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Abstract  

In this paper, we examine a dynamic contact problem involving an electro-elastic-viscoplastic body 

and a deformable base. The contact is characterized by an instantaneous normal response, and the 

behavior is described by an electro-elastic-viscoplastic law with an internal variable. We present 

both the mechanical and variational formulations of the problem, establishing the existence and 

uniqueness of the solution. Our proof relies on the theory of variational equations and fixed-point 

arguments. 
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1. Introduction  

Contact mechanics is a comprehensive field that encompasses various phenomena involving 

the contact between a deformable or solid body and a foundation. Our contributions to this field are 

detailed in references [5, 6, 7, 8, 13]. These contact phenomena are prevalent in everyday life, 

significantly impacting structural mechanics, particularly in industries such as automotive and 

aeronautics (e.g., cracks in composites and fiber/matrix interfaces), energy production (e.g., 

assembly of structures, welding joint failures), and transmission systems. As a result, substantial 

efforts have been devoted to their modeling and numerical simulation, as demonstrated by works 

such as [4, 11, 12, 14] and related literature. 

Piezoelectricity is a property of certain materials that allows them to become electrically 

polarized when subjected to mechanical stress, known as the direct piezoelectric effect. Conversely, 

the inverse piezoelectric effect occurs when these materials deform in response to an electric field. 

In practical applications, the direct effect enables the creation of sensors, such as pressure 

sensors. The inverse effect is vital for producing actuators, including piezoelectrically controlled 

injectors used in automobiles, piezoelectric dampers essential for reducing vibrations, and ultrasonic 

transducers widely utilized in medical imaging, particularly in ultrasound applications. 

Many crystalline materials exhibit piezoelectric behavior, with some showing sufficiently 

strong effects for various applications. Examples include quartz, Rochelle salt, lead titanate 

zirconate ceramics, barium titanate, and polyvinylidene fluoride (a polymer film). These materials 
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are classified as intelligent materials due to their adaptive nature, scalability, and the combination 

of material properties with functional applications. 

The constitutive laws with internal variables have been employed in various publications to 

model the effect of these variables on the behavior of real bodies such as metals, rocks, polymers, 

and others, where the rate of deformation depends on the internal variables. Some internal state 

variables considered by many authors include the spatial distribution of dislocations, material work-

hardening, absolute temperature, and the damage field. For examples and detailed discussions on 

hardening, temperature, and other internal state variables, refer to [9, 3] and the references therein. 

This article contributes to the analysis of contact problem between deformable bodie and 

foundations, examining dynamic processes for materials such as electro-elastic viscoplastics with 

internal variables. The boundary conditions involve an instantaneous normal response, and the 

friction laws used are versions of Coulomb’s law. Electrical conditions are introduced for insulating 

foundations. Our study of contact phenomena includes mathematical modeling and variational 

analysis, with results on the existence and uniqueness of solutions. 

In Section 2, we introduce the contact model and provide insights on the associated boundary 

conditions. Section 3 outlines the assumptions regarding the data and formulates the variational 

description. Section 4 is dedicated to proving the existence and uniqueness of the solution. 

2. Problem statement  

The physical setting is the following. Let us consider electro- thermo-elastic-viscoplastic 

bodie occupies a bounded domain Ω ⊂ ℝ𝑑(𝑑 = 2,3) with a smooth boundary Γ, Let 𝑇 > 0 and let 

[0, 𝑇] be the time interval of interest. The body is clamped on Γ1 × (0, 𝑇), so the displacement field 

vanishes there, surface tractions of density 𝑓0 act on Γ2 × (0, 𝑇) and a volume force of density 𝑓2 is 

applied in Ω × (0, 𝑇). We also assume that the electrical potential vanishes on Γ𝑎 × (0, 𝑇) and a 

surface electrical charge of density 𝑞2 is prescribed on Γ𝑏 × (0, 𝑇). 

The classical formulation of the mechanical problem of electro-elastic-viscoplastic material 

with internal state variable, may be stated as follows. 

Problem 𝑷 

 Find a displacement field 𝒖:Ω × (0, 𝑇) → ℝ𝑑, a stress field 𝝈:Ω × (0, 𝑇) → 𝕊𝑑 , an electric 

potential field 𝜑:Ω × (0, 𝑇) → ℝ, an electric displacement field 𝑫:Ω × (0, 𝑇) → ℝ𝑑, and an 

internal state variable field 𝒌:Ω × (0, 𝑇) → ℝ𝑚 such that  

𝝈(𝑡) = 𝒜𝜀(𝒖̇(𝑡)) + ℬ(𝜀(𝒖(𝑡))) − (ℰ)∗𝐸(𝜑(𝑡)) +

∫
𝑡

0
𝒢(𝜎(𝑠) −𝒜𝜀(𝒖̇(𝑠)) + (ℰ)∗𝐸(𝜑(𝑡)), 𝜀(𝒖(𝑠)), 𝒌(𝑠))𝑑𝑠 in Ω × (0, 𝑇),     (1) 

𝑫 = ℰ𝜀(𝒖) + 𝑩∇(𝜑)               in Ω × (0, 𝑇), (2) 

𝒌̇ = Θ(𝝈(𝑠) −𝒜𝜀(𝒖̇(𝑠)) + (ℰ)∗𝐸(𝜑(𝑡)), 𝜀(𝒖), 𝒌)    in Ω × (0, 𝑇), (3) 

𝑑𝑖𝑣 𝝈 + 𝑓0 = 𝜌𝑢̈                in Ω × (0, 𝑇), (4) 

𝑑𝑖𝑣 𝑫 − 𝑞0 = 0                in Ω × (0, 𝑇), (5) 

𝒖 = 𝟎                        on Γ1 × (0, 𝑇), (6) 
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𝝈𝝂 = 𝑓2                on Γ2 × (0, 𝑇), (7) 

 −𝜎𝜈 = 𝑝𝜈(𝑢̇𝜈)    on Γ3 × (0, 𝑇) (8) 

 𝝈𝜏 = 0                                                                                                                                 (9) 

𝜑 = 0                        on Γ𝑎 × (0, 𝑇), (10) 

𝑫. 𝜈 = 𝑞2                on Γ𝑏 × (0, 𝑇), (11) 

𝒖(0) = 𝒖0,    𝒖̇(0) = 𝒗0,    𝒌(0) = 𝒌0,            in Ω. (12) 

 First, equations (1)-(3) represent electro elastic-viscoplastic constitutive law with internal state 

variable, were 𝒜 is the viscosity operator, allowed to be nonlinear, ℬ is the elasticity operator and 

𝒢 is a nonlinear constitutive function describing the viscoplastic behavior of the material and 

depending on the internal state variable 𝒌, and Θ is a nonlinear function also depending on the 

internal state variable 𝒌. The set of admissible internal state variables is defined by:  

𝑌 = {𝑎 = (𝑎𝑖): 𝑎𝑖 ∈ 𝐿
2(Ω), 1 ≤ 𝑖 ≤ 𝑚}. 

𝐸(𝜑) = −∇𝜑 is the electric field, ℰ = (𝑒𝑖𝑗𝑘) represent the third order piesoelectric tensor, ℰ∗ is its 

transposition. Equations (4) and (5) represent the equilibrium equations for the stress and electric 

displacement fields, where 𝜌: Ω → ℝ+ designates the mass density. The evolutionary processes 

defined by (4) are called dynamic processes. In some situations, this equation can be further 

simplified. For example, in the case where 𝑢̇ = 0, it is a static process. In the case where the velocity 

field varies slowly with respect to time, i.e. the term 𝜌𝑢̈ can be neglected, we are in the presence of 

a quasistatic process. In these two cases the equation (4) becomes 𝐷𝑖𝑣𝜎 + 𝑓0 = 0    in    Ω × (0, 𝑇). 

Equations (6)-(7) are the displacement-traction conditions. The relations (8)-(9) represent the 

contact conditions with instantaneous normal response, Where 𝑝𝜈 is a function given below. (10) 

and (11) represent the electric boundary conditions. Finally, (12) is the initial condition. 

 

 

 

 

 

3. Variational formulation and preliminaries 

Here are some notations and conventions that will be used throughout this paper. We denote 

the space of symmetric tensors of order two on ℝ𝑑 by 𝕊𝑑 (where 𝑑 = 2,3); (, ) and ∥. ∥ represent the 

scalar product and the Euclidean norm on ℝ𝑑 and 𝕊𝑑, respectively. Thus, we have:  

𝒖 ⋅ 𝒗 = 𝑢𝑖𝑣𝑖,    ∀ 𝒖, 𝒗 ∈ ℝ
𝑑     and    𝝈 ⋅ 𝝉 = 𝜎𝑖𝑗𝜏𝑖𝑗     ∀𝝈, 𝝉 ∈ 𝕊

𝑑 ,

∥ 𝒖 ∥= (𝒖 ⋅ 𝒖)
1
2,    ∀ 𝒖 ∈ ℝ𝑑     and    ∥ 𝝈 ∥= (𝝈 ⋅ 𝝈)

1
2,    ∀𝝈 ∈ 𝕊𝑑 .

 

In this context and henceforth, the indices 𝑖, 𝑗, and 𝑘 will range from 1 to 𝑑, and the summation 

convention will apply to repeated indices. We denote the normal and tangential components of 𝒗 on 

the boundary by 𝑣𝜈 and 𝒗𝜏, given by  

 𝑣𝜈 = 𝒗 ⋅ 𝝂, 
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 𝒗𝜏 = 𝒗 − 𝑢𝜈𝝂. 

 We denote the stress field by 𝝈 = 𝝈(𝒙; 𝑡), the displacement field by 𝒖 = 𝒖(𝑥; 𝑡), and the field of 

infinitesimal deformations by 𝜀(𝒖). To simplify the notation, we will not explicitly indicate the 

dependence of these functions on 𝑥 ∈ Ω and 𝑡 ∈ [0, 𝑇]. 

For a stress field 𝝈, we denote the normal and tangential components at the boundary by 𝝈𝜈 and 𝝈𝜏, 

defined as follows:  

 𝜎𝜈 = 𝜎𝜈 ⋅ 𝝂, 

 𝝈𝜏 = 𝝈𝝂 − 𝜎𝜈𝝂. 

Let’s consider the Hilbert space 

 𝐻1(Ω) = {𝑢 ∈ 𝐿2(Ω)|𝜕𝑖𝑢 ∈ 𝐿
2(Ω), 𝑖 = 1,… , 𝑑}. 

We define the following spaces: 

𝐻 = 𝐿2(Ω;ℝ𝑑),    𝐻1 = {𝒖 ∈ 𝐻|𝜀(𝒖) ∈ ℋ} = 𝐻
1(Ω;ℝ𝑑), 

 ℋ = {𝝈 = (𝜎𝑖𝑗)|𝜎𝑖𝑗 = 𝜎𝑗𝑖 ∈ 𝐿
2(Ω)} = 𝐿2(Ω; 𝕊𝑑),    ℋ1 = {𝝈 ∈ ℋ|𝐷𝑖𝑣 𝝈 ∈ 𝐻}. 

The spaces 𝐻, 𝐻1; ℋ, and ℋ1 are real Hilbert spaces endowed with the scalar products given by  

 (𝒖, 𝒗)𝐻 = ∫Ω 𝑢𝑖𝑣𝑖𝑑𝑥    ∀𝒖, 𝒗 ∈ 𝐻,    (𝝈, 𝝉)ℋ = ∫
Ω
𝜎𝑖𝑗𝜏𝑖𝑗𝑑𝑥    ∀ 𝝈, 𝝉 ∈ ℋ, 

                         (𝐮, 𝒗)𝐻1 = (𝒖, 𝒗)𝐻 + (𝜀(𝒖), 𝜀(𝒗))ℋ ,    ∀𝒖, 𝒗 ∈ 𝐻1, 

 (𝝈, 𝝉)ℋ1 = (𝝈, 𝝉)ℋ + (𝐷𝑖𝑣𝝈, 𝐷𝑖𝑣𝝉)𝐻,    𝝈, 𝝉 ∈ ℋ1. 

Here, 𝜀: 𝐻1(Ω;ℝ𝑑) → 𝐿2(Ω; 𝕊𝑑) and 𝐷𝑖𝑣:ℋ1 → 𝐿2(Ω;ℝ𝑑) are the deformation and 

divergence operators, respectively, defined as follows: 

 𝜀(𝐮) = (𝜀𝑖𝑗(𝐮)), 

 𝜀𝑖𝑗(𝐮) =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), 

 𝐷𝑖𝑣(𝝈) = 𝜎𝑖𝑗,𝑗. 

 The norms associated with the spaces 𝐻, 𝐻1, ℋ, and ℋ1 are denoted by ∥⋅∥𝐻, ∥⋅∥𝐻1, ∥⋅∥ℋ, and        

 ∥⋅∥ℋ1, respectively. Given that the boundary Γ is Lipschitz, the exterior normal vector 𝜈 is well-

defined almost everywhere on the boundary. For any vector field 𝐯 ∈ 𝐻1, we use 𝐯 to represent the 

trace 𝛾𝐯 of 𝐯 on Γ. The trace map 𝛾:𝐻1 → 𝐻Γ is linear and continuous but not surjective. The image 

of 𝐻1 under this map is denoted by 𝐻Γ, which continuously injects into 𝐿2(Γ)𝑑. Let 𝐻Γ
′  be the dual 

space of 𝐻Γ, and let (⋅,⋅) represent the duality pairing between 𝐻Γ
′  and 𝐻Γ. For every 𝝈 ∈ ℋ1, there 

exists an element 𝝈 ⋅ 𝜈 ∈ 𝐻Γ
′  such that 

 (𝝈 ⋅ 𝜈, 𝛾𝐯) = (𝝈, 𝜀(𝐯))ℋ + (𝐷𝑖𝑣 𝝈, 𝐯)𝐻    ∀ 𝐯 ∈ 𝐻1. 
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 If 𝝈 is sufficiently regular (e.g., 𝐶1), then we have the following formula: 

 (𝝈 ⋅ 𝜈, 𝛾𝐯) = ∫
Γ
𝝈 ⋅ 𝜈 ⋅ 𝐯 𝑑𝑎    ∀𝐯 ∈ 𝐻1. 

For sufficiently regular 𝝈, we obtain Green’s formula: 

 (𝝈, 𝜀(𝐯))ℋ + (𝐷𝑖𝑣𝝈, 𝐯)𝐻 = ∫Γ 𝝈 ⋅ 𝜈 ⋅ 𝐯 𝑑𝑎    ∀ 𝐯 ∈ 𝐻1. 

We define the closed subspaces of 𝐿2(Ω) and 𝐻1 as follows: 

𝑉 = {𝒗 ∈ 𝐻1|𝒗 = 0 on Γ1}. (13) 

Since meas(Γ1) > 0, Korn’s inequality holds on 𝑉. Thus, there exists a constant 𝐶𝐾 > 0, depending 

only on Ω and Γ1, such that: 

 ∥ 𝜀(𝒗) ∥ℋ≥ 𝐶𝐾 ∥ 𝒗 ∥𝐻1(Ω)𝑑     ∀ 𝒗 ∈ 𝑉. 

A proof of Korn’s inequality can be found in [10], p.79. 

We then consider the inner product and associated norm defined by: 

(𝒖, 𝒗)𝑉 = (𝜀(𝒖), 𝜀(𝒗))ℋ, (14) 

∥ 𝒗 ∥𝑉=∥ 𝜀(𝒗) ∥ℋ     ∀ 𝒖, 𝒗 ∈ 𝑉. (15) 

Thus, the norms ∥⋅∥𝐻1(Ω)𝑑  and ∥⋅∥𝑉 are equivalent on 𝑉, making (𝑉, ∥⋅∥𝑉) a real Hilbert 

space. Additionally, by applying the Sobolev trace theorem and equation (14), there exists a constant 

𝑐0 > 0, depending only on Ω, Γ1, and Γ3, such that: 

∥ 𝒗 ∥𝐿2(Γ3)𝑑≤ 𝑐0 ∥ 𝒗 ∥𝑉     ∀ 𝒗 ∈ 𝑉. (16) 

 In what follows, we define the Sobolev spaces associated with the electrical unknowns (field of the 

electrical displacement 𝐃 and the electrical potential 𝜑 ) of the electro-mechanical problem which 

will be introduced in this paper. Let the spaces  

𝒲 = {𝐃 = (𝐷𝑖)|𝐷𝑖 ∈ 𝐿
2(Ω), 𝑑𝑖𝑣 𝐃 ∈ 𝐿2(Ω)}, (17) 

𝑊 = {𝜉 ∈ 𝐻1(Ω), 𝜉 = 0 on Γ𝑎}. (18) 

 where 𝑑𝑖𝑣𝐃 = (𝐷𝑖,𝑖). These spaces 𝒲 and 𝑊 are real Hilbert spaces endowed with the scalar 

products given by  

(𝐃, 𝐄)𝒲 = (𝐃, 𝐄)𝐻 + (𝑑𝑖𝑣 𝐃, 𝑑𝑖𝑣 𝐄)𝐿2(Ω), (19) 

(𝜑, 𝜉)𝑊 = ∫
Ω
∇𝜑. ∇𝜉𝑑𝑥, (20) 

 and the associated norms ∥. ∥𝒲 and ∥. ∥𝑊, respectively.  

 ∥ 𝐃 ∥𝒲
2 =∥ 𝐃 ∥

𝐿2(Ω)𝑑
2 +∥ 𝑑𝑖𝑣 𝐃 ∥𝐿2(Ω)

2 , ∥ 𝜙 ∥𝑊=∥ ∇𝜙 ∥𝐿2(Ω)𝑑  

Since 𝑚𝑒𝑎𝑠(Γ𝑎) > 0, the Friedrichs-Poincar? inequality is satisfied, thus,  
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∥ ∇𝜁 ∥𝐻≥ 𝑐𝐹 ∥ 𝜁 ∥𝐻1(Ω) ,    ∀𝜁 ∈ 𝑊, (21) 

 where 𝑐𝐹 > 0 is a constant which depends only on Ω and Γ𝑎 and ∇𝜁 = (𝜁.,𝑖). It follows from (20) 

that ∥. ∥𝐻1(Ω) and ∥. ∥𝑊 are equivalent norms on 𝑊 and therefore (𝑊, ∥. ∥𝑊) is a real Hilbert space. 

Moreover, by the Sobolev trace theorem, there exist a constant 𝑐̃0 such that  

∥ 𝜙 ∥𝐿2(Γ3)≤ 𝑐̃0 ∥ 𝜙 ∥𝑊 ,    ∀𝜙 ∈ 𝑊. (22) 

 Moreover,recall that when 𝑫 ∈ 𝒲 is a regular function, the following Green’s type formula holds  

(𝑫, ∇𝜁)𝐻 + (𝑑𝑖𝑣𝑫, 𝜁)𝐿2(Ω) = ∫Γ 𝑫 ⋅ 𝝂𝜁𝑑𝑎,    ∀𝜁 ∈ 𝐻
1(Ω). (23) 

 For any real Hilbert space 𝑋, we use the classical notation for the spaces 𝐿𝑝(0, 𝑇; 𝑋) and 

𝑊𝑘,𝑝(0, 𝑇; 𝑋), where 1 ≤ 𝑝 ≤ ∞ and 𝑘 ≥ 1. For 𝑇 > 0 we denote by 𝐶(0, 𝑇; 𝑋) and 𝐶1(0, 𝑇; 𝑋) 

the space of continuous and continuously differentiable functions from [0, 𝑇] to 𝑋, respectively, 

with the norms  

 ∥ 𝒖 ∥𝐶(0,𝑇;𝑋)= max
𝑡∈[0,𝑇]

∥ 𝒖(𝑡) ∥𝑋 . 

 ∥ 𝒖 ∥𝐶1(0,𝑇;𝑋)= max
𝑡∈[0,𝑇]

∥ 𝒖(𝑡) ∥𝑋+ max
𝑡∈[0,𝑇]

∥ 𝒖̇(𝑡) ∥𝑋 . 

Consider two real Hilbert spaces 𝑋 and 𝐻 where the inclusion map from (𝑉, ∥⋅∥𝑋) to (𝐻, ∥⋅∥𝐻) is 

continuous and dense. Identifying the dual of 𝐻 with itself, we can establish the Gelfand triplet 𝑋 ⊂

𝐻 ⊂ 𝑋′. The notations ∥⋅∥𝑋, ∥⋅∥𝑋′, and (⋅,⋅)𝑋′×𝑋 represent the norms on 𝑋, 𝑋′, and the duality pairing 

between 𝑋′ and 𝑋, respectively. 

Theorem 1  Let 𝑋 ⊂ 𝐻 ⊂ 𝑋′ be a Gelfand triplet. Suppose 𝐴: 𝑋 → 𝑋′ is a hemicontinuous 

and monotone operator satisfying the following conditions:  

(𝐴𝑣, 𝑣)𝑋′×𝑋 ≥ 𝑤 ∥ 𝑣 ∥𝑋
2+ 𝜍    ∀ 𝑣 ∈ 𝑋, (24) 

∥ 𝐴𝑣 ∥𝑋′≤ 𝐶(∥ 𝑣 ∥𝑋+ 1)   ∀ 𝑣 ∈ 𝑋, (25) 

 where 𝑤 > 0, 𝐶 > 0, and 𝜍 ∈ ℝ are constants. Given an initial condition 𝑢0 ∈ 𝐻 and a function 

𝑓 ∈ 𝐿2(0, 𝑇; 𝑋′), there exists a unique function 𝑢 satisfying:  

 𝑢 ∈ 𝐿2(0, 𝑇; 𝑋) ∩ 𝐶([0, 𝑇]; 𝐻), 

 𝑢̇ ∈ 𝐿2(0, 𝑇; 𝑋′), 

 𝑢̇(𝑡) + 𝐴𝑢(𝑡) = 𝑓(𝑡)    a. e. 𝑡 ∈ (0, 𝑇), 

 𝑢(0) = 𝑢0. 

 The previous abstract result can be found in [1, 2]. 

We assume in what follows that the viscosity operator 𝒜:Ω × 𝕊𝑑 ⟶ 𝕊𝑑 satisfies the following 

properties:  
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{
 
 
 
 

 
 
 
 

(𝑎)There exists 𝐿𝒜 > 0    such that

    ∥ 𝒜(𝒙,𝝎1) − 𝒜(𝒙,𝝎2) ∥≤ 𝐿𝒜 ∥ 𝝎1 −𝝎2 ∥,

    for all 𝝎1, 𝝎2 ∈ 𝕊
𝑑 , a. e. 𝒙 ∈ Ω.

(𝑏)There exists  𝑚𝒜 > 0    such that

    (𝒜(𝒙,𝝎1) − 𝒜(𝒙,𝝎2)) ⋅ (𝝎1 −𝝎2) ≥ 𝑚𝒜 ∥ 𝝎1 −𝝎2 ∥
2,

    for all 𝝎1, 𝝎2 ∈ 𝕊
𝑑 , a. e. 𝒙 ∈ Ω.

(𝑐)The mapping 𝒙 ↦ 𝒜(𝒙,𝝎) is Lebesgue measurable on Ω,

    for any 𝝎 ∈ 𝕊𝑑 .

(𝑑)The mapping 𝒙 ↦ 𝒜(𝒙, 0) belongs to ℋ.

 (26) 

 The elasticity operator ℬ:Ω × 𝕊𝑑 ⟶ 𝕊𝑑 satisfies the following properties:  

{
  
 

  
 

(𝑎) There exists 𝐿ℬ > 0    suchthat

    ∥ ℬ(𝒙,𝝎1) − ℬ(𝒙,𝝎2) ∥≤ 𝐿ℬ ∥ 𝝎1 −𝝎2 ∥,

    for all 𝝎1, 𝝎2 ∈ 𝕊
𝑑 , a. e. 𝒙 ∈ Ω.

(𝑏)The mapping 𝒙 ↦ ℬ(𝒙,𝝎) is Lebesgue measurable on Ω,

    for all 𝝎 ∈ 𝕊𝑑 .
(𝑐)The mapping 𝒙 ↦ ℬ(𝒙, 0) ∈ ℋ.

 (27) 

The visco-plasticity operator 𝒢: Ω × 𝕊𝑑 × 𝕊𝑑 × ℝ𝑚 ⟶ℝ𝑚 satisfies the following properties:  

{
 
 
 

 
 
 

(𝑎) There exists a constant 𝐿𝒢 > 0    such that

    ‖𝒢(𝒙, 𝝈1, 𝝇1, 𝛼1) − 𝒢(𝒙, 𝝈2, 𝝇2, 𝛼2)‖

        ≤ 𝐿𝒢(‖𝝈1 − 𝝈2‖ + ‖𝝇1 − 𝝇2‖ + ‖𝛼1 − 𝛼2‖),

for all 𝑡 ∈ (0, 𝑇), 𝝈1, 𝝈2, 𝝇1, 𝝇2 ∈ 𝕊
𝑑 , 𝛼1, 𝛼2 ∈ ℝ

𝑚, a. e. 𝒙 ∈ Ω.

(𝑏)The mapping 𝒙 ↦ 𝒢(𝒙, 𝝈, 𝝇, 𝛼) is Lebesgue measurable on Ω,

    for all 𝝈, 𝝇 ∈ 𝕊𝑑 , 𝛼 ∈ ℝ𝑚, 𝑡 ∈ (0, 𝑇).

(𝑐)The mapping 𝒙 ↦ 𝒢(𝒙, 𝟎, 𝟎, 𝟎) ∈ ℋ.

 (28) 

Electric permittivity operator 𝑩 = (𝑏𝑖𝑗): Ω × ℝ
𝑑 → ℝ𝑑 satisfies  

{
 
 

 
 (a) 𝑩(𝜺, 𝐸) = (𝑏𝑖𝑗(𝜺)𝐸𝑗) for all 𝐸 = (𝐸𝑖) ∈ ℝ

𝑑 , a. e.  𝜺 ∈ Ω.

(b) 𝑏𝑖𝑗 = 𝑏𝑗𝑖 ∈ 𝐿
∞(Ω),1 ≤ 𝑖, 𝑗 ≤ 𝑑.

(c) There exists a constant 𝑚𝑩 > 0 such that

        𝑩𝐸. 𝐸 ≥ 𝑚𝑩 ∥ 𝐸 ∥
2, for all 𝐸 = (𝐸𝑖) ∈ ℝ

𝑑 , a. e.  in Ω.                        

 (29) 

 The piezoelectric operator ℰ: Ω × 𝕊𝑑 → ℝ𝑑 satisfies  

{
(𝑎)    ℰ = (𝑓𝑖𝑗𝑘), 𝑓𝑖𝑗𝑘 ∈ 𝐿

∞(Ω),1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑑.

(𝑏)   ℰ(𝐱)𝝈 ⋅ 𝝉 = 𝝈 ⋅ ℰ∗𝝉, for all 𝝈 ∈ 𝕊𝑑 , and all 𝝉 ∈ ℝ𝑑 .                        
 (30) 

 The tangential function 𝑝𝑒: Γ3 ×ℝ⟶ ℝ+, 𝑒 = 𝜈, 𝜏 satisfies  

{
 
 

 
 
(a) There exists 𝐿𝑒 > 0 such that                                                        

    ‖𝑝𝑒(𝒙, 𝜇1) − 𝑝𝑒(𝒙, 𝜇2)‖ ≤ 𝐿𝑒‖𝜇1 − 𝜇2‖

for all 𝜇1, 𝜇2 ∈ ℝ, a. e. 𝒙 ∈ Γ3
(d) For any 𝜇 ∈ ℝ, 𝒙 ↦ 𝑝𝑒(𝒙, 𝜇) is Lebesgue measurable on Γ3
(c) The mapping 𝒙 ↦ 𝑝𝑒(𝒙, 0) belongs to 𝐿

2(Γ3).

 (31) 
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 The function Θ:Ω × 𝕊𝑑 × 𝕊𝑑 × ℝ𝑚 ⟶ℝ𝑚 satisfies  

{
 
 
 

 
 
 

(𝑎) There exists a constant 𝐿Θ > 0    such that

‖Θ(𝑥, 𝝈1, 𝜺1, 𝛼1) − Θ(𝑥, 𝝈2, 𝜺2, 𝛼2)‖

        ≤ 𝐿Θ(‖𝝈1 − 𝝈2‖ + ‖𝜺1 − 𝜺2‖ + ‖𝛼1 − 𝛼2‖),

∀𝝈1, 𝝈2, 𝜺1, 𝜺2 ∈ 𝕊
𝑑 ,    ∀𝛼1, 𝛼2 ∈ ℝ

𝑚, a. e. 𝑥 ∈ Ω.

(𝑏) The mapping  𝑥 ↦ Θ(𝑥, 𝝈, 𝜺, 𝛼)is  Lebesgue  measurable  on  Ω,

∀𝝈, 𝜺 ∈ 𝕊𝑑 , ∀𝛼 ∈ ℝ𝑚.
(𝑐) The mapping  𝑥 ↦ Θ(𝑥, 0,0,0) ∈ 𝐿2(Ω).

 (32) 

we assume that the mass density satisfies  

𝜌 ∈ 𝐿∞(Ω) there exists 𝜌∗ > 0  such that  𝜌(𝑥) > 𝜌∗  and  𝑥 ∈ Ω. (33) 

 The volume force and surface traction are assumed to satisfy:  

𝒇0 ∈ 𝐶(0, 𝑇, 𝐿
2(Ω)𝑑),    𝒇2 ∈ 𝐶(0, 𝑇, 𝐿

2(Γ2)
𝑑). (34) 

𝑞0 ∈ 𝐶(0, 𝑇; 𝐿
2(Ω)),    𝑞2 ∈ 𝐶(0, 𝑇; 𝐿

2(Γ𝑏)), (35) 

𝒖0 ∈ 𝑉,    𝒗0 ∈ 𝐻,    𝒌0 ∈ 𝑌. (36) 

 We now proceed to the variational formulation of problem 𝑃. We employ an interior modified 

product on 𝐻 = 𝐿2(Ω)𝑑 as follows  

(𝑢, 𝑣)𝐻 = (𝜌𝑢, 𝑣)𝐻    ∀𝑢, 𝑣 ∈ 𝐻, (37) 

 and the associated standard,  

∥ 𝑣 ∥𝐻= (𝜌𝑣, 𝑣)𝐻

1

2     ∀𝑣 ∈ 𝐻. (38) 

 

The hypotheses (37)-(38) imply that the norms ∥⋅∥𝐻 and ∥⋅∥𝐻 are equivalent on 𝐻. Moreover, the 

spaces (𝑉, ∥⋅∥𝑉) and (𝑉, ∥⋅∥𝐻) are included in each other densely and continuously. We denote the 

dual space of 𝑉 by 𝑉′. By identifying 𝐻 with its dual, we form the Gelfand triplet 𝑉 ⊂ 𝐻 ⊂ 𝑉′. The 

notation (⋅,⋅)𝑉′×𝑉 is used to represent the duality pairing between 𝑉′ and 𝑉. We have:  

(𝒖, 𝒗)𝑉′×𝑉 = (𝒖, 𝒗)𝐻    ∀𝒖 ∈ 𝐻, ∀𝒗 ∈ 𝑉. (39) 

 Then, we denote by 𝑓: [0, 𝑇] → 𝑉 the function defined by  

(𝒇(𝑡), 𝒗)𝑉′×𝑉 = ∫
Ω
𝑓0(𝑡) ⋅ 𝑣 𝑑𝑥 + ∫Γ2

𝑓2(𝑡) ⋅ 𝑣 𝑑𝑎    ∀𝑣 ∈ 𝑉, 𝑡 ∈ [0, 𝑇], (40) 

 the function 𝑞: [0, 𝑇] → 𝑊 defined by  

(𝑞(𝑡), 𝜁)𝑊 = ∫
Ω
𝑞0(𝑡)𝜁𝑑𝑥 − ∫Γ𝑏

𝑞2(𝑡)𝜁𝑑𝑎. (41) 

 Then, the functional 𝑗: 𝑉 × 𝑉 → ℝ is defined by  
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𝑗(𝒖, 𝒗) = ∫
Γ3
𝑝(𝑢𝜈)𝑣𝜈 𝑑𝑎    ∀𝒖, 𝒗 ∈ 𝑉. (42) 

 We observe that (40) entails  

𝒇 ∈ 𝐿2(0, 𝑇; 𝑉′). (43) 

 By using traditional methods based on Green’s formula, we obtain the variational formulation for 

the problem (1)-(12).  

Problem 𝑷𝑽 

 Find the displacement field 𝒖: [0; 𝑇] → 𝑉, the stress field 𝝈: [0; 𝑇] → 𝐻,an electric potential field 

𝜑: [0; 𝑇] → 𝑊, an electric displacement field 𝑫: [0; 𝑇] → 𝒲, and an internal state variable field 

𝑘: [0; 𝑇] → 𝑌 such that  

𝝈(𝑡) = 𝒜𝜀(𝒖̇(𝑡)) + ℱ𝜀(𝒖(𝑡)) + ∫
𝑡

0
𝒢(𝜎(𝑠) −𝒜𝜀(𝒖̇(𝑠)), 𝜀(𝒖(𝑠)), 𝑘(𝑠))𝑑𝑠, (44) 

(𝒖̈(𝑡), 𝒗)𝑉′×𝑉 + (𝜎(𝑡), 𝜀(𝑣))𝒬 + 𝑗(𝒖̇(𝑡), 𝒗) = (𝒇(𝑡), 𝒗)𝑉′×𝑉    ∀𝒗 ∈ 𝑉, (45) 

𝐃 = ℰ𝜀(𝐮) − 𝑩∇(𝜑), (46) 

(ℰ𝜀(𝒖(𝑡)) + 𝑩(𝐸(𝜑(𝑡))), ∇𝜙)
𝐻
= (−𝑞(𝑡), 𝜙)𝑊, ∀𝜙 ∈ 𝑊, (47) 

𝒌̇(𝑡) = 𝜙(𝜎(𝑡) − 𝒜𝜀(𝒖̇(𝑡)), 𝜀(𝒖(𝑡)), 𝒌(𝑡)), (48) 

𝒖(0) = 𝒖0,    𝒖̇(0) = 𝒗0,    𝒌(0) = 𝒌0. (49) 

4. Existence and uniqueness 

Theorem 2  We assume that the conditions (26)-(43) are satisfied. Consequently, there is a unique 

solution (𝒖, 𝝈,𝜑, 𝒌, 𝑫) to problem 𝑃𝑉. Moreover, this solution satisfies  

𝒖 ∈ 𝑊1,2(0, 𝑇; 𝑉) ∩ 𝐶1(0, 𝑇;𝐻)    𝑢̈ ∈ 𝐿2(0, 𝑇; 𝑉′), (50) 

𝝈 ∈ 𝐿2(0, 𝑇;ℋ),    𝐷𝑖𝑣𝝈 ∈ 𝐿2(0, 𝑇; 𝑉′), (51) 

𝜑 ∈ 𝐶(0, 𝑇;𝑊),                                                                                                                                           (52) 

𝒌 ∈ 𝑊1,2(0, 𝑇; 𝑌), (53) 

𝑫 ∈ 𝐶(0, 𝑇;𝒲).  (54) 

 In the first step, we consider the following auxiliary problem, where the function 𝜼 = (𝜂1, 𝜂2) ∈

𝐿2(0, 𝑇; 𝑉′ × 𝑌) is given. 

Problem 𝓟𝜼
𝟏 

 Find a displacement field 𝒖𝜂: (0, 𝑇) → 𝑉, such that  

(𝒖̈𝜂(𝑡), 𝑣)𝑉′×𝑉
+ (𝒜𝜀(𝒖̇𝜂(𝑡)), 𝜀(𝑣))ℋ

+ (𝜂1(𝑡), 𝒗)𝑉′×𝑉 + 𝑗(𝒖̇(𝑡), 𝒗)

                        = (𝑓(𝑡), 𝒗)𝑉′×𝑉    ∀𝒗 ∈ 𝑉, a. e. 𝑡 ∈ [0, 𝑇].
 (55) 

𝒖𝜂(0) = 𝒖0,    𝒖̇𝜂(0) = 𝒗0. (56) 
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 Regarding the 𝒫𝜂
1 problem, we have the following result.  

Lemma 3  The 𝒫𝜂
1 problem admits a unique solution that satisfies the regularity condition (50). 

However, if 𝑢𝑖 represents the solution of problem 𝒫𝜂
1, for 𝜂1 = 𝜂𝑖

1 ∈ 𝐿2(0, 𝑇; 𝑉′), 𝑖 = 1,2, then there exists 

a constant 𝐶 > 0 such that  

∫
𝑡

0
∥ 𝒖̇1(𝑠) − 𝒖̇2(𝑠) ∥𝑉

2  𝑑𝑠 ≤ 𝐶 ∫
𝑡

0
∥ 𝜼1

1(𝑠) − 𝜼2
1(𝑠) ∥𝑉′

2  𝑑𝑠    ∀𝑡 ∈ [0, 𝑇]. (57) 

 Proof. We define the operator 𝐴:𝑉 → 𝑉′ in the following manner:  

(𝐴𝒖, 𝒖)𝑉′×𝑉 = (𝒜𝜀(𝒖), 𝜀(𝒗))ℋ + 𝑗(𝒖, 𝒗)    ∀𝒖, 𝒗 ∈ 𝑉. (58) 

By letting 𝒖̇𝜂 = 𝒗𝜂, the 𝒫𝜂
1 problem can be reformulated as follows: Find the displacement field 

𝑣𝜂: [0, 𝑇] → 𝑉 such that:  

𝒖̇𝜂(𝑡) + 𝐴𝒗𝜂(𝑡) + 𝜂(𝑡) = 𝑓(𝑡), (59) 

 with the initial condition:  

𝒗𝜂(0) = 𝒗0.  (60) 

From equations (14)-(16), (26) (a), (31) (a), (42), and (58), we can deduce that  

|𝐴𝒖 − 𝐴𝒗|𝑉′ ≤ (𝐿𝒜 + 𝐿𝑝𝐶0
2) ∥ 𝒖 − 𝒗 ∥𝑉     ∀𝒖, 𝒗 ∈ 𝑉. (61) 

This shows that the operator 𝐴:𝑉 → 𝑉′ is Lipschitz continuous, which guarantees its continuity. 

Consequently, the mapping 𝑡 ↦ 𝐴(𝑢 + 𝑡𝑣) is continuous, this implies that 𝐴 is a hemicontinuous operator. 

Next, utilizing equations (58), (26) (c), and (31) (b), we establish the following inequality:  

(𝐴𝒖 − 𝐴𝒗, 𝒖 − 𝒗)𝑉′×𝑉 ≥ 𝑚𝐴 ∥ 𝒖 − 𝒗 ∥𝑉
2     ∀𝒖, 𝒗 ∈ 𝑉. (62) 

 This demonstrates that 𝐴 is a monotonic operator. 

By substituting 𝑣 = 0𝑉 into (62) and applying the inequality 𝛼𝛽 ≤
𝛼2

2
+
𝛽2

2
, we obtain:  

 (𝐴𝒖, 𝒖)𝑉′×𝑉 ≥ 𝑚𝒜 ∥ 𝒖 ∥𝑉
2− ‖𝐴𝟎𝑉‖𝑉′ ∥ 𝒖 ∥𝑉 

 ≥
1

2
𝑚𝒜 ∥ 𝒖 ∥𝑉

2−
1

2𝑚𝒜
‖𝐴0𝑉‖𝑉′

2     ∀𝒖 ∈ 𝑉. 

 Thus,  

 (𝐴𝒖, 𝒖)𝑉′×𝑉 ≥ 𝜆 ∥ 𝒖 ∥𝑉
2+ 𝛼    ∀𝒖 ∈ 𝑉, 

 where 𝜆 =
1

2
𝑚𝒜 and 𝛼 = −

1

2𝑚𝒜
|𝐴0𝑉|𝑉′

2 . 

This confirms that condition (1) of Theorem 1 is satisfied. Furthermore, by setting 𝒗 = 𝟎𝑉 in (61), 

we find:  

 ∥ 𝐴𝒖 ∥𝑉′≤ 𝑐(∥ 𝒖 ∥𝑉+ 1)    ∀𝒖 ∈ 𝑉. 

Furthermore, recalling from equations (36) and (37) that 𝑓 − 𝜂 ∈ 𝐿2(0, 𝑇; 𝑉′) and 𝒗0 ∈ 𝐻, Theorem 1 

guarantees the existence of a unique function 𝑣 that fulfills the following conditions:  
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𝒗𝜂 ∈ 𝐿
2(0, 𝑇; 𝑉′) ∩ 𝐶(0, 𝑇; 𝐻),    𝒗̇𝜂 ∈ 𝐿

2(0, 𝑇; 𝑉′), (63) 

𝒗̇𝜂(𝑡) + 𝐴𝒗𝜂(𝑡) + 𝜂(𝑡) = 𝑓(𝑡)    p. p. 𝑡 ∈ [0, 𝑇], (64) 

𝒗𝜂(0) = 𝒗0.  (65) 

Next, define 𝒖: [0, 𝑇] → 𝑉 as follows:  

𝑢𝜂(𝑡) = ∫
𝑡

0
𝒗𝜂(𝑠) 𝑑𝑠 + 𝒖0    ∀𝑡 ∈ [0, 𝑇]. (66) 

From equations (58) and (63)-(66), it can be concluded that 𝒖 is a solution to the variational problem 

𝒫𝜂
1 and meets the regularity condition (50). This completes the proof of the existence part of Lemma 3. 

The uniqueness of the solution is derived from the uniqueness results established for problems (63)-(66), as 

guaranteed by Theorem 1. Consider 𝜼1 and 𝜼2 in 𝐿2(0, 𝑇; 𝑉′), and let 𝒖𝑖 = 𝒖𝜂𝑖  and 𝒗𝑖 = 𝒖̇𝜂𝑖 for 𝑖 = 1,2. 

We obtain the following from equation (55):  

(𝒗̇1 − 𝒗̇2, 𝒗1 − 𝒗2)𝑉′×𝑉 + (𝒜𝜀(𝒗1) −𝒜𝜀(𝒗2), 𝜀(𝒗1) − 𝜀(𝒗2))ℋ
    = −(𝜂1 − 𝜂2, 𝒗1 − 𝒗2)𝑉′×𝑉.

 (67) 

By integrating the above equality with respect to 𝑡 and using the initial conditions 𝒗1(0) = 𝒗2(0) =

𝒗0, along with the properties of the operator 𝒜, we obtain  

𝑚𝒜 ∫
𝑡

0
∥ 𝒗1(𝑠) − 𝒗2(𝑠) ∥𝑉

2  𝑑𝑠 ≤ −∫
𝑡

0
(𝜂1(𝑠) − 𝜂2(𝑠), 𝒗1(𝑠) − 𝒗2(𝑠))𝑉′×𝑉  𝑑𝑠. (68) 

Now, employing inequality 𝛼𝛽 ≤
𝛼2

2
+
𝛽2

2
 and its consequences, we infer that  

∫
𝑡

0
∥ 𝒗1(𝑠) − 𝒗2(𝑠) ∥𝑉

2  𝑑𝑠 ≤ 𝐶 ∫
𝑡

0
∥ 𝜼1(𝑠) − 𝜼2(𝑠) ∥𝑉′

2  𝑑𝑠. (69) 

 Problem 𝓟𝜼
𝟐 

Find an electrical potential 𝜑𝜂: (0, 𝑇) → 𝑊 such that  

(ℰ𝜀(𝒖𝜂(𝑡)) + 𝐁(𝐸(𝜑(𝑡)𝜂)) , ∇𝜙)
𝐻
= (−𝑞(𝑡), 𝜙)𝑊, ∀𝜙 ∈ 𝑊. (70) 

We have the following result for problem 𝒫𝜂
2  

 Lemma 4  Problem (70) has unique solution 𝜑𝜂 which satisfies the regularity (52). Moreover, if 𝜑𝜂 

represents the solution to Problem 𝒫𝜂
2 for 𝜂𝑖, 𝑖 = 1,2, then there exists 𝐶 > 0 such that 

‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝑊 ≤ 𝐶‖𝒖1(𝑡) − 𝒖2(𝑡)‖𝑉 ,    ∀𝑡 ∈ (0, 𝑇). (71) 

 Proof. Consider the form 𝐺:𝑊 ×𝑊 → ℝ defined by  

𝐺(𝜑, 𝜙) = (𝐁∇𝜑, ∇𝜙)𝐻    ∀𝜑, 𝜙 ∈ 𝑊. (72) 

Using equations (20), (21), (29), and (72), we demonstrate that the form 𝐺 is bilinear, continuous, symmetric, 

and coercive on 𝑊. Additionally, by employing equation (41) and the Riesz representation theorem, we can 

define an element 𝜉𝜂: [0, 𝑇] → 𝑊 such that  

(𝜉𝜂(𝑡), 𝜙)𝑊
= (𝑞(𝑡), 𝜙)𝑊 + (ℰ𝜀(𝒖𝜂(𝑡)), ∇𝜙)𝐻

    ∀𝜙 ∈ 𝑊, 𝑡 ∈ (0, 𝑇). 
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Applying the Lax-Milgram Theorem, we deduce that there exists a unique element 𝜑𝜂(𝑡) ∈ 𝑊 such that  

𝐺(𝜑𝜂(𝑡), 𝜙) = (𝜉𝜂(𝑡), 𝜙)𝑊
    ∀𝜙 ∈ 𝑊. (73) 

From equation (72), it follows that 𝜑𝜂 is a solution to equation (70). Let 𝜑𝜂𝑖 = 𝜑𝑖 and 𝒖𝜂𝑖 = 𝒖𝑖 for 𝑖 = 1,2. 

Using equation (70), we obtain  

 ‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝑊 ≤ 𝐶‖𝒖1(𝑡) − 𝒖2(𝑡)‖𝑉     ∀𝑡 ∈ (0, 𝑇). 

Since 𝒖𝜂 ∈ 𝐶
1(0, 𝑇; 𝑉), it implies that 𝜑𝜂 ∈ 𝐶(0, 𝑇;𝑊). This completes the proof.  

 Now, define 𝒌𝜂 ∈ 𝐿
2(0, 𝑇; 𝑌) by  

𝒌𝜂(𝑡) = 𝒌0 + ∫
𝑡

0
𝜼2(𝑠)𝑑𝑠. (74) 

In the fourth step we use the displacement field 𝒖𝜂 obtained in Lemma 3 and 𝒌𝜂 defined in (74) to 

consider the following Cauchy problem for the stress field.  

Problem 𝓟𝜼,𝝈 

 Find the stress field 𝝈𝜂: (0, 𝑇) → 𝕊𝑛 which is a solution of the problem  

𝝈𝜂(𝑡) = ℬ (𝜀(𝒖𝜂(𝑡))) + ∫
𝑡

0
𝒢 (𝝈𝜂(𝑠), 𝜀(𝒖𝜂(𝑠), 𝒌𝜂(𝑠))) 𝑑𝑠,    ∀𝑡 ∈ [0, 𝑇]. (75) 

              Lemma 5  There exists a unique solution of Problem 𝒫𝜂,𝜎 and it satisfies (51). Moreover, if 𝒖𝜂𝑖 , 𝜃𝜂𝑖 

and 𝜎𝜂𝑖 represent the solutions of problems 𝒫𝜂
1, 𝒫𝜂

2 and 𝒫𝜂 , respectively, for 𝑖 = 1,2 , then there exists 𝐶 >

0 such that  

‖𝝈𝜂1(𝑡) − 𝝈𝜂2(𝑡)‖ℋ
2
≤ 𝐶 (‖𝒖𝜂1(𝑡) − 𝒖𝜂2(𝑡)‖𝑉

2

+∫
𝑡

0
‖𝒖𝜂1(𝑠) − 𝒖𝜂2(𝑠)‖𝑉

2
+ ‖𝒌𝜂1(𝑡) − 𝒌𝜂2(𝑡)‖𝑌

2
𝑑𝑠) .

 (76) 

  

Proof. Let 𝒯𝜂: 𝐿
2(0, 𝑇;ℋ) → 𝐿2(0, 𝑇;ℋ) be the operator given by  

𝒯𝜂𝝈(𝑡) = ℬ (𝜀(𝒖𝜂(𝑡))) + ∫
𝑡

0
𝒢 (𝝈(𝑠), 𝜀(𝒖𝜂(𝑠), 𝒌𝜂(𝑠))) 𝑑𝑠,    ∀𝑡 ∈ [0, 𝑇]. (77) 

For 𝝈1, 𝝈2 ∈ 𝐿
2(0, 𝑇;ℋ), we use (77) and (28) to obtain for all 𝑡 ∈ [0, 𝑇]  

 ‖𝒯𝜂𝝈1(𝑡1) − 𝒯𝜂𝝈2(𝑡1)‖ℋ
2
≤ 𝐿𝒢

2𝑇∫
𝑡1
0
‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ

2 𝑑𝑠. 

Integration on the time interval (0, 𝑡2) ⊂ (0, 𝑇), it follows that  

 ∫
𝑡2
0
‖𝒯𝜂𝝈1(𝑡1) − 𝒯𝜂𝝈2(𝑡1)‖ℋ

2
𝑑𝑡1 ≤ 𝐿𝒢

2𝑇∫
𝑡2
0 ∫

𝑡1
0
‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ

2  𝑑𝑠 𝑑𝑡1 

Therefore,  

 ‖𝒯𝜂𝝈1(𝑡2) − 𝒯𝜂𝝈2(𝑡2)‖ℋ
2
≤ 𝐿𝒢

4𝑇2 ∫
𝑡2
0 ∫

𝑡1
0
‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ

2  𝑑𝑠 𝑑𝑡1. 

For 𝑡1, 𝑡2, . . . , 𝑡𝑝 ∈ (0, 𝑇), we generalize the procedure above by recurrence on 𝑝. We obtain the inequality  
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‖𝒯𝜂𝝈1(𝑡𝑝) − 𝒯𝜂𝝈2(𝑡𝑝)‖ℋ

2

                ≤ 𝐿𝒢
2𝑝
𝑇𝑝 ∫

𝑡𝑝

0
⋯∫

𝑡2
0 ∫

𝑡1
0
‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ

2 𝑑𝑠𝑑𝑡1…𝑑𝑡𝑝−1.
 

Which implies  

 ‖𝒯𝜂𝝈1(𝑡𝑝) − 𝒯𝜂𝝈2(𝑡𝑝)‖ℋ
2
≤

𝐿𝒢
2𝑝
𝑇𝑝+1

𝑝!
∫
𝑇

0
‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ

2  𝑑𝑠. 

Thus, we can infer, by integrating over the interval time (0, 𝑇), that  

 ‖𝒯𝜂𝝈1 −𝒯𝜂𝝈2‖𝐿2(0,𝑇;ℋ)
2

≤
𝐿𝒢
2𝑝
𝑇𝑝+2

𝑝!
‖𝝈1 − 𝝈2‖𝐿2(0,𝑇;ℋ)

2 . 

It follows from this inequality that for sufficiently large 𝑝, the operator 𝒯𝜂
(𝑝)

 is a contraction on the 

Banach space 𝐿2(0, 𝑇;ℋ). Consequently, there exists a unique element 𝝈𝜂 ∈ 𝐿
2(0, 𝑇;ℋ) such that 𝒯𝜂

(𝑝)
𝝈𝜂 =

𝝈𝜂. Furthermore, 𝝈𝜂 is the unique solution to Problem 𝒫𝜂. Given the regularity of 𝒖𝜂 and the properties of 

the operators ℬ and 𝒢, it follows that 𝝈𝜂 ∈ 𝐿
2(0, 𝑇;ℋ). 

Now, consider 𝜼1, 𝜼2 ∈ 𝐿
2(0, 𝑇; 𝑉′ × 𝑌), and for 𝑖 = 1,2, denote 𝒖𝜂𝑖 = 𝒖𝑖, 𝝈𝜂𝑖 = 𝝈𝑖, and 𝒌𝜂𝑖 = 𝒌𝑖. We have  

 𝝈𝑖(𝑡) = ℬ𝜀(𝒖𝑖(𝑡)) + ∫
𝑡

0
𝒢(𝝈𝑖(𝑠), 𝜀(𝒖𝑖(𝑠)), 𝒌𝑖) 𝑑𝑠,    a. e. 𝑡 ∈ (0, 𝑇). 

Using the properties (27) and (28) of ℬ and 𝒢, we find  

‖𝜎1(𝑡) − 𝜎2(𝑡)‖ℋ
2

≤ 𝐶 (‖𝒖1(𝑡) − 𝒖2(𝑡)‖𝑉
2 + ∫

𝑡

0
‖𝜎1(𝑠) − 𝜎2(𝑠)‖ℋ 

2 𝑑𝑠

    + ∫
𝑡

0
‖𝒖1(𝑠) − 𝒖2(𝑠)‖𝑉 

2 𝑑𝑠 + ∫
𝑡

0
‖𝒌1(𝑠) − 𝒌2(𝑠)‖𝑌

2  𝑑𝑠),    ∀ 𝑡 ∈ [0, 𝑇].

 (78) 

We use Gronwall argument in the previous inequality to deduce (76), which concludes the proof of 

Lemma 5.  

 Finally, as a consequence of these results and using the properties of the operator 𝒢 the operator ℰ, 

the function 𝑆 for 𝑡 ∈ (0, 𝑇), we consider the element  

Λ𝜼(𝑡) = (Λ1𝜼(𝑡), Λ2𝜼(𝑡)) ∈ 𝑉′ × 𝑌, (79) 

 defined by  

(Λ1𝜼(𝑡), 𝒗)𝑉′×𝑌 = (ℰ
∗∇𝜑𝜂(𝑡), 𝜺(𝒗))ℋ

        + (∫
𝑡

0
𝒢(𝝈𝜂(𝑠), 𝜺(𝒖𝜂(𝑠)), 𝒌𝜼(𝑠))𝑑𝑠, 𝜺(𝒗))

ℋ
, ∀𝒗 ∈ 𝑉,

 (80) 

Λ2𝜼(𝑡) = Φ(𝝈𝜂 , 𝜀(𝒖𝜂(𝑡)), 𝒌𝜼(𝑡)). (81) 

In this context, for any 𝜼 ∈ 𝐿2(0, 𝑇; 𝑉′ × 𝑌), the functions 𝒖𝜂, 𝜑𝜂, and 𝒌𝜂 denote the displacement 

field, the electric potential field, and the stress field, respectively, as derived in Lemmas 3, 4, and 5. 

Additionally, 𝒌𝜂 represents the internal state variable given by (74). The following result can be stated.  

 Lemma 6  The mapping 𝛬 has a fixed point  𝜼∗ ∈ 𝐿2(0, 𝑇; 𝑉′ × 𝑌), such that 𝛬𝜼∗ = 𝜼∗.  



The Journal of Engineering and Exact Sciences – jCEC 

14 

Proof. Let 𝑡 ∈ (0, 𝑇) and 𝜼1, 𝜼2 ∈ 𝐿
2(0, 𝑇; 𝑉′ × 𝑌). We use the notation that 𝒖𝜂𝑖 = 𝒖𝑖, 𝒖̇𝜂𝑖 = 𝒖̇𝑖, 

𝜑𝜂𝑖 = 𝜑𝑖, 𝒌𝜼𝒊 = 𝒌𝒊 and 𝝈𝜂𝑖 = 𝝈𝑖 for 𝑖 = 1,2. Using (14)-(15),(28), (30) and (32) to find  

∥ Λ(𝜼1)(𝑡) − Λ(𝜼2)(𝑡) ∥𝑉′×𝑌
2

        ≤ 𝐶(‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝑊
2 + ∫

𝑡

0
(‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ

2 + ‖𝒖1(𝑠) − 𝒖2(𝑠)‖𝑉
2

+‖𝒌1(𝑠) − 𝒌2(𝑠)‖𝑌
2𝑑𝑠)

+‖𝝈1(𝑠) − 𝝈2(𝑠)‖ℋ
2 + ‖𝒖1(𝑠) − 𝒖2(𝑠)‖𝑉

2 + ‖𝒌1(𝑠) − 𝒌2(𝑠)‖𝑌
2),

 (82) 

 we use estimates (76), (71) to obtain  

∥ Λ𝜼1(𝑡) − Λ𝜼2(𝑡) ∥𝑉′×𝑌
2

        ≤ 𝐶(‖𝒖1(𝑠) − 𝒖2(𝑠)‖𝑉
2 + ‖𝒌1(𝑠) − 𝒌2(𝑠)‖𝑌

2

+∫
𝑡

0
‖𝒖1(𝑠) − 𝒖2(𝑠)‖𝑉

2 + ‖𝒌1(𝑠) − 𝒌2(𝑠)‖𝑌
2𝑑𝑠.

 (83) 

 Since 𝒖𝑖(𝑡) = ∫
𝑡

0
𝒖̇𝑖(𝑠)𝑑𝑠 + 𝒖0, ∀𝑡 ∈ (0, 𝑇), we have  

‖𝒖1(𝑡) − 𝒖2(𝑡)‖𝑉
2 ≤ ∫

𝑇

0
‖𝒖̇1(𝑠) − 𝒖̇2(𝑠)‖𝑉

2𝑑𝑠. (84) 

Combining (84) and (57), and using the Gronwall’s inequality, we have  

‖𝒖1(𝑡) − 𝒖2(𝑡)‖𝑉 ≤ 𝐶 ∫
𝑡

0
‖𝜼1

1 − 𝜼2
1‖

𝑉′
𝑑𝑠,    𝑡 ∈ (0, 𝑇). (85) 

 Furthermore, from (74) we have  

‖𝒌1(𝑡) − 𝒌2(𝑡)‖𝑌
2 ≤ 𝐶 ∫

𝑡

0
‖𝜼1

2(𝑠) − 𝜼2
2(𝑠)‖

𝑌

2
𝑑𝑠. (86) 

Form the previous inequality and estimates (85) and (83) it follows now that  

‖Λ𝜼1(𝑡) − Λ𝜼2(𝑡)‖𝑉′×𝑌
2                                 

≤ 𝐶 ∫
𝑡

0
‖𝜼1(𝑠) − 𝜼2(𝑠)‖𝑉′×𝑌

2 𝑑𝑠.
 (87) 

Let is introduce the following notations  

 {

𝐼1 = ∫
𝑡

0
‖𝜼1(𝑠) − 𝜼2(𝑠)‖𝑉′×𝑌𝑑𝑠,

⋮

𝐼𝑘 = ∫
𝑡

0 ∫
𝑠𝑘−1
0

⋯∫
𝑠1
0
‖𝜼1(𝑟) − 𝜼2(𝑟)‖𝑉′×𝑌,

 

and by induction, by denoting by Λ𝑚 the 𝑚 power of the operator Λ, we obtain  

 
‖Λ𝑚𝜼1(𝑡) − Λ

𝑚𝜼2(𝑡)‖𝑉′×𝑌
              ≤ 𝐶𝑚(∑𝑚𝑘=1 𝐶𝑚

𝑘 𝐼𝑚−𝑘‖𝜼1(𝑡) − 𝜼2(𝑡)‖𝑉′×𝑌),
 

for all 𝑡 ∈ (0, 𝑇) and 𝑚 ∈ ℕ,  

 

𝐼𝑚−𝑘 ∥ 𝜼1 − 𝜼2 ∥𝑉′×𝑌= ∫(𝑚−𝑘)fois . ∫ ‖𝜼1 − 𝜼2‖𝑉′×𝑌

                        ≤ ∫
𝑠

0 ∫ ⋯∫(𝑚−𝑘)fois ‖𝜼1 − 𝜼2‖𝐿2(0,𝑇;𝑉′×𝑌)                        

                        ≤
𝑡𝑚−𝑘

𝑘!
‖𝜼1 − 𝜼2‖𝐿2(0,𝑇;𝑉′×𝑌)

                        ≤
𝑇𝑚−𝑘

𝑘!
‖𝜼1 − 𝜼2‖𝐿2(0,𝑇;𝑉′×𝑌),
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∥ Λ𝑚𝜼1(𝑡) − Λ
𝑚𝜼2(𝑡) ∥𝐿2(0,𝑇;𝑉′×𝑌)                                                                        

                        ≤ 𝐶𝑚 (∑𝑚𝑘=1 𝐶𝑚
𝑘 𝑇𝑚−𝑘

𝑘!
‖𝜂1(𝑡) − 𝜂2(𝑡)‖𝐿2(0,𝑇;𝑉′×𝑌))

                        ≤
(𝐶𝑇)𝑚

𝑚!
‖𝜼1(𝑡) − 𝜼2(𝑡)‖𝐿2(0,𝑇;𝑉′×𝑌)

2 ,

 

This implies that for sufficiently large 𝑚, the operator Λ𝑚 is a contraction on the Banach space 

𝐿2(0, 𝑇; 𝑉′ × 𝑌). Consequently, Λ𝑚 possesses a unique fixed point 𝜼∗ ∈ 𝐿2(0, 𝑇; 𝑉′ × 𝑌), which means that 

𝜼∗ is also a unique fixed point of Λ. 

Existence 

 Let 𝜼∗ ∈ 𝐿2(0, 𝑇; 𝑉′ × 𝑌) be the fixed point of Λ. We define 

𝒖 = 𝒖𝜂∗ ,    𝒌 = 𝒌𝜂∗ ,    𝜑 = 𝜑𝜂∗ , (88) 

𝝈 = 𝒜𝜀(𝒖̇) + ℰ∗∇𝜑(𝑡) + 𝝈𝜂∗ , (89) 

𝑫 = ℰ𝜀(𝒖) + 𝑩∇𝜑. (90) 

We demonstrate that the tuple (𝒖, 𝝈, 𝒌, 𝜑,𝑫) satisfies the conditions outlined in (44)-(49) and (50)-

(54). Specifically, by substituting 𝜼∗ = 𝜼 into (75) and applying (88)-(89), we confirm that (44) is satisfied. 

Next, we consider (55) for 𝜼∗ = 𝜼 and use (88) to derive 

(𝒖̈(𝑡), 𝒗)𝑉′×𝑉 + (𝒜𝜀(𝒖̇(𝑡)), 𝜀(𝒗))ℋ + (𝜂
1∗(𝑡), 𝒗)𝑉′×𝑉 + 𝑗(𝒖̇(𝑡), 𝒗)

    = (𝒇(𝑡), 𝒗)𝑉′×𝑉    ∀𝒗 ∈ 𝑉, a. e. 𝑡 ∈ [0, 𝑇].
 (91) 

The relationships Λ1(𝜼∗) = 𝜼1∗ and Λ2(𝜼∗) = 𝜼2∗, together with (80)-(81), (88), and (89), imply 

that for all 𝒗 ∈ 𝑉, 

(𝜼𝟏
∗
(𝑡), 𝒗)𝑉′×𝑌 = (ℬ(𝜀𝒖(𝑡)), 𝜀(𝒗))ℋ + (ℰ

∗∇𝜑(𝑡), 𝜀(𝒗))ℋ ,

    + (∫
𝑡

0
𝒢(𝝈(𝑠) −𝒜𝜀(𝒖̇(𝑠)) − ℰ∗∇𝜑(𝑡), 𝜀(𝒖(𝑠)), 𝜃(𝑠), 𝒌(𝑠)) 𝑑𝑠, 𝜀(𝒗))

ℋ
,
 (92) 

𝜼𝟐
∗
(𝑡) = Φ(𝝈(𝑠) −𝒜𝜀(𝒖̇(𝑠)) − ℰ∗∇𝜑(𝑡), 𝜀(𝒖(𝑡)), 𝜃(𝑡), 𝒌). (93) 

From (93) and (74), it follows that (48) is satisfied. By substituting (92) into (91) and using (44), we 

verify that (45) holds. 

We then substitute 𝜼 = 𝜼∗ into (70) and use (88) to derive (47). Furthermore, (49), along with the 

regularities given by (50), (52), and (53), follow from Lemmas 3, 4, and the relationship in (74). The 

regularity 𝝈 ∈ 𝐶(0, 𝑇;ℋ) is ensured by Lemmas 5. 

Considering 𝑡1, 𝑡2 ∈ [0, 𝑇], from (21), (29), (30), and (90), we conclude that there exists a positive 

constant 𝐶 > 0 such that 

 ‖𝑫(𝑡1) − 𝑫(𝑡2)‖𝐻 ≤ 𝐶(‖𝜑(𝑡1) − 𝜑(𝑡2)‖𝑊 + ‖𝒖(𝑡1) − 𝒖(𝑡2)‖𝑉). 

The regularity of 𝒖 and 𝜑 given by (50) and (52) implies that 

𝑫 ∈ 𝐶(0, 𝑇;𝐻).  (94) 

By choosing 𝜙 ∈ 𝐷(Ω)𝑑 in (46)-(47) and using (41), we find 

𝑑𝑖𝑣𝑫∗(𝑡) = 𝑞0(𝑡),    ∀𝑡 ∈ [0, 𝑇]. (95) 
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The property (54) follows from (35), (94), and (95), thereby concluding the existence part of the 

Theorem. 

Uniqueness 

The uniqueness of the solution is a consequence of the uniqueness of the fixed point of operator Λ. 
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