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1.0 INTRODUCTION  

Cancer incidence worldwide has been increasing over the year. 
Lung cancer (LC) is a disease with a poor prognosis once 
diagnosed. LC is the leading cause of death in men worldwide 
and the second cause of mortality in women. 

Lung cncer arises from oncogenic alterations in tissues from the 
respiratory epithelium, namely in bronchi, bronchioles and 
alveoli (Longo et al., 2012). This cancer results from multiple 
morphological, molecular and genetic changes, leading to an 
accumulation of malignant cells (Shahid et al., 2016). LC is 
mainly classified into two categories, according to its 
histological characteristics: non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC). NSCLC is 
categorized into three different categories, namely 
adenocarcinoma, squamous cell carcinoma and large cell 
carcinoma. NSCLC is the most common LC type (about 80% of 
total cases) and adenocarcinoma is the most common subtype 
(about 40%). Moreover, bronchioloalveolar carcinoma  

 

 

subtype is more associated with women and non-smokers. In 
contrast, squamous cell carcinoma is linked to tobacco  

consumption (MacConaill, 2012; Raparia et al., 2013). On the 
other hand, SCLC tends to affect the neuroendocrine system and 
is related to smoking habit, being diagnosed in only 1% of non-
smokers patients (Mendes et al., 2015).  

There are some mediators which may play a predominant role in 
the treatment of LC, such as Epidermal Growth Factor Receptor 
(EGFR), Vascular Endothelial Growth Factor (VEGF), (Gold et 
al., 2012), Anaplastic Lymphoma Kinase (ALK), among others 
(Lamelas et al., 2012). Ciprofloxacin (CP), an antibiotic has 
been shown to have anti-proliferative and apoptotic activities in 
several cancer cell lines (Azéma et al., 2009). Moreover, several 
reports have highlighted the interest of increasing the 
lipophilicity to improve the antitumor efficacy.  

Synthesis of novel compounds are developed using a trial and 
error approach which is time consuming and expensive. The 
advent of computational chemistry led to challenges of drug 
discovery (Cramer et al., 1988). QSAR establish a relationship 
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A Quantitative Structure Activity Relationship (QSAR) study has been attempted on 
ciprofloxacin derivatives as potent anti-lung cancer. QSAR models were derived with the aid 
of multi-linear regression (MLR) approach using topological, molecular shape, electronic and 
structural descriptors. The predictive ability of the QSAR models generated were validated 
and the best model selected has squared correlation coefficient (R2) of 0.954801, adjusted 
squared correlation coefficient (Radj) of 0.939265, Leave one out (LOO) cross validation 
coefficient (Q_cv^2) value of 0.907523. The external validation set used for confirming the 
predictive power of the model has its R2pred of 0.8387. The QSAR models point out that 
AATSC2m, VR3_Dzp and BIC2 are the important descriptors effectively describing the 
bioactivity of these compounds. 
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between various molecular properties of molecules and their 
experimentally known activities (Ibezim et al., 2009). The 
application of Quantitative Structure Activity Relationship 
(QSAR) technique to this problem has potential to minimize 
effort and time required to discover new compounds or to 
improve current ones in terms of their efficiency. The aim of this 
research was to develop a QSAR model for predicting the 
activity of ciprofloxacin derivatives against lung cancer. 

 
2. MATERIALS AND METHOD 

2.1 Data set 

Data set of ciprofloxacin derivatives as  potential anti-lung 
cancer that were used in this study were obtained from the 
literature lines (Azéma et al., 2009). 
 
2.2 BIOLOGICAL ACTIVITIES (PIC50) 
The Biological activities of ciprofloxacin derivatives against 
lung cancer measured in IC50 (μM) were converted to logarithm 
unit (pIC50) using the equation (1) below in order to increase 
the linearity activities values and approach normal distribution. 

The observed structures and the biological activities of these 
compounds were presented in Figure 1 and Table 1. 
 
pIC50 = – log (IC50)      (1) 
 
 
 

 
Figure 1: General structure of ciprofloxacin derivatives 

 
 

 

Table 1: Molecular structure of ciprofloxacin derivatives as potent anti-prostate cancer 

 

S/N R Experimental 

Activity 

(pBA) 

1a H 280 

2 COCH2Cl 10 

3 C(O)OC(CH3)3 18 

4 COCH2OCOCH3 373 

5 COCH2OCO(CH2)2CH3 456 

6 a COCH2OCO(CH2)4CH3 20 

7 COCH2OCO(CH2)6CH3 16 

8 a COCH2OCO(CH2)7CH3 216 

9 a COCH2OCO(CH2)8CH3 273 

10 COCH3 584 

11 COCH2 CH3 402 

12 CO(CH2)2CH3 697 
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13 CO(CH2)3 CH3 64 

14 COC(CH3)3 509 

15 CO(CH2)5CH3 808 

16 CO(CH2)7CH3 6 

17 CO(CH2)8CH3 3 

18 a CO(CH2)10CH3 7 

19 CO(CH2)12CH3 56 

20 CO(CH2)14CH3 65 

21 a COCH2C6H5 29 

22 a COCH2OH 456 

Where superscript a represent the test set 
 

 

 

2.3 OPTIMIZATION 

The 2D structures of the compounds presented in the Table 1 
were drawn utilizing chemdraw programming (Adeniji et al., 
2018a). The spatial conformations of the compounds were 
exported from 2D structure to 3D format using the Spartan 14 
V1.1.4 Wave Function programming package. All 3D structures 
were geometrically optimized by minimizing energy. The 
chemical structures were initially minimized by Molecular 
Mechanics Force Field (MMFF) count to remove strain energy 
before subjecting it to quantum chemical estimations. Density 
Functional Theory (DFT) method was later  employed by  
utilizing the Becke’s three parameter exchange functional (B3) 
hybrid with Lee, Yang and Parr correlation functional (LYP) 
which is termed (B3LYP) hybrid functional for complete 
geometric optimization of the structures  (Adeniji et al., 2018a). 

  

2.4 MOLECULAR DESCRIPTOR CALCULATION 

Molecular descriptors are mathematical values that describe the 
properties of a molecule. Descriptors calculation for all the 
inhibitory were calculated using PaDEL-Descriptor software 
V2.20. A total of 1876 molecular descriptors were calculated 
(Adeniji et al., 2018a). 

 

 

 

 

2.5 NORMALIZATION AND DATA PRETREATMENT 

 

The descriptors’ value were normalized using Equation 2 in 
order to give each variable the same opportunity at the onset to 
influence the model (Adeniji et al., 2018b; Singh, 2013) 

 

X = 
�� � �������	 � ����    (2) 

 

Where Xi is the value of each descriptor for a given molecule, 
Xmax and Xmin are the maximum and minimum value for each 
column of descriptors X. The normalized data were subjected to 
pretreatment using Data  

Pretreatment software obtained from Drug Theoretical and 
Cheminformatics Laboratory (DTC Lab) in order to remove 
noise and redundant data. 

 

2.6 DATA DIVISION INTO TRAINING AND TEST SET 

Kennard and Stone’s algorithm approach was employed in this 
study to divide the data set into a training set and a test 
compounds in proportion of 70 to 30%. The training set was 
used to develop the QSAR model while the test was used to 
confirm the developed model.   
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2.7 MODEL DEVELOPMENT 

MLR is a strategy, utilized for displaying direct relationship 
between a dependent variable Y (pMIC) and independent 
variable X (atomic descriptors). The model is fit such that sum-
of square difference between the experimental and predicted 
values of set biological activity is minimized. In regression 
analysis, contingent mean of dependent variable (pMIC) Y 
relies on (Descriptors) X. MLR examination extends this 
thought to incorporate more than one autonomous variable and 
regression equation takes the form. 

 

Y =  b1x1 + b2x2 + b3x3 + C     (3) 

 

Where Y is dependent variable, ‘b’s are regression coefficients 
for corresponding ‘x’s (independent variable), and ‘C’ is a 
regression constant or intercept. 

 

2.8 VALIDATION OF MODEL  

Validation of the model was carried out using Material studio 
software version 8 using Genetic Function Approximation 
(GFA) method. The numbers of descriptors in the regression 
equation were three; population and generation were set to 
10000 and 10000, respectively. The numbers of top equations 
returned were four. Mutation probability was 0.1, and the 
smoothing parameter was 0.5. The models were scored based on 
Friedman’s LOF. In GFA algorithm, an individual or model was 
represented as one-dimensional string of bits. It was a distinctive 
characteristic of GFA that it could create a population of models 
rather than a single model.  

The models were estimated using the LOF, which was measured 
using a slight variation of the original Friedman formula, so that 
the best fitness score can be received. In materials studio version 
8, LOF is measured using a slight variation of the original 
Friedman formula. The revised formula is: 

 

LOF = 
���� � � �� × �� ��     (4) 

 

Where:  

SEE is the Standard Error of Estimation which is equivalent to 
the model’s standard deviation.  It’s a measure of model quality 
and a model is said to be a better model if it has low SEE value. 
SEE is defined by equation below; 

 

SEE =  ����	�  � �������
� �� �  �    (5) 

 

c is the number of terms in the model, other than the constant 
term,  d is a user-defined smoothing parameter,  p is the total 

number of descriptors contained in the model and M is the 
number of  data  in the training set (Adeniji et al., 2018a) 

 

The square of the correlation coefficient (R2) describes the 
fraction of the total variation attributed to the model. The closer 
the value of R2 is to 1.0, the better the regression equation 
explains the Y variable. R2 is the most commonly used internal 
validation indicator and is expressed as follows: 

R2 =   1 −  " ∑��	�  $ %������
∑&��	�  $ %'������()�*  (6) 

 

Where: 

 Yexp, Ypred and  +,-./0/01 training are the experimental activity, 
the predicted activity and the mean experimental activity of the 
samples in the training set, respectively. 

R2 value varies directly with the increase in number of 
repressors i.e. descriptors, thus, R2 cannot be a useful measure 
for the stability of model. Therefore, R2 is adjusted for the 
number of explanatory variables in the model. The adjusted R2 
is defined as: 
 
 

R2
adj =  

2� �� 30 ��40 �5 6�      (7) 

 
 

Where p = number of independent variables in the model. 
 
The capability of the QSAR equation to predict bioactivity of 
new compounds was determined using the leave-one-out cross 
validation method. The cross-validation regression coefficient 
(789:

  ) was calculated with the equation below: 
 

789:
  = 1 − ; ∑�����  $ %�	���

∑<��	�  $ %'������(=�>   (8) 

 
 
Where  
Ypred, Yexp, and +,-./0/01 are the predicted, experimental and 
mean values of experimental activity of the training set. 
The coefficient of determination for the test set ?,@A,:  was 
calculated with the equation below; 
 
 ?,@A,: = 1 − ∑��5-@B'�C' � ��	�'�C'��

∑��5-@B'�C' � �'������( ��  (9) 

 
 
Where +DEFG,@A,  and  +@H5'�C' are the predicted and 

experimental activity test set. While  +,-./0/01 is mean values of 
experimental activity of the training  
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2.8 EVALUATION OF THE APPLICABILITY DOMAIN 
OF THE MODEL 
The built QSAR model was evaluated based on applicability 
domain approach in order establish that the model is robust and 
reliable to predict the activities of the inhibitor compounds. The 
leverage approach was employed in defining and describing the 
applicability domain of the built  QSAR models. Leverage of a 
given chemical compound hi, is defined as follows: 
 
 

hi = Xi 3IJI4�� I/J      (10) 
 
 
Where Xi is training compounds matrix of i.  X is the m× k 
descriptor matrix of the training set compound and IJ is the 
transpose matrix of X used to build the model. The warning 
leverage (h*) is the boundary of values for X outliers and is 
defined as:  
 

h* = 3 3B 6�4K       (11) 

 
Where m is the descriptors and d is the compound that made up 
the training set. (Adeniji et al., 2018a) 

2.9 Y-RANDOMIZATION TEST 
To guarantee the created QSAR model is strong and not inferred 
by chance, the Y-randomization test was performed on the 
training set data as suggested by (Tropsha et al., 2003). Random 
MLR models are generated by randomly shuffling the dependent 
variable (activity data) while keeping the independent variables 
(descriptors) unaltered. The new QSAR models are expected to 
have significantly low R2 and Q2 values for several trials which 
confirm that the developed QSAR models are robust. Another 
parameter, c?5: is also calculated which should be more than 0.5 
for passing this test. 
 
  

c?5: = ? × L?:  −  3?-4:M:     ( 12) 
  
 
Where,  
c?5: is Coefficient of determination for Y-randomization, R is 
coefficient of determination for Y-randomization and Rr is an 
average ‘R’ of random models. 
 
2.10 QUALITY ASSURANCE OF THE MODEL 
 
The fitting ability, stability, reliability and predictive ability of 
the developed models were evaluated by internal and external 
validation parameters. The validation parameters were 
compared with the minimum recommended value for a 
generally acceptable QSAR model (Adeniji et al., 2018b; 
Veerasamy et al., 2011) showed in Table 3. 

 
3.0 RESULTS AND DISCUSSION  
 
A QSAR examination was performed to investigate the structure 
activity relationship of 22 compounds as potent anti-lung cancer 
agents. The nature of models in a QSAR study is expressed by 
its fitting and forecast capacity. In order to assemble a decent 
QSAR model for anti-lung cancer with good predictive power 
for the selected test set. Kennard-Stone algorithm was used to 
divide the dataset of 22 compounds into a training set of 15 
compounds which was used to developed the model and a test 
set of 7 compounds which was applied to assess the predictive 
ability-built model.  
  
Experimental and Predicted activity for ciprofloxacin 
derivatives as a potent anti-lung cancer and the residual values 
were presented in Table 2. The low residual value between 
Experimental and Predicted activity indicates that the model is 
of high predictability. 
 
The Genetic Algorithm- Multi Linear Regression (GA–MLR) 
investigation led to the selection of three descriptors which were 
used to assemble a linear model for calculating predictive 
activity on lung cancer. Four QSAR models were built using 
Genetic Function Algorithm (GFA), but due to the statistical 
significance, model 1 was selected, reported and its s parameters 
were as well calculated. 
 
 
Model 1 
Y = - 0.260777641* AATSC2m - 1.673908378 * VR3_Dzp + 
 0.431577310 * BIC2 +  0.174310823 

Model 2 
Y =   - 0.301042455 * AATSC2m + 0.354110306 * CIC4 - 
 0.007605618 * GGI7 - 5.484268669 

Model 3 
Y =   - 0.301042455 * AATSC2m + 0.354110306 * CIC4 - 
 0.007605618 * CIC4 - 1.943165607 

Model 4 
Y = - 0.260777641 * AATSC2m - 1.673908378 * VR3_Dzp + 
 0.431577310 * BIC2 +  4.490083927 
 
All the validation parameters for the optimum model were 
reported in Table 4 and were all in agreement with parameters 
presented in Table 3 which actually confirmed the robustness of 
the model.  
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Table 2: Experimental, Predicted and Residual values of ciprofloxacin derivatives 

Molecule Experimental 

Activity 

(pIC50) 

Predicted 

activity 

Residual 

1 a 3.552842 3.54632 0.006522 

2 5.000000 5.09629 -0.09629 

3 4.744727 4.754117 -0.00939 

4 3.428291 3.247843 0.180448 

5 3.341035 3.310391 0.030644 

6 a 4.69897 4.7533 -0.05433 

7 4.79588 4.6833 0.11258 

8 a 3.665546 3.889306 -0.22376 

9 a 3.563837 3.567258 -0.003421 

10 3.233587 3.330907 -0.09732 

11 3.395774 3.315635 0.080139 

12 3.156767 3.119305 0.037462 

13 4.19382 4.128542 0.065278 

14 3.293282 3.371872 -0.07859 

15 3.092589 3.156149 -0.06356 

16 5.221849 5.132853 0.088996 

17 5.522879 5.672869 -0.14999 

18 a 5.154902 5.146353 0.008549 

19 4.251812 4.243278 0.008534 

20 4.187087 4.222457 -0.03537 

21 a 4.537602 4.614322 -0.07672 

22 a 3.341035 3.264104 0.076931 

Where superscript a represent the test set 
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Table 3: Minimum recommended value of Validation Parameters for a generally acceptable QSAR 

model 

 

Symbol Value Name Value 

R2 Coefficient of determination ≥ 0.6 

P (95%) Confidence interval at 95% 

confidence level 

< 0.05 

NOPQ  Cross validation coefficient > 0.5 

R2 - NOPQ  Difference between R2 and 789:  ≤ 0.3 

Next. test set Minimum number of external 

test set 

≥ 5 

cRSQ Coefficient of determination for 

Y-randomization 

> 0.5 

 

 

 

Table 4: Validation parameters of the Genetic Function Approximation from material studio 

S/N Validation Parameters Model  1 Model 2 Model 3 Model 4 

1 Friedman LOF 0.02864 0.034616 0.040668 0.046369 

2 R-squared 0.954801 0.920137 0.853168 0.843168 

3 Adjusted R-squared 0.939265 0.919265 0.830396 0.810396 

4 Cross validated R-squared 0.907523 0.897523 0.80322 0.76344 

5 Significant Regression Yes Yes Yes Yes 

6 Significance-of-regression F-value 88.314223 83.65342 74.627565 71.457543 

7 Critical SOR F-value (95%) 3.748716 3.748716 3.748716 3.748716 

8 Replicate points 0 0 0 0 

9 Computed experimental error 0 0 0 0 

10 Lack-of-fit points 11 11 11 11 

11 Min expt. error for non-significant 

LOF (95%) 

0.065834 0.06867 0.07043 0.071357 

12 R2  test 0.8387 0.7467 0.7198 0.6216 

 

The name and symbol of the descriptors used in the QSAR 
optimization model was reported in Table 5. The presence of the 
three 2D descriptors in the model suggests that these types of 
descriptors are able to characterize better anti-lung cancer 
activities of the compounds.  

Pearson’s correlation matrix and statistics of the three 
descriptors employed in the QSAR Model were reported in 
Table 6. Which shows clearly that the correlation coefficients 
between each pair of descriptors is very low thus, it can be 
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inferred that there exists no significant inter-correlation among 
the descriptors used in building the model. The Mean Effect 
(ME) reported in Table 6 provides important information on the 
effect of the molecular descriptors and the degree of contribution 
in the developed model. The signs and the magnitude of these 
descriptors combined with their mean effects indicate their 
individual strength and direction in influencing the activity of a 
compound. The estimated Variance Inflation Factor (VIF) 
values for all the descriptors were less than 4 which imply that 
the model generated was statistically significant and the 
descriptors were orthogonal. The p-value is a probability that 
measures the evidence against the null hypothesis. Lower 
probabilities provide stronger evidence against the null 
hypothesis. The null hypothesis implies that there is no 
association between the descriptors and the activities of the 
molecules. The P-values of all the descriptors in the model at 
95% confidence level shown in Table 6 are less than 0.05. This 

implies that the alternative hypothesis is accepted. Hence there 
is a relationship between the descriptors used in the model and 
the activities molecules which take preference over the null 
hypothesis. 
 
Y- Randomization parameter test was reported in Table 7. The 
low R2 and Q2 values for several trials confirm that the 
developed QSAR model is robust. While the c?5 :  value greater 

than 0.5 affirms that the created model is powerful and 
not inferred by chance. 
 
 
 
 
 

 

 

Table 5: List of some descriptors used in the QSAR optimization model 

S/NO Descriptors symbols Name of descriptor(s) Class 

1 

 

AATSC2m Average Broto-Moreau autocorrelation - lag 2 / 

weighted by mass 

   2D 

2 VR3_Dzp Logarithmic Randic-like eigenvector-based index 

from Barysz matrix / weighted by polarizabilities 

   2D 

3 BIC2 Bond information content index (neighborhood 

symmetry of 2-order) 

  2D 

 

 

 

Table 6: Pearson’s correlation matrix and statistics for descriptor used in the QSAR optimization 

model 

Inter-correlation                                                Statistics  

Descriptors AATSC2m VR3_Dzp BIC2 ME VIF P- value 

AATSC2m 1   -0.6346 1.43322 4.342E-04 

VR3_Dzp -0.13208 1  0.2455 2.32121 2.566E-07 

BIC2 -0.11093 0.362855 1 -0.5428 1.24554 2.345E-05 
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Table 7: Y- Randomization Parameters test 

Model R R^2 Q^2 
Original 0.954869 0.936082 0.900868 

Random 1 0.557607 0.310925 -0.23015 

Random 2 0.399318 0.159455 -0.54789 

Random 3 0.366365 0.134224 -0.58322 

Random 4 0.823539 0.678216 0.368781 

Random 5 0.511228 0.261355 -0.42421 

Random 6 0.346023 0.119732 -0.53935 

Random 7 0.243492 0.059288 -1.17941 

Random 8 0.671342 0.4507 -0.17635 

Random 9 0.552076 0.304788 -0.47477 

Random 10 0.345377 0.119285 -0.63643 
    
    

Random Models Parameters 
 

Average r : 0.481637 
  

Average r^2 : 0.259797 
  

Average Q^2 

: 

-0.4423 
  

cRp^2 : 0.852239 
  

 

Plot of predicted activity against experimental activity of 
training and test set where shown in Figure 2 and Figure 3 
respectively. The R2 value of 0.9548 for training set and R2 value 
of 0.8387 for test set reported in this study was in agreement 
with Genetic Function Approbation (GFA) derived R2 value 
reported in Table 3 which confirms the robustness and reliability 
of the model. Plot of standardized residual versus experimental 
activity shown in Figure 4 indicates that there was no systematic 
error in the model built as the spread of standardized residual 
values were on both sides of zero (Adeniji et al., 2018b). The 
leverage values for the entire compounds in the dataset were 
plotted against their standardized residual values leading to 
discovery of outliers and influential compound in the models. 

The Williams plot of the standardized residuals versus the 
leverage value is shown in Figure 5. From our result it is an 
evident that all the compounds were within the square area ±3 
of standardized cross-validated residual produced by the model.  
Therefore, no compound is said to be an outlier. However, only 
one compound (molecule number 15) is said to be an influential 
compound since its leverage value is greater than the warning 
leverage (h* = 0.80). This was attributed to difference in its 
molecular structure compared to other compounds in the dataset. 
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Figure 2: Plot of predicted activity against experimental activity of training set 

 

 

 

 

Figure 3: Plot of predicted activity against experimental activity of test set 
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Figure 4: Plot of residual values versus experimental activity 

 

 

Figure 5: Plot of Standardized residual activity versus experimental activity 

 

 
 
4. CONCLUSION 
 
QSAR analysis on a series of ciprofloxacin derivatives was 
carried out using the GFA technique. The best model was 
selected based on the statistical parameters. The internal and 
external validation test for the QSAR model generated agreed 
with recommended value of validation parameters for a 
generally acceptable QSAR model. Thus, the descriptors, 

AATSC2m, VR3_Dzp and BIC2 in the built model are 
important descriptors to determine the activity of the compounds 
to function as effective lung cancer inhibitors. This knowledge 
can be used for designing more effective chemical entities and 
may also provide important insights into structural variants 
leading to the development of novel lung cancer inhibitors. 
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