric effect. Conversely,
the inverse piezoelectric effect occurs when these materials deform in response to an electric field.

In practical applications, the direct effect enables the creation of sensors, such as pressure
sensors. The inverse effect is vital for producing actuators, including piezoelectrically controlled
injectors used in automobiles, piezoelectric dampers essential for reducing vibrations, and ultrasonic
transducers widely utilized in medical imaging, particularly in ultrasound applications.

Many crystalline materials exhibit piezoelectric behavior, with some showing sufficiently
strong effects for various applications. Examples include quartz, Rochelle salt, lead titanate
zirconate ceramics, barium titanate, and polyvinylidene fluoride (a polymer film). These materials
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are classified as intelligent materials due to their adaptive nature, scalability, and the combination
of material properties with functional applications.

The constitutive laws with internal variables have been employed in various publications to
model the effect of these variables on the behavior of real bodies such as metals, rocks, polymers,
and others, where the rate of deformation depends on the internal variables. Some internal state
variables considered by many authors include the spatial distribution of dislocations, material work-
hardening, absolute temperature, and the damage field. For examples and detailed discussions on
hardening, temperature, and other internal state variables, refer to [9, 3] and the references therein.
This article contributes to the analysis of contact problem between deformable bodie and
foundations, examining dynamic processes for materials such as electro-elastic viscoplastics with
internal variables. The boundary conditions involve an instantaneous normal response, and the
friction laws used are versions of Coulomb’s law. Electrical conditions are introduced for insulating
foundations. Our study of contact phenomena includes mathematical modeling and variational
analysis, with results on the existence and uniqueness of solutions.

In Section 2, we introduce the contact model and provide insights on the associated boundary
conditions. Section 3 outlines the assumptions regarding the data and formulates the variational
description. Section 4 is dedicated to proving the existence and uniqueness of the solution.

2. Problem statement
The physical setting is the following. Let us consider electro- thermo-elastic-viscoplastic

bodie occupies a bounded domain Q ¢ R%(d = 2,3) with a smooth boundary T, Let T > 0 and let
[0, T] be the time interval of interest. The body is clamped on I; X (0, T), so the displacement field
vanishes there, surface tractions of density f, act on I, X (0, T) and a volume force of density f; is
applied in Q x (0,T). We also assume that the electrical potential vanishes on I, X (0,T) and a
surface electrical charge of density g, is prescribed on I3, x (0, T).

The classical formulation of the mechanical problem of electro-elastic-viscoplastic material
with internal state variable, may be stated as follows.

Problem P

Find a displacement field u: Q x (0,T) — R%, a stress field a: Q X (0,T) - S¢, an electric
potential field ¢:Q x (0,T) - R, an electric displacement field D:Q x (0,T) -» R4, and an
internal state variable field k: Q x (0,T) - R™ such that

a(t) = As(@(t)) + B(e(u(®))) = (€)E(p(t)) +

Jy G(a(s) — Ae((s)) + () E(p(£)), e(u(s)), k(s))ds in & x (0,T), 1)
D = Es(u) + BV(p) in Q x (0,T), )
k = 0(a(s) — As(i(s)) + () E(p(t),e(w), k) inQx (0,T), (3)
div e + f, = pil in Q x (0,T), (4)
divD —qy =0 inQ x (0,7), (5)
u=0 onTy x (0,T), (6)
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ov = f, onT, x (0,T), )
—0oy = py(ly) onl3 x(0,T) (8)
o, =0 ©)
@=0 onT, x (0,T), (10)
Dv=gq, onT, x (0,T), (12)
u(0) = u,, w(0)=v, k(0)=k,  inQ (12)

First, equations (1)-(3) represent electro elastic-viscoplastic constitutive law with internal state
variable, were A is the viscosity operator, allowed to be nonlinear, B is the elasticity operator and
G is a nonlinear constitutive function describing the viscoplastic behavior of the material and
depending on the internal state variable k, and © is a nonlinear function also depending on the
internal state variable k. The set of admissible internal state variables is defined by:

Y ={a=(a)a€l?Q),1<i<m)

E(p) = —Ve is the electric field, £ = (e;;;) represent the third order piesoelectric tensor, £* is its
transposition. Equations (4) and (5) represent the equilibrium equations for the stress and electric
displacement fields, where p: Q — R, designates the mass density. The evolutionary processes
defined by (4) are called dynamic processes. In some situations, this equation can be further
simplified. For example, in the case where © = 0, it is a static process. In the case where the velocity
field varies slowly with respect to time, i.e. the term pii can be neglected, we are in the presence of
a quasistatic process. In these two cases the equation (4) becomes Diva + f, =0 in QX% (0,T).
Equations (6)-(7) are the displacement-traction conditions. The relations (8)-(9) represent the
contact conditions with instantaneous normal response, Where p,, is a function given below. (10)
and (11) represent the electric boundary conditions. Finally, (12) is the initial condition.

3. Variational formulation and preliminaries
Here are some notations and conventions that will be used throughout this paper. We denote

the space of symmetric tensors of order two on R% by $¢ (where d = 2,3); (,) and |l. || represent the
scalar product and the Euclidean norm on R® and $¢, respectively. Thus, we have:

u-v=yv, YuveR? and o-7=07; Vo,T€ESY,
1 1
lull=(u-u)2, YVueR? and Il ol=(o-0)2 VoeS<
In this context and henceforth, the indices i, j, and k will range from 1 to d, and the summation
convention will apply to repeated indices. We denote the normal and tangential components of v on
the boundary by v, and v,, given by

v, =V-V,
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V=V — UV

We denote the stress field by o = a(x; t), the displacement field by u = u(x; t), and the field of
infinitesimal deformations by e(u). To simplify the notation, we will not explicitly indicate the

dependence of these functions on x € Q and t € [0, T].

For a stress field o, we denote the normal and tangential components at the boundary by o, and o,
defined as follows:

g, =0V-V,
G, = 0OV — 0,V.
Let’s consider the Hilbert space
HY(Q) = {u € L2(Q)|0u € I*(Q),i = 1,...,d}.
We define the following spaces:
H=L*(QRY, H ={uecH|e(u) € H}=H' (4R,
H ={o = (0y)l|o;; = 0; € (W} = L*(Q;$*), H, ={o € H|Divo € H}.
The spaces H, Hy; I, and JH; are real Hilbert spaces endowed with the scalar products given by
(w,v)y = fQ wvdx Yuv€H, (0,7)y = fQ 0;Tijdx Vo,TEH,
(u, v)H1 = (u,v)y + (c(w),e(v))s, Yu,v € H,,
(0,73, = (6,T)3 + (Dive, Divt)y, o,T € H;.

Here, e:H'(Q;R%) - 12(Q;S%) and Div:H; - L*>(Q;R%) are the deformation and
divergence operators, respectively, defined as follows:

e(u) = (Eij(u))»
Sij(U) = %(ui,j + u]',i),
DiU(O') = O-L'j,j'

The norms associated with the spaces H, Hy, #, and 3, are denoted by II-lly, ll-ll,, llllzr, and
lI-ll4, , respectively. Given that the boundary T is Lipschitz, the exterior normal vector v is well-
defined almost everywhere on the boundary. For any vector field v € H,, we use v to represent the
trace yv of von I'. The trace map y: H; — Hr is linear and continuous but not surjective. The image
of H, under this map is denoted by Hp, which continuously injects into L?(I")¢. Let H{. be the dual
space of Hr, and let (-,-) represent the duality pairing between Hy. and Hy. For every a € H,, there
exists an element o - v € Hy. such that

(o-v,yv) = (0,e(v)y + Dive,v)y VVEH,.
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If o is sufficiently regular (e.g., C?), then we have the following formula:
(o-v,yv) =fra-v-vda Vv € H,.
For sufficiently regular o, we obtain Green’s formula:
(0,6(V)3 + (Dive,v)y = [o-v-vda VvEH,.
We define the closed subspaces of L?(Q) and H; as follows:
V={veH|v=0onT;} (13)

Since meas(T;) > 0, Korn’s inequality holds on V. Thus, there exists a constant C, > 0, depending
only on Q and Iy, such that:

l e() llgr=Cx ll v ”Hl(ﬂ)d VvEeV.
A proof of Korn’s inequality can be found in [10], p.79.
We then consider the inner product and associated norm defined by:
(w,v)y = (e(u), (V) (14)
lviy=Ilew)lly Vuvev. (15)

Thus, the norms N1 0ya and [I-|l,, are equivalent on V, making (V,lI-ll,,) a real Hilbert

space. Additionally, by applying the Sobolev trace theorem and equation (14), there exists a constant
co > 0, depending only on Q, I, and I, such that:

IVl cllviy Vvev. (16)

In what follows, we define the Sobolev spaces associated with the electrical unknowns (field of the
electrical displacement D and the electrical potential ¢ ) of the electro-mechanical problem which
will be introduced in this paper. Let the spaces

W ={D = (D,)|D; € L2(),div D € [*(Q)}, (17)
W = {& € H'(Q),& = 0 onT,}. (18)

where divD = (D;;). These spaces W and W are real Hilbert spaces endowed with the scalar
products given by

(D,E)yy = (D,E)y + (div D, div E) 2 (q), (19)
(9. Ow = [, Vo.Védx, (20)
and the associated norms |l. |ly,, and |l. Ilyy, respectively.

| D lI=II D ”iz(ﬂ)d +Il div D Ilfz(m, I lw=Il Vo Il 2y

Since meas(T,) > 0, the Friedrichs-Poincar? inequality is satisfied, thus,
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IVS Ny cp I $ iy, VS EW, (21)

where ¢ > 0 is a constant which depends only on Q and I'; and V{ = ({ ;). It follows from (20)
that Il. ll 51y and II. Il are equivalent norms on W and therefore (W, Il lly) is a real Hilbert space.

Moreover, by the Sobolev trace theorem, there exist a constant ¢, such that
Il lzrp<Colldllw, VPeW. (22)
Moreover,recall that when D € W is a regular function, the following Green’s type formula holds
(D,VQ)y + (divD, {)2(q) = fr D -vida, V{ € H(Q). (23)

For any real Hilbert space X, we use the classical notation for the spaces LP(0,T;X) and
WkP(0,T; X), where 1 < p < oo and k > 1. For T > 0 we denote by €(0,T; X) and C*(0,T; X)
the space of continuous and continuously differentiable functions from [0, T] to X, respectively,
with the norms

u )= u(t .
Il ”c(o,'r,x) trErEg,)T(] Il ( ) "X
Il llciorx= trerhz;;g] I u(t) llx+ trer%ggg] Il () llx.

Consider two real Hilbert spaces X and H where the inclusion map from (V, lI-llx) to (H, lI-ll) is
continuous and dense. Identifying the dual of H with itself, we can establish the Gelfand triplet X c
H c X'. Thenotations |I-llx, lI-llx7, and (-,-) x» x represent the norms on X, X', and the duality pairing
between X’ and X, respectively.

Theorem 1 Let X ¢ H c X' be a Gelfand triplet. Suppose A: X — X' is a hemicontinuous
and monotone operator satisfying the following conditions:

(Av,V)yrux =wlvii+¢ VvELX, (24)
lAv Iy < C(lvix+1) VvEeEXK, (25)

where w > 0, C > 0, and ¢ € R are constants. Given an initial condition u, € H and a function
f € L?(0,T; X"), there exists a unique function u satisfying:

u € L2(0,T; X) n C([0,T]; H),
u € L2(0,T; X"),
u(t) + Au(t) = f(t) a.e.t €(0,T),
u(0) = u,.
The previous abstract result can be found in [1, 2].

We assume in what follows that the viscosity operator A: Q x S¢ — S$¢ satisfies the following
properties:
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( (a)There exists L ; > 0 such that
| A(x,w1) — A(x, @) IS Ly | 0 — w, |,
for all w,, w, € $%,a.e.x € Q.
(b)There exists m4 > 0 such that
9 (A, w1) = A(X, @) - (W — W) =2 My || @1 — @, |17, (26)
for all w,, w, € $%,a.e.x € Q.
(c¢)The mapping x = A(x, w) is Lebesgue measurable on Q,
for any w € S
\ (d)The mapping x = A(x,0) belongs to H.

The elasticity operator B: Q x $¢ — $¢ satisfies the following properties:

( (a) There exists Lg > 0 suchthat
| B(x,w;) —B(x,w;,) IS Lg |l w; — w, |l,
for all w,, w, € $%,a.e.x € Q.
(b)The mapping x = B(x, w) is Lebesgue measurable on (,

for all w € S
\ (¢)The mapping x » B(x,0) € H.

(27)

The visco-plasticity operator G: Q x $¢ x §% x R™ — R™ satisfies the following properties:

( (a) There exists a constant L; > 0 such that

1G(x, 01,61, @1) — G(x, 02,62, a2) ||
< Lg(lloy — a2l + llg — 621l + llay — az[D),
S forallt € (0,T),64,0,,61,6; € S%, a;,a, € R™a.e.x € Q. (28)
(b)The mapping x » G(x, 0, ¢, @) is Lebesgue measurable on Q,
forallo,¢ € S%, a € R™, t € (0,T).
\ (¢)The mapping x - G(x,0,0,0) € H.

Electric permittivity operator B = (b;;): @ x R? - R? satisfies

(a) B(¢,E) = (b;;(e)E;) forallE = (E;) € R, a.e. € Q.

29
(c) There exists a constant mg > 0 such that (29)
BE.E>mg I E 1%, forall E = (E;) € R%a.e. in Q.
The piezoelectric operator £: Q x $¢ — R? satisfies
{ @ €= (fip) fix EL* 1< ij,k <d. 30)
(b) Ex)o-T=0-E1 forallo € S andall T € RY.

The tangential function p,.: T3 X R — R,, e = v, 7 satisfies

(a) There exists L, > 0 such that

llpe (x, 1) — De (X, )l < Lellpy — wall
forall u;, u, € Ra.e.x €Iy (31)

(d) Forany u € R, x = p.(x,u) is Lebesgue measurable on I
(c) The mapping x = p,(x, 0) belongs to L2 (T3).
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The function ©: Q x $% x §¢ x R™ — R™ satisfies

( (a) There exists a constant Lg > 0 such that
10(x, 01, &1, a1) — O(x, 05, &5, ;)|
< Lo(lloy — ol + |l — &1l + [lay — a-lD),
3 V04,0, 8,8 €S, Va;,a, € R™a.e.x € Q. (32)
(b) The mapping x - 0(x, 0, &, a)is Lebesgue measurable on Q,
Vo, e € $%,Va € R™.
\  (¢) The mapping x ~ 0(x,0,0,0) € L*(Q).

we assume that the mass density satisfies
p € L*(Q) there exists p* > 0 such that p(x) > p* and x € Q. (33)

The volume force and surface traction are assumed to satisfy:

fo €C(0,T,L2(Q)%), f, € C(0,T,L*>(T,)%). (34)
o € C(0,T; L*(Q)), q, € C(0,T; L*(I})), (35)
u, €V, vo€H, kyevy. (36)

We now proceed to the variational formulation of problem P. We employ an interior modified
product on H = L?(Q)¢ as follows

(u,v)y = (puw,v)y Vu,v EH, (37)

and the associated standard,

1

Il v lly= (pv,v)3, Vv € H. (38)

The hypotheses (37)-(38) imply that the norms |I:ll; and II-ll; are equivalent on H. Moreover, the
spaces (V, lI-ll,,) and (V, lI-ll;) are included in each other densely and continuously. We denote the
dual space of IV by V'. By identifying H with its dual, we form the Gelfand triplet V. < H c V'. The
notation (-,-) 7« IS Used to represent the duality pairing between V' and V. We have:

(wv)yyy = (Wv)y Vu€EH, VveV. (39)
Then, we denote by £:[0,T] — V the function defined by

FO V)i = Jo fo®) - vdx+ [ fo(t)-vda VveV, te[0,T], (40)
the function g: [0, T] —» W defined by

(@), Dw = o q0(D)idx — [ q2(){da. (41)

Then, the functional j: V x V — R is defined by
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ju,v) = fr3 p(uw,)v,da VYuvevV. (42)

We observe that (40) entails
f € L*(0,T;V". (43)

By using traditional methods based on Green’s formula, we obtain the variational formulation for
the problem (1)-(12).

Problem PV

Find the displacement field w: [0; T] — V, the stress field a: [0; T] — H,an electric potential field
@:[0; T] = W, an electric displacement field D:[0; T] = W, and an internal state variable field
k:[0; T] = Y such that

o(t) = Ae(iu(t)) + Fe(u(t)) + f; G(o(s) — Ae((s)), e(u(s)), k(s))ds, (44)
(@(6), V)yrxy + (0 (1), e(W))g +j(@(t), v) = (F(O), V)yrxy VVEV, (45)
D = Es(u) — BV(¢), (46)
(Eeu®) + B(E(p(1))), V), = (—q(t), p)w, VP €W, (47)
k(t) = ¢(o(t) — Ae(ia(t)), e(u(t)), k(1)), (48)
u(0) = u,, w(0) =v, k(0) = k. (49)

4. Existence and uniqueness

Theorem 2 We assume that the conditions (26)-(43) are satisfied. Consequently, there is a unique
solution (u, o, ¢, k, D) to problem PV. Moreover, this solution satisfies

ueWwl2(0,T;V)nCc*(0,T; H) ii€ L?*(0,T;V"), (50)
o € L?(0,T; H), Dive € L>(0,T;V"), (51)
@ € C(0,T; W), (52)
k € WY2(0,T;Y), (53)
D € C(0,T; W). (54)

In the first step, we consider the following auxiliary problem, where the function n = (n',7?%) €
L?(0,T; V' x Y) is given.

Problem P}
Find a displacement field u,: (0,T) - V, such that

(it (0, v) 1., + (Ae(ity (D), £@)) . + 0 (©), V)yry +J(@(0), V)

(59)
= (f(t),V)yrxy VYV EV,a.e.t €[0,T].

u,(0) =u,, 1u,(0) = v,. (56)
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Regarding the ?,71 problem, we have the following result.

Lemma 3 The :P,,1 problem admits a unique solution that satisfies the regularity condition (50).
However, if u; represents the solution of problem P}, for n* =5} € L2(0,T; V"), i = 1,2, then there exists
aconstant C > 0 such that

Jy Witi(s) = tt2(s) Iy ds < C fy W mh(s) = mb(s) Iy ds vee[o,T]. (57)
Proof. We define the operator A: V — V' in the following manner:
Au,u)yryy = (Ac(u), e(@)y +j(u,v) Vuvev. (58)

By letting u,, = v,, the SD,,l problem can be reformulated as follows: Find the displacement field
vp: [0, T] — V such that:

uy (t) + Avy, (1) +1(t) = f(¢), (59)
with the initial condition:

v,(0) = v,. (60)
From equations (14)-(16), (26) (a), (31) (a), (42), and (58), we can deduce that

|[Au — Av|,r < (Lg+LpyCH lu—vlly, VYuvev. (61)

This shows that the operator A:V — V' is Lipschitz continuous, which guarantees its continuity.
Consequently, the mapping t — A(u + tv) is continuous, this implies that A is a hemicontinuous operator.

Next, utilizing equations (58), (26) (c), and (31) (b), we establish the following inequality:
(Au—Av,u—v)pryy =2my llu—vlz Yuvev. (62)

This demonstrates that A is a monotonic operator.

2
B?, we obtain:

By substituting v = 0y, into (62) and applying the inequality aff < “72 +
(Au,w)yry =2my llu 5 — 140y [l 1T w lly
> ma =5 =140y I} vuev.

Thus,
(Au,u)yryy =Allulli+a Yuev,

1 -1 2
where 1 = My and a = P |A0y |5

This confirms that condition (1) of Theorem 1 is satisfied. Furthermore, by setting v = 0y, in (61),
we find:

Furthermore, recalling from equations (36) and (37) that f —n € L2(0,T; V") and v, € H, Theorem 1
guarantees the existence of a unique function v that fulfills the following conditions:
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v, € L*(0,T;V')NC(0,T; H), v, € L*(0,T;V"), (63)
vy (6) + Avy (t) +n(t) = f(t) p.p.t €[0,T], (64)
v,(0) = v,. (65)

Next, define u: [0, T] — V as follows:
uy(8) = [ vy(s) ds +uy Vt € [0,T]. (66)

From equations (58) and (63)-(66), it can be concluded that u is a solution to the variational problem
?,,1 and meets the regularity condition (50). This completes the proof of the existence part of Lemma 3.

The uniqueness of the solution is derived from the uniqueness results established for problems (63)-(66), as
guaranteed by Theorem 1. Consider n; and n, in L?(0,T; V"), and let u; = u, and v; = u, fori=1,2.

We obtain the following from equation (55):

(01 — V2, V1 — Vo)yixy + (Ae(Wy) — Ae(v3),e(V1) — €(V2)) 5

67
= =M1 — N2 V1 — V)yixy- (©7)

By integrating the above equality with respect to t and using the initial conditions v, (0) = v,(0) =
v,, along with the properties of the operator A, we obtain

my fot I v1(s) —va2(s) IIf ds < — fot (M1(s) = 12(5), v1(5) — v2(5))y/xy ds. (68)
Now, employing inequality aff < “72 + ﬂ; and its consequences, we infer that

S N0(s) = va(s) 13 ds < C f7 1 my(s) —ma(5) 13 ds. (69)
Problem P

Find an electrical potential ¢,: (0,T) — W such that

(e2(uy®) +B(E(0(0)y)).V0) = (=a(®), d)u, Vb € W. (70)
We have the following result for problem .‘P,,2

Lemma 4 Problem (70) has unique solution ¢, which satisfies the regularity (52). Moreover, if ¢,
represents the solution to Problem ?,,2 for n;, i = 1,2, then there exists C > 0 such that

lo1(8) = p2Dllw < Cllug (&) —u(®)lly, vt € (0, 7). (71)

Proof. Consider the form G: W X W — R defined by

G(p,9) = BV, Vd)y Vo, EW. (72)

Using equations (20), (21), (29), and (72), we demonstrate that the form G is bilinear, continuous, symmetric,
and coercive on W. Additionally, by employing equation (41) and the Riesz representation theorem, we can
define an element &,,: [0, T] — W such that

(&), ¢),, = @), P)w + (€e(uy (1)), V9), VP EW,t € (0,T).
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Applying the Lax-Milgram Theorem, we deduce that there exists a unique element ¢, (t) € W such that

G(pn(6),8) = (& (1), 0), YPEW. (73)

From equation (72), it follows that ¢, is a solution to equation (70). Let ¢, = ¢; and u,, = u; fori = 1,2.
Using equation (70), we obtain

lo1 () = @2 (Dllw < Cllug () —u (Ol vt € (0, 7).
Since u,, € C1(0,T;V), itimplies that ¢, € C(0,T; W). This completes the proof.
Now, define k, € L*(0,T;Y) by
t
k,(t) = ko + fo n%(s)ds. (74)

In the fourth step we use the displacement field w,, obtained in Lemma 3 and k;,, defined in (74) to
consider the following Cauchy problem for the stress field.

Problem 2, ;
Find the stress field a,: (0,T) — S, which is a solution of the problem

oy (t) = B (e(u, ) + 5 G (0(5), ety (), ky () ) ds, Ve € [0,T]. (75)

Lemma5 There exists a unique solution of Problem 3, , and it satisfies (51). Moreover, if u,, 6,
and oy, represent the solutions of problems :Pl,:Pn2 and P, , respectively, for i = 1,2, then there exists C >
0 such that

o, @® = 0, ®I2, < € (Jlatg, @® =y, O

(76)
+ Jy g, () = g, I, + [lken, (©) = ey, (0] )
Proof. Let 7;,: L*(0, T; H) — L?(0, T; ) be the operator given by
T0t) = B(e(uy(®)) + fy G(0(s),e(uy(5),ky(s))) ds, ¥t € [0,T]. (77)

For a,,0, € L*(0,T; (), we use (77) and (28) to obtain for all t € [0,T]
2 t
||7;701(t1) - 7;,0'2@1)”}[ < Lszol lloy(s) — 0'2(5)”%{‘15-
Integration on the time interval (0,t,) < (0, T), it follows that
t2 2 2 ty rty 2
Iy? 17e1(t) = Foa )|, dty < LET [ 7 lo1(s) — o2 ()5, ds dt,
Therefore,
2 t t
”7;70'1(’52) - 7;10'2@2)”7{ < LZTZ foz fol lloy(s) — 02(5)”5{ ds dt;.

Forty,t,,...,t, € (0,T), we generalize the procedure above by recurrence on p. We obtain the inequality



| The Journal of Engineering and Exact Sciences — jJCEC

17,01(t) = Tyoa(t)II7,
< LPTP [0 oo [2 [1 o1 () — o2(s)l1Erdsdty ...dt,_s.
Which implies

1P rp+l
17,01(t5) = Tyoa(t)Il;, < === Iy loa(s) = a2()I; ds.

Thus, we can infer, by integrating over the interval time (0, T), that

2 L;pr+2 )
”7;70'1 - :T;IO.ZHLZ(OJT;}[) = p! ”0'1 - aZ”LZ(O,T;}[)'

It follows from this inequality that for sufficiently large p, the operator Tn(p) IS a contraction on the

Banach space L2 (0, T; 7). Consequently, there exists a unique element g, € L?(0,T; 3) such that :7;7(”)0,7 =
a,,. Furthermore, a;, is the unique solution to Problem %,. Given the regularity of u,, and the properties of
the operators B and g, it follows that o, € L*(0,T; 7).

Now, consider n,,m, € L?(0,T; V' x Y), and fori = 1,2, denote u,, =u;, 0y, =0y, and k,,, = k;. We have

o;(t) = Be(u;(t)) + fot G(0(s),e(u;(s)),k;)ds, a.e.t € (0,T).
Using the properties (27) and (28) of B and g, we find

lloy(t) = o2 ()
< € (lhua ) = wo O} + J; llor(s) = ox(s)13 ds (79)
+ [ g (s) —up ()N ds + f ks (s) — ko ()13 ds), vtel[oT]

We use Gronwall argument in the previous inequality to deduce (76), which concludes the proof of
Lemma 5.

Finally, as a consequence of these results and using the properties of the operator G the operator &,
the function S for t € (0, T), we consider the element

An(t) = (A'n(t), A’n(t)) € V' XY, (79)
defined by

(A (0, V)yrxy = (E7Vey (1), €()),,,

80
+ (fot G(0,(s), €(uy(s)), ky(s))ds, s(v))j{,‘v’v eV, (80)

Nq(t) = ®(0y, e(uy (1)), ky (1)) (81)

In this context, for any n € L2(0,T; V' X Y), the functions Uy, Py, and k, denote the displacement
field, the electric potential field, and the stress field, respectively, as derived in Lemmas 3, 4, and 5.
Additionally, k,, represents the internal state variable given by (74). The following result can be stated.

Lemma 6 The mapping A has a fixed point n* € L?(0,T; V' X Y), such that An* = *.



| The Journal of Engineering and Exact Sciences — jJCEC

Proof. Let t € (0,T) and 13,1, € L*(0,T; V' x Y). We use the notation that u,, = u;, i, =,
©n, = i, ky, = k; and o, = a; for i = 1,2. Using (14)-(15),(28), (30) and (32) to find

Il A1) () — A(m2) (D) ”§’><y

C(llo1(t) = @Ol + fot (lla1(s) = a2()3; + llug(s) — u (I (82)
+ky1(s) = k2 (s)I5ds)

+la1(s) = a2 + llug () = up ()G + [1k1(s) = kz(9)1IR),

IA

we use estimates (76), (71) to obtain

Il Ay (£) — Az () 157,y
< C(lluy(s) —up(DIIF + ki (s) — ko ()11 (83)
+ Jy s (s) = up()N1E + llky (5) — k()12 ds.

Since u;(t) = fot u;(s)ds + uy, vt € (0,T), we have

ey (8) = u, (ONIF < f, ity (5) — itz (5) 13 ds. (84)
Combining (84) and (57), and using the Gronwall’s inequality, we have
t
luy (8) —u, Olly < C [y [0 —n3| . ds, t€(0,T). (85)

Furthermore, from (74) we have

2
llk1(t) — ko (DI} < C J |2 (s) —m3 ()|, ds. (86)
Form the previous inequality and estimates (85) and (83) it follows now that

|An, (£) — An,(t) ||‘2/'Xy

87
< C [ m1(s) = 1o () IZsyds. (&7

Let is introduce the following notations
t
I = fo 17:(s) = n2(lyrxyds,

he= [y 3t 5 I ) = 1 @)llyrey
and by induction, by denoting by A™ the m power of the operator A, we obtain

|A™ 7, (&) — A" (Olyr«y
< C™(TRLy CEIM™ K In () — 12Oy sy ),

forallt € (0,T) and m € N,

™00 =12 Wiy = S iogois -4 111 = M2l
S
< fo f f(m—k)fois lm, — nZHLZ(OrT"V’XY)

tm—k
< Kl ||711—712||L2(0,T;V'><y)
Tm—k
< Kl ||711—712||L2(0,T;V'Xy),
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A" 31(8) = A" 12 (0) 2 (0,77 xv)

Tm—k
< ™ (i T ln1(®) = 12Ol 2o v7xr))
(cnH™
m!

= llm.(8) — nz(t)”iz(o,T;V’xY)'

This implies that for sufficiently large m, the operator A™ is a contraction on the Banach space
L?(0,T; V' x Y). Consequently, A™ possesses a unique fixed point n* € L2(0,T; V' X Y), which means that
1" is also a unique fixed point of A.

Existence

Letn* € L2(0,T; V' x Y) be the fixed point of A. We define

U= Uy, k = k77*’ ® = @Oy (88)
o =Ae(@) + EVo(t) + oy, (89)
D = Es(u) + BVo. (90)

We demonstrate that the tuple (u, o, k, ¢, D) satisfies the conditions outlined in (44)-(49) and (50)-
(54). Specifically, by substituting n* = n into (75) and applying (88)-(89), we confirm that (44) is satisfied.
Next, we consider (55) for n* = i and use (88) to derive

(W(t), V)yrxy + (Ae@(1)), e@))3c + M (), V)yroy +Jj(@(1), V)

= (f(O),V)yrxy YV EV,aet€[0,T]. (91)

The relationships A'(n*) = p** and A%(n*) = n?*, together with (80)-(81), (88), and (89), imply
that forall v € V,

@Y (), V)yrny = (B(eu(t)), e(W))g + (E*Vep(L), (V)5

92
+ (I §(0(s) — Ac(i(s)) — £'Vo (1), £u(s),0(5), k(s)) ds, (1)) 2

.
72" (t) = ®(0(s) — Ae(i(s)) — EVo(t), e(u(t)), 8(¢), k). (93)

From (93) and (74), it follows that (48) is satisfied. By substituting (92) into (91) and using (44), we
verify that (45) holds.

We then substitute n = n* into (70) and use (88) to derive (47). Furthermore, (49), along with the
regularities given by (50), (52), and (53), follow from Lemmas 3, 4, and the relationship in (74). The
regularity o € C(0,T; H) is ensured by Lemmas 5.

Considering t4,t, € [0,T], from (21), (29), (30), and (90), we conclude that there exists a positive
constant C > 0 such that

ID(t1) — D(E)lu < Cl@(t1) — ) llw + llut) — ul@)lly).
The regularity of u and ¢ given by (50) and (52) implies that
D € C(0,T; H). (94)
By choosing ¢ € D(Q) in (46)-(47) and using (41), we find

divD,(t) = qo(t), Vt € [0,T]. (95)
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The property (54) follows from (35), (94), and (95), thereby concluding the existence part of the

Theorem.

Uniqueness

The uniqueness of the solution is a consequence of the uniqueness of the fixed point of operator A.
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