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Abstract  

In this work, a perovskite solar cell (PSC) based on MAPbI3 has been designed, modeled, 

implemented, investigated and analyzed in Silvaco TCAD environment. A thin layer of MAPbI3 

serves as the photoactive absorber. A thinner layer of PEDOT: PSS based organic material acts as 

the hole transport layer to enhance the hole transport towards the ITO electrode and a thin layer of 

ZnO based inorganic material serves as the electron transport layer to assist electron transport to the 

aluminum electrode. Simulations have been carried out to obtain the energy band diagram and the 

electric field profile as well as the contour and 2D plots of photon absorption rate, the recombination 

rate and the photogeneration rate to gain a physical insight of electronic and optical behavior of the 

proposed solar cell. The current-voltage (JV) characteristics and the external quantum efficiency 

(EQE) of the device are also plotted. The deduced performance metrics of the proposed PSC 

demonstrates a short circuit current density (JSC) of 27.247 mA/cm2, an open circuit voltage (VOC) 

of 0.978 V, a fill factor (FF) of 71.80% and a power conversion efficiency (PCE) of 21.25%, where 

the EQEs with and without considering the whole device absorption is more than 30% and 50% 

respectively over the visible and infra-red wavelength range (0.3 μm -1.0 μm).    

Keywords: Perovskite solar cell, MAPbI3, PEDOT: PSS, ZnO, ITO, Silvaco TCAD, PCE. 

 

1. Introduction 

The solar energy, an environmentally-harmless (Nayak et al., 2019) resource of energy, can 

supply a huge energy- 4 million exajoule per year (Kabir et al., 2017; Ho et al., 2024). This ample 

energy can be harvested by the photovoltaic cells, commonly known as solar cells. Till 2021 solar 

panels covered 28% of total global capacity (Ho et al., 2024; Nowsherwan et al., 2023). Solar cells 
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also have the potential to deal with the climactic change enhanced by the global warming through 

carbon neutralization (Nowsherwan et al., 2023). Theoretically, the maximum power conversion 

efficiency (PCE) that can be achieved by the solar cells is ≈ 33% (known as Schockley-Quisser limit 

(Guillemoles et al., 2019)). To achieve this limit with reduced material and fabrication cost seamless 

research endeavors have been conducted in the scientific community by utilizing different low-cost 

absorber materials with different structures which lead the evolution of different generations of solar 

cells (i.e., 1G, 2G, 3G). The 1G cells, the most primitive generation, involve costlier crystalline 

silicon (Si) and silicon-derived (i.e., SiGe) materials with p-n junction- and metal-insulator-

semiconductor (MIS) junction-based structures (M. J. Islam et al., 2016) and achieved a PCE of ≈ 

25%. The PCE of p-n junction structured 1G solar cells can be further enhanced by developing a 

drift field in the absorber layer through the use of heavily and non-uniformly doping there in (Huqe 

et al., 2013; S. K. Saha, Farhan, et al., 2011; S. K. Saha, Ferdaus, et al.2011; N. S. K. Saha, Ferdaus, 

et al., 2011; Huqe & Chowdhury, 2016; Huqe et al., 2012).  For MIS solar cells, use of low-cost 

materials (i.e., GaAs) have the promise of enhanced PCE with reduced cost. In 2G generation, the 

cell’s higher PCE with significantly lower cost is ensured by employing a number of earth-abundant 

materials such as such as amorphous Si (M. I. Chowdhury et al., 2020), CdTe (Haque et al., 2014b; 

Biswas et al., 2015; Rivon et al., 2016), CIGS (Haque et al., 2014a; Rahim et al., 2015; M. J. Islam 

et al., 2024), CZTS (Ayesha et al., 2016; Nikita et al., 2016) and CZTSSe (Hasan & Chowdhury, 

2018). The fabrication cost of all these solar cells has been significantly reduced. The quantum well 

(Barnham & Duggan, 1990; M. J. Islam & Chowdhury, 2024; Nabiah et al., 2024; Mostafa et al., 

2020; M. J. Islam et al., 2020; Johir et al., 2021; M. I. Chowdhury & Mostafa, 2020) and quantum 

dot (Aroutiounian et al., 2001; Aissat et al., 2016; Bi et al., 2016; Nawaz et al., 2023) based solar 

cells have been also reported with the promise of higher PCE with reduced cost. Low-cost, abundant 

materials such as organic semiconductors (W. H. Chowdhury et al., 2021; Chakma et al., 2024; M. 

R. H. Chowdhury et al., 2024), dyes (O’Regan & Grätzel, 1991; Rahman et al., 2023; Benesperi et 

al., 2018; M. N. Islam et al., 2024) and perovskite semiconductors (Chen et al., 2023; Pitaro et al., 

2021; Jeon et al., 2018; Herz, 2017; T. A. Chowdhury et al., 2023) are used as the absorber materials 

in 3G solar cells- all of which involves low-energy, roll-to-roll, solution-processible manufacturing 

process thereby enabling low-cost fabrication process (Ho et al., 2024).  

 

Perovskite semiconductor-based solar cell, termed hereafter as PSC, is the fastest-growing 3G 

technology (Ho et al., 2024), as the PCE of PSCs steeply rises from 3.8% (first invented in 2009 

(Kojima et al., 2009)) to more than 25% (reported recently) (Park et al., 2023)). This steep rise in 

PCE can be attributed to the excellent structural (higher crystallinity, ionicity, and defect tolerance) 

(Ho et al., 2024), electronic (higher relative permittivity, lower exciton binding energy, higher 

carrier mobility, and larger carrier diffusion length) (Chen et al., 2023), and optical (higher 

absorption coefficient) properties (Pitaro et al., 2021). PSCs are appropriate for indoor applications 

owing to their increased PCE under reduced illumination (Wu et al., 2021). They can be used in 

portable and wearable electronics due to their ability of fabrication on flexible substrates (Tebbal & 

Hamida, 2023). They are superior choice in building-integrated photovoltaic (BIPV) applications 

(Bati et al., 2023). In a typical planar regular PSC structure, the perovskite semiconductor is 

sandwiched between a hole transport layer (HTL) and an electron transport layer (ETL), where a 

transparent conductive oxide (i.e., ITO, FTO) next to HTL and a metal contact (i.e., aluminum, 

silver) next to ETL serve as the anode and the cathode respectively. The common HTLs are spiro-

OMeTAD, PEDOT: PSS and NiO (Ho et al., 2024), whereas, ZnO, tin oxide (SnO2) and titanium 

oxide (TiO2), are preferrable ETLs (Chen et al., 2023). Of various perovskite semiconductors 

reported till to date, Methylammonium lead iodide (MAPbI3) is more preferrable because of its 

excellent electrical and optical properties, low-temperature solution processability, long lifetime, 

and ferroelectricity (Husainat et al., 2019).  

 

This work aims to design and investigate a perovskite solar cell (PSC) in the Silvaco TCAD 

environment, as it is more versatile and has the ability to incorporate almost all the physics-based 
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models and hence, is a suitable tool to analyze complex structures (Hossain et al., 2014). The 

intended solar cell uses MAPbI3 as the perovskite absorber, PEDOT: PSS as the HTL (owing to its 

ability to enhance solar cell functioning (Murugesan et al., 2015)), ZnO as the ETL (owing to its 

outstanding electronic and optical properties and affordable processing (Bati et al., 2023)), ITO as 

the front electrode and aluminum as the back electrode.  

 

 

 

2. Methodology 

 
Figure 1 - Flowchart of Silvaco Atlas based solar cell modeling. 

 

This work employs Atlas tool of Silvaco TCAD to model and simulate the proposed PSC. The first 

step is crucial to balance between the accuracy and the simulation time. Fine meshing has better 

accuracy with increased simulation time, whereas, course meshing reduces the simulation time at 

the cost of accuracy (M. R. H. Chowdhury et al., 2024). The regions, electrodes and contacts are 

defined in the next two steps. Next, the electronic, organic and optical properties of each layer 

material are defined based on the literature. Electronic properties must include bandgap, 

permittivity, affinity, effective density of states in the conduction band (EC), effective density of 

states in the valence band (EV), electron mobility (μn) and hole mobility (μp), organic properties 

include relevant parameters for singlet dissociation and recombination as well as Langevin 
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recombination and optical properties include wavelength-dependent refractive index and extinction 

coefficient. In the following step, appropriate physical models (the most important one) and 

numerical methods are chosen. Specification of the solar irradiation profile in the next step 

completes the design of the PSC. Afterwards, the PSC has been simulated under illumination and 

bias conditions. Finally, simulation results are extracted to obtain the performance metrics and also, 

necessary graphs are plotted. 

3. Structure and Simulation 

In this work, a reference structure implemented in SCAPS 1D and reported in Husainat et al. 

(2019) has been modified to enhance the PCE. The reference PSC structure is based on FTO/TiO2/ 

MAPbI3/Spiro-OMETAD/Au with a PCE of 20.34%, where MAPbI3 is used as the absorber layer 

(thickness is 300 nm), TiO2 as the ETL, Spiro-OMETAD as the HTL, FTO is the front electrode 

and Au (gold) as the back electrode. Severe recombination has been observed between the 

perovskite films and the FTO electrode in the presence of pinholes in TiO2 layers leading to poor 

performance (Ho et al., 2024). Therefore, ZnO is proposed as ETL in this work to improve 

performance. Spiro-OMeTAD has inherent stability problem, Bati et al. (2023), whereas, PEDOT: 

PSS enhances solar cell functioning (Murugesan et al., 2015). Hence, PEDOT: PSS is better 

alternative as HTL than Spiro-OMeTAD for improved cell stability. Au is a costlier metal than 

aluminum (Al) and hence, use of Al can reduce the cost. Therefore, the proposed PSC in this work 

has been modified to a structure of ITO/PEDOT: PSS/ MAPbI3/ZnO/Aluminum to enhance the 

PCE, reduce the cost and improve the cell stability.  

 
Figure 2 - The proposed structure of MAPbI3 based PSC. 

 

Figure 2 shows the schematic of the proposed PSC structure investigated in this work. The 

photoactive absorber layer MAPbI3 is sandwiched between the top PEDOT: PSS HTL and the 

bottom ZnO ETL, ITO and aluminum are used as the front and back electrodes. The dimensions of 

all these materials are shown in Table 1. The electronic properties of MAPbI3, PEDOT: PSS and 

ZnO are listed in Table 2. Work function values of ITO and aluminum are chosen as 4.8 eV and 4.1 

eV respectively. The optical properties i.e., the refractive index and the extinction coefficient have 

been collected from literature (RefractiveIndex.INFO - Refractive Index Database, n.d.). As incident 
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solar irradiation, the terrestrial solar spectral irradiance specified by the American Society for 

Testing and Materials (ASTM) G-173 (Reference Air Mass 1.5 Spectra, n.d.) has been used.  

 

Table 1 –Layer, Material, and thickness for proposed PSC structure. 

Layer  Material  Thickness 

Front Electrode  ITO  120 nm 

HTL  PEDOT: PSS  30 nm 

Absorber  MAPbI3  300 nm 

ETL  ZnO  200 nm 

Back Electrode  Aluminum  100 nm 

 

Table 2: Electronic properties of different layer materials used in the proposed PSC. 

Electronic Property  MAPbI3  PEDOT: PSS  ZnO 

Bandgap (eV)  1.5  1.6  3.37 

Permittivity  3.9  3.0  9.0 

Affinity (eV)  30  3.5  4.54 

Nc (cm-3)  2.5 ×1020  5.0×1019  2.2 ×1018 

Nv (cm-3)  2.5×1020  5.0×1019  1.8×1019 

μn (cm2/V-sec)  50  0.1  100 

μp (cm2/V-sec)  50  0.08  25 

Work function (eV)  -  -   

 

The proposed structure has been implemented in the Silvaco TCAD environment. The modeling 

includes Fermi statistics, and SRH, Auger and optical recombination mechanisms. Since MAPbI3 

and PEDOT: PSS are not defined in Silvaco TCAD, the user-defined material option of TCAD is 

used; MAPbI3 is defined as ‘polysilicon’ and PEDOT: PSS is defined as ‘organic’. The 2D view of 

the proposed PSC structure, implemented in Silvaco TCAD, is shown in Figure 3.  

 

 

Figure 3 - Silvaco TCAD-implemented structure of the proposed PSC. 

 

4. Results and Discussion 
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This section presents, analyses and discusses the simulation results obtained from TCAD 

simulation of the proposed PSC structure. These results include the plots of energy band diagram, 

electric field, photon absorption rate, recombination rate and photogeneration rate. Internal and 

external quantum efficiencies (IQE and EQE) and current-voltage (JV) characteristics of the 

proposed PSC are also presented. Finally, various performance metrics which include short circuit 

current density (JSC), open circuit voltage (VOC), fill factor (FF) and PCE of the proposed PSC are 

presented and compared with the reference structure reported in Husainat et al. (2019). Figs. 4(a) 

and 4(b) present the energy band diagram and the electric field profile respectively of the proposed 

PSC under zero-bias and no light condition. The vertical lines separate the layer materials, where 

ITO, PEDOT: PSS, MAPbI3, ZnO and Al are presented from left to right. The linearity of the 

conduction and valence band energies observed in MAPbI3 layer represents its undoped nature, for 

which electric field in this layer becomes constant, as seen from Figure 4(b). The discontinuity in 

the energy bands observed at the interfaces is due to the work function difference between the 

materials involved at each interface. This discontinuity results in a depletion region near each 

interface, for which energy bands are bent [Figure 4(a)] and nonuniform electric field has been 

developed [Figure 4(b)] near these interfaces. The observed higher level of electric field in the 

absorber layer confirms the efficient electron-hole separation of the excitons photogenerated therein. 

The even higher field observed at the interfaces of ITO/ PEDOT: PSS and ZnO/Al helps improved 

charge carrier extraction towards the electrodes.  

  

  
(a) (b) 

Figure 4 - (a) Energy band diagram and (b) Electric field profile of the proposed PSC. 

 

The contour and 2D views of the photon absorption rate under no bias condition are presented in 

Figs. 5(a, b). These plots reveal that the photons are mostly absorbed in the MAPbI3 layer. This 

absorption is almost exponential, which peaks at the interface with the PEDOT: PSS layer and 

exponentially decays as moves toward the ZnO layer. Figs. 5(a, b) also shows a small amount of 

absorption in the PEDOT: PSS and ZnO layers. 
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(a) (b) 

Figure 5 - (a) Contour and (b) 2D plot of the photon absorption rate in the proposed PSC. 

 

The contour and 2D plots in Figure 6 present the recombination rate in the different layers of the 

proposed PSC. These plots show that the recombination of carriers happens in all three layers of 

absorber, HTL and ETL. The highest recombination happens in the ETL, lowest in the HTL, and in 

between in the absorber layer. This means that the mismatch between the absorber and ETL is the 

highest and that between the absorber and HTL is the lowest, whereas, almost constant 

recombination in the absorber reveals its structural uniformity.  

 

  
(a) (b) 

Figure 6 - (a) Contour and (b) 2D plot of the recombination rate in the proposed PSC. 

 

The contour and 2D plots of the photogeneration rate in the different layers of the proposed PSC are 

presented in Figure 7. Both these plots reveal that the highest photogeneration occurs in the MAPbI3 

absorber layer, which almost exponential decays from left to right. A comparatively smaller 

photogeneration also occurs in the ZnO layer. However, no photogeneration is happened in the 

PEDOT: PSS layer. 
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(a) (b) 

Figure 7 - (a) Contour and (b) 2D plot of the photogeneration rate in the proposed PSC. 

 

The reflection, transmission and absorption spectra of the proposed PSC over a wavelength range 

0.3 μm-1.0 μm are presented in the plots of Figs. 8(a-c). The reflection is < 30% for wavelengths 

up to 0.75 μm, then starts to rise and reaches ≈ 50% at a wavelength of 0.98 μm, as seen from Figure 

8(a). On the other hand, Figure 8(b) shows that the transmission is zero for wavelengths up to 0.52 

μm and then increases, however, it remains < 0.24%. As seen from Figure 8(c), the absorption is > 

50% over all the wavelength span and it is > 70% for wavelengths up to 0.76 μm. The lower 

reflection and transmission and the higher absorption over most of the wavelength span shows 

higher photon absorption capability of the proposed PSC. 

 

 
 

Figure 8 - (a) Reflection, (b) transmission and (c) absorption profile of the proposed PSC. 

 

Figure 9 plots the variation of three photo-generated currents, namely source (IS), available (IA) 

and load (IL) against over the wavelength span of the irradiated solar spectrum. These currents are 

calculated based on the consideration of optical and electrical losses- IS does not consider any one, 

IA considers only the optical one and IL considers both Johir et al. (2021), where reflection and 

transmission losses from the optical loss and recombination of charge carriers form electrical loss. 

As seen from Figure 9, the optical loss is more severe than the electrical losses, as IA is significantly 

reduced from IS, whereas, IA and IL are very close throughout the wavelength range. This means 

that the reflection is higher and the recombination is lower in the proposed PSC.  
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Figure 9 - The current profiles Vs. wavelength of the proposed PSC. 

 

The IQE (ηint) and EQE (ηext1 and ηext2) plots of the proposed PSC are presented in Figure 10, 

where these quantities can be defined in terms of IS, IA, IL and absorption (A) as Johir et al.  (2021): 

 

𝜂𝑖𝑛𝑡 =
𝐼𝐿
𝐼𝐴

 

𝜂𝑒𝑥𝑡1 =
𝐼𝐿
𝐼𝑆

 

𝜂𝑒𝑥𝑡2 =
𝐼𝐿
𝐼𝑆𝐴

 

 

The IQE plot observed in Figure 10 approaches to 100% over the full wavelength of interest, as IL 

and IA are very close as observed in Figure 9 due to reduced recombination. On the other hand, the 

EQE plots have been observed severely degraded in the most part of the wavelength spans of 

interest. Since the absorption spectra is > 50% up to the wavelength of 0.76 μm, the EQEs are 

observed higher (>60%) in this span. However, EQE2 which considers absorption of the whole 

device becomes lower than EQE1 at the wavelengths > 0.55 μm and > 0.78 μm, meaning that 

parasitic absorption in the HTL and ETL increases at these wavelengths.   
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Figure 10 - IQE and EQE characteristics of the proposed PSC. 

 

Figure 11 represents the JV characteristics curve of the proposed PSC. This curve closely resembles 

to typical square-like shape observed in inorganic solar cells, as reported in the literature (M. I. 

Chowdhury et al., 2020; Haque et al., 2014b; Biswas et al., 2015; Rivon et al., 2016; Haque et al., 

2014a; Rahim et al., 2015; M. J. Islam et al., 2024; Ayesha et al., 2016; Nikita et al., 2016; Hasan 

& Chowdhury, 2018) and follows the two-diode model (A. Islam & Chowdhury, 2014) of inorganic 

solar cells. This typical inorganic JV behavior results in higher fill factor (FF) (> 70%) of the 

proposed PSC, which is also reflected in Table 4.  

 

 
Figure 11 - JV characteristics of the proposed PSC. 
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The performance metrics comparison of the proposed PSC with the reference structure reported in 

(Husainat et al., 2019) has been presented in Table 4. The proposed PSC has much higher short 

circuit current density (JSC) than the reference cell, which reflects its better charge carrier 

collection. However, owing to the increased recombination in ZnO ETL, the open circuit voltage 

(VOC) and the FF of the proposed PSC becomes lower than the reference cell. However, the 

significant increase in JSC outperforms the decreased VOC and FF, resulting in the higher PCE of 

the proposed PSC.  

 

Table 4: Performance metrics comparison of the proposed PSC with the reference structure 

(Husainat et al., 2019). 

Performance 

Metrics 

FTO/TiO2/MAPbI3/SiproOMeTAD/Au  

(Husainat et al., 2019) 

ITO/PEDOT: PSS/MAPbI3/ZnO/Al  

(This work) 

Jsc (mA/cm2) 15.158 27.247 

Voc (V) 1.476 0.978 

FF (%) 91 71.80 

PCE (%) 20.34 21.25 
 

5.Conclusion 

In this work, an MAPbI3-based perovskite solar cell has been designed, modeled, and investigated 

for improved performance. The MAPbI3-based absorber layer is sandwiched between two 

electrodes (ITO and aluminum). The PEDOT: PSS placed atop of this absorber layer serves as the 

hole transport layer and enhances the hole transport to the ITO electrode. Instead of TiO2, ZnO is 

used as an electron transport layer to overcome the recombination problem associated with the 

presence of pinholes in TiO2. ITO and aluminum are used two electrodes. The proposed solar cell 

has been implemented and simulated in the Silvaco TCAD environment. Compared to the reported 

values in the literature, the proposed structure shows an increased PCE of 21.25% with significantly 

enhanced short-circuit current density (JSC) of 27.247 mA/cm2. This significant improvement in 

JSC counterbalances the less values of open circuit voltage and fill factor as compared to the 

reported ones in the literature. The analysis regarding the degraded external quantum efficiency of 

the proposed PSC suggests that the continued research endeavors should be conducted to reduce the 

optical losses and hence, to enhance the PCE further.  
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