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 A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling 
and molecular docking studies were carried out on the 64 indole derivatives and was 
accomplished to profoundly understand the structure-activity correlation of indole-based 
inhibitors of the HCV NS5B polymerase against HCV. Genetic function approximation (GFA) 
of Material studio software version 8 was used to perform the QSAR study while Autodock 
vina version 4.0 of Pyrx software was used for molecular docking studies of the selected indole 
derivatives. The optimum model builds exhibited statistically significant results: squared 
correlation coefficient (R2) of 0.760, adjusted squared correlation coefficient (R2 adj) value of 
0.708, Leave one out (LOO) cross-validation coefficient value of 0.634 and the external 
validation (R2 pred) of 0.621. Molecular docking study of the indole derivative with 1G8Q as 
the protein target revealed that the best binding affinity with the docking scores of -9.4 
kcal/mol formed hydrophobic interaction and H-bonding with amino acid residues of HCV 
NS5B polymerase. The QSAR model generated and molecular docking results proposed that 
the model had a good level of stability, strength, and predictability at internal and external 
validation, and the physicochemical parameters are to be analyzed when designing new indole 
derivatives agent with better activity against the 1G8Q target site. 
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1. INTRODUCTION  

Hepatitis C virus (HCV) was identified in 1989 by 
Michael Houghton and his colleagues(Choo et al., 1989). HCV 
is a member of Flaviviridae family and a positive-sense single-
stranded RNA virus with a single open frame of ~9600 
nucleosides. The viral genome encodes a polyprotein containing 
more than 3000 amino acids, and the polyprotein is classified 
into two categories: (1) structural proteins the nucleocapsid core 
protein (C) and two glycoproteins E1 and E2; (2) non-structural 
proteins (NS) NS2, NS3, NS4A, NS4B, NS5A, and NS5B, 
because of their primary role in the replication of HCV virus. 
The HCV NS5B polymerase is an RNA dependent RNA 
polymerase that is necessary for the replicating viral RNA of 
HCV (Sofia, Chang, Furman, Mosley, & Ross, 2012) 
(Moradpour, Penin, & Rice, 2007) and (Vrontaki, Melagraki, 
Mavromoustakos, & Afantitis, 2015). Hepatitis C Virus (HCV) 
a significant human pathogen of global public health, important 
as one of the major pathogens that cause chronic hepatitis, 
cirrhosis and hepatocellular carcinoma (HCC) (Shepard, Finelli, 
& Alter, 2005) and (Alter, 2007). 2.8% of the world population 
(about 180 million individuals according to the database of 
World Health Organization) has infected with HCV and 3-4 
million new infections each year. (Mohd Hanafiah, Groeger, 
Flaxman, & Wiersma, 2013) (Haudecoeur, Peuchmaur, Ahmed‐
Belkacem, Pawlotsky, & Boumendjel, 2013) and (Lavanchy, 
2009). 

Slow progress and mild symptoms, these features make 
it a hidden epidemic and most infections progress a chronic state 
that lasts for decades (Shepard et al., 2005). HCV symptoms 
include muscle aches, tenderness in the upper abdomen, yellow 
tinge to the skin and eyes, dark urine (jaundice), and light-
colored bowel movements. At present, the anti-HCV vaccine is 
unavailable (Fauvelle et al., 2013) and (Law, Landi, Magee, 
Tyrrell, & Houghton, 2013) and the standard of care (SOC) 
includes a combination of a protease inhibitor with pegylated α-
interferon (PEG-IFN-α) and the oral nucleoside antiviral agent 
ribavirin (RVB) (Lü & XUE, 2011). Therefore, it is very 
important to produce new anti-HCV drugs with encouraging 
activity and less toxicity. The drug design has widely been used 
in the discovery and development of drugs due to its slow and 
time-consuming advantages, cost reduction, high efficiency in 
silico screening and prediction of competitor drugs with 
improvements in computer technologies and simulation 
programs (Mohammad & Zohreh, 2013). The quantitative 
relationship between activity and activity QSAR in the simplest 
terms is a way of constructing mathematical models trying to 
establish a statistically the moral relationship between structure 
and function using the chemical technique. The QSAR method 
is capable of estimating the properties of new chemical 
compounds without having to synthesize and test (Barril & 
Morley, 2005). Molecular docking is one of the most widely 
used techniques in structure-based drug design SBDD due to its 
ability to predict with a substantial degree of accuracy, the 
confirmation of small-molecule ligands within the appropriate 
target binding site (Meng, Zhang, Mezei, & Cui, 2011). The aim 
of this research was to develop various QSAR models using 
Genetic Function Algorithm (GFA) method for predicting the 
activities of some selected indole derivatives and to predict the 
strength of interactions between indole derivatives (inhibitors) 
and NS5B polymerase protein (PDB code 1G8Q), an enzyme 
that is responsible for Hepatitis C. 

2. MATERIAL AND METHOD  

2.1 Datasets used 

Sixty-four (64) Molecules of indole derivatives were 
selected from the literature and used for the present study (Wei 
et al., 2016). The activities of the indole molecules measured as 
IC50 (nM) were expressed as the logarithmic scale. The pIC50 
(pIC50 =log1/IC50) was used as dependent variable thus 
linearly linking the data with the independent variable/ 
descriptors. Table 1 shows the observed structures and the 
biological activities of indole compounds  

Table 1 Structures and activities of indole-based inhibitors 
of the HCV NS5B polymerase. 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

1b 

 

0.47 0.894319 

2b 

 

0.47 0.89955 

3b 

 

0.47 0.689778 

4b 

N

N
H

O

N

F

O

O
N
H

S
O

O
O

 

0.60 0.625196 

5b 

 

0.60 0.623552 

6a 

 

0.60 0.61163800 

7a 

 

0.60 0.84144900 

8a 

 

0.69 0.62180500 
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Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

9a 

 

0.69 0.61163800 

10a 

 

0.69 0.92878400 

11a 

 

0.77 1.08877500 

12a 

 

0.77 0.79022500 

13a 

 

0.77 0.75628500 

14a 

 

0.77 0.67161300 

15a 

 

0.77 1.04552500 

16a 

 

0.77 0.91831900 

17a 

 

0.77 0.91831900 

18a 

 

0.84 1.25556900 

19a 
N

F

F
F F

N
H

S

O
O

O

N
H

O

 

0.84 0.85970000 

Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

20a 

 

0.84 0.64399000 

21a 

 

0.84 0.95642100 

22a 

 

0.90 0.98399300 

23a 

 

0.90 0.73702600 

24a 

 

0.95 1.15918900 

25a 

 

0.95 1.20297600 

26a 

 

1.00 0.89981500 

27a 

 

1.04 1.34769200 

28a 

 

1.04 1.30875700 
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Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

29b 

 

1.07 1.450111 

30b 

 

1.07 1.033415 

31b 

 

1.14 0.741121 

32b 

 

1.17 1.037696 

33b 

 

1.20 0.983785 

34a 

 

1.23 1.13189800 

35a 

 

1.23 1.01762500 

36a 

 

1.25 1.30983600 

 

Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

37a 

N

N

O

N

O

OH

 

1.27 1.11075000 

38b 

 

1.27 1.439499 
 

39a 

 

1.31 1.22951600 

40a 

 

1.41 1.19276700 

42a 

 

1.41 1.09410700 

43a 

 

1.44 0.87885000 

44a 

 

1.49 1.26526300 

45a 

 

1.51 1.15058900 

46a 

 

1.51 1.11961100 
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Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

47a 

 

1.53 1.63567600 

48a 

 

1.56 1.14033900 

49a 

N

O

HO

N

O

Cl

 

1.60 1.26422400 

50a 

 

1.63 1.20623300 

51a 

 

1.68 1.37459200 

52a 

 

1.69 1.44762900 

47a 

 

1.53 1.63567600 

48a 

 

1.56 1.14033900 

49a 

 

1.60 1.26422400 

50a 

 

1.63 1.20623300 

Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

51a 

 

1.68 1.37459200 

52a 

 

1.69 1.44762900 

53a 

 

0.30 1.12874300 

54a 

 

0.60 0.90982800 

55a 

 

1.68 0.72235700 

56a 

 

0.77 1.73616300 

57a 

 

0.77 0.79031400 

58a 

 

0.77 0.70726600 

59a 

 

1.43 0.83885300 

60b 

 

1.64 1.322014 
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Continued Table 1 

S/N Structure 
(a= training set, b= test set) 

pIC50 
(nM) 

Pred. pIC50 

61b 

 

0.77 1.300057 

62b 

 

0.47 0.663852 

63b 

 

0.47 0.604856 

64b 

 

0.95 0.669321 

2.2 Molecular modeling. 

All structures were constructed using ChemDraw Ultra 
12.0 software and save as cdx file format, the structures were 
converted to 3D using Spartan 14.0 version 1.1.2 software, 
molecular mechanics force field (MM+) calculation was carried 
out to minimize the energy of the molecules prior to the quantum 
chemical calculations. Density functional theory with B3LYP/6-
311G* was employed for complete geometry optimization of the 
drawn structures to obtain the lowest energy for all the 
inhibitors. The sdf format of the optimized structures that were 
from the Spartan’14 version 1.1.2 software package (Abdulfatai, 
Uzairu, & Uba, 2017) was conveyed to PaDEL-Descriptor 
version 2.18 toolkits (Yap, 2011) where the calculation of 1D, 
2D, and 3D descriptors took place. 

2.3 Computational method. 

For validated QSAR models, the descriptors (1D-3D) 
generated from the PaDEL version 2.18 toolkits (Yap, 2011) 
was divided into training and test sets. The training set was used 
to generate the model, while test set was used for external 
verification of the advanced model. (Kennard & Stone, 1969). 
The relationship between the activity values of the indole 
molecules against NS5B polymerase and calculated descriptors 
was obtained through correlation analysis using material studio 
software version 8. The Pearson’s correlation matrix was used 
as a qualitative model, in order to determine appropriate 
descriptors for regression analysis.  

The descriptors that were from  PaDEL version 2.18 
toolkits (Yap, 2011) were analyzed for regression analysis with 
experimentally determined activities as the dependent variable 
and the selected descriptors as the independent variables using 
Genetic Function Algorithm (GFA) method in material studio 
software version 8. The models were registered based on 
Friedman’s Lack of Fit (LOF). In GFA algorithm, the individual 
or model is represented as a one-dimensional bit. The 
characteristic of GFA is that it can create a population of models 

instead of a single model. GFA algorithm, identifying 
genetically essential functions, developed better models than 
those made using stepwise regression methods. 

Thus, the models were estimated using the LOF, which 
was measured using a slight formula of the original Friedman 
formula, so that the better score can be received. The revised 
formula of LOF (Khaled, 2011) is as follows: 

��� = ���
�	
���

� �²
  (1) 

SSE is the sum of squares of errors c is the number of 
terms in the model, unlike the fixed term d is a user-defined 
smoothing parameter, p is the total number of descriptors 
contained in all model terms (ignoring the constant term), and 
M is the number of samples in the training set. 

2.4 Quality assurance of the model. 

The reliability and predictive power of advanced QSAR 
models were evaluated by internal and external validation 
parameters.  

2.5 Internal and external validations. 

The internal and external validation parameters were 
compared with the minimum recommended value for the 
evaluation of the quantitative QSAR model (Veerasamy et al., 
2011) as shown in Table 2. The R2 describes the fraction of the 
total variation attributed to the model.  

�� = 1 − Ʃ �����
�����²
Ʃ �����
Ӯ!�"#$#$%�²  (2) 

where Yobs, Ypred, and Ytraining are the experimental 
property, the predicted property, and the mean experimental 
property of the samples in the training set 
respectively.(Veerasamy et al., 2011). Adjusted R2 (R2 adj) 
value varies directly with the increase in a number of repressors 
i.e descriptors; thus, R2 cannot be a useful measure of the 
goodness of model fitness. Therefore R2 is adjusted for the 
number of explanatory variables in the model. R2 adj is defined 
as follows: 

�&'(
� = 1 − )1 − ��* +
	

+
,
	 = )+
	*-.
,
+
,/	   (3) 

Where n is the number of training compounds. p= number of 
independent variables in the model. 

The leave one out cross validation coefficient (Q2) is 
given by the following: 

0� = 1 − Ʃ)�,
�*²
Ʃ )�
�1*²  (4) 

where Yp and Y are the predicted and observed activity 
respectively of the training set and Ym is the mean activity value 
of the training set (Jalali-Heravi & Kyani, 2004). 

2.6 Applicability domain. 

Applicability Domain (AD) is the chemical descriptor 
space incorporated by a special training collection of chemicals. 
The applicability domain of the developed models was assessed 
in order to specify the scope of their proposed models by 
defining the model limitations with respect to its structural 
domain and response area. Leverage refers to the compound’s 
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distance from the centroid of X. The leverage of the compound 
in the defined original variable space is as follows: 

ℎ3 = 43
5)454*
	43  (5) 

The warning leverage (h*) is defined as follows: 

ℎ3 = 6)7/	*
8   (6)  

N is the number of training compounds, and p is the number of 
predictor variables. Xi is the descriptor vector of the considered 
compound and X is the descriptor matrix derived from the 
training set descriptor values. Fig. 3, shows that two of the 
training set and six of the test set fall inside the domain of the 
model (the warning leverage limit is 0.4), hence they are 
accepted as Y influential. 

 
Figure 3 - (A) Prepared Structure of (1G8Q) protein; (B) 

Prepared structure of ligand (indole derivatives). 

Table 2 General minimum recommended value for the 
evaluation of the quantitative QSAR model. 

Name Symbols Value 
R2 Coefficient of determination 90.5 

P(95%) 
Confidence interval at 95% 
confidence level 

:0.05 

Q2 Cross-validation coefficient 90.5 
R2

 - Q2 Difference between R2 and Q2 ;0.3 

Next. Test set 
Minimum number of external test 
set 

95 

R2
ext 

Coefficient of determination for 
external test set 

90.5 

The closer the value of R2 is to 1.0, the better the 
regression equation explains the Y variable.  

2.7 Molecular Docking studies. 

Molecular docking is one of the most frequently used 
methods in drug design because of its ability to predict the 
conformation of small-molecule ligands within the appropriate 
target binding site. The molecular docking studies of active anti-
hepatitis C compounds were performed by AutoDock Vina and 
PyRx virtual screening software using the reference of the 
template substrate. Running on HP core i3, Microsoft operation 
windows 10 professional version 2010 computer system, with 
Intel ® Core™ i3 Dual CPU 5157U @2.50 GHz 2.50GHz, 8GB 
of  RAM. The score function, dock function (S, kcal/mol) 
developed by Autodock program was used for evaluation of the 
binding affinity of the indole derivatives (ligands) with the 
receptor (1G8Q). 

2.8 Preparation of Ligands and Receptor for Docking. 

The preparation of ligands are as follows; (i) conversions 
of 2D to 3D, (ii) correcting structures, (iii) validation and 

optimizing the structures. All these tasks were performed using 
Spartan’14 version 1.1.2. The crystal structure of NS5B 
polymerase (receptor) with the PDB code of (1G8Q) was 
download from Protein Databank website (PDB). The 
preparation of the crystal structure of the receptor was 
performed using Autodock version 4.2 software (Veerasamy et 
al., 2011). 

2.9 Docking using Autodock version 4.0 of Pyrx software. 

The molecular docking of ligands (indole derivatives) 
with the receptor (NS5B polymerase) was performed using 
Autodock version 4.0 of pyrx software (Trott & Olson, 2010). 
Docking is a virtual screening of a database of compounds and 
predicting the efficiently binding ligand(s) based on different 
scoring functions. The ligand library has been generated by 
collecting all the 64 indole derivatives in an Autodock version 
4.0 (Autodock vina) folder of pyrx software (Trott & Olson, 
2010). The library setup helps to make a simple comparison 
between ligands by performing simultaneous docking of 
multiple ligands against the receptor. The network batch 
docking was also performed. The result of each docked 
molecule shown in terms of the final minimum score (Dock 
score interaction/ docking energy of receptor-ligand). 

3. RESULT AND DISCUSSION 

All the five developed QSAR models were identified 
and the best model (model 1) was identified and reported due to 
the statistical importance. Table 3 shows the name and 
definitions of the descriptors used in the QSAR model. Table 4 
gives the result of the Genetic Function Algorithm (GFA) of 
model 1 produced from material studio. The minimum 
recommended value for validation of the generally acceptable 
QSAR model was consistent with the parameters of model 1. 
Based on the generated statistics, Model 1 was selected and 
reported as the best QSAR model. 

pIC?@  =  0.031920049 GHIJK –  0.045332344 GHIJN O
 0.355723777 QRSTUG–  3.535873143 UWXYSZ[\ O
 0.004913636 ^GY_ O  1.070655  

N = 64, R2
ext. = 0.621098, R2 = 0.76039600, R2adj = 0.70806200, Q2cv = 

0.63417700, LOF = 0.26279000, Min expt. Error for non-significant 
LOF (95%) = 0.212326700. 

Table 3 List of some physiochemical descriptors used for the 
best model. 
S/N Symbols Name of descriptors Class 

1 ASTm1 ATs autocorrelation 
descriptors weighted by scale 
atomic mass. 

2D 

2 ASTm4 ATs autocorrelation 
descriptors weighted by scale 
atomic mass. 

2D 

3 MLFER_A Overall or summation solute 
hydrogen bond acidity. 

2D 

4 RotBFrac The fraction of rotatable bonds, 
excluding terminal bond. 

2D 

5 VABC Van der Waals volume 
calculated 

2D 

The highly calculated Q2 LOO value (0.760) for pIC50 
indicates a good internal validation of the model. The external 
sample validation for R2ext (0.621) was also performed, and the 
test set containing 25% of the data set was used to validate the 
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external form which is higher than the standard value of 0.5 for 
the model. 

From figure 1, the developed model is stable and the 
residuals on both sides of zero are randomly propagated.  

 

Figure 1 - The plot of the Experimental and predictive 
activity of both training and test set of the best model (1). 

Figure 2 of Williams' plot shows the leverages for each 
compound in the dataset, which were drawn against its standard 
residual, resulting in the discovery of 8 influentials. Figure 2 
also shows that two sets of training compounds with (pIC50 of 
1.14 and 1.68) and six test set compounds (PIC50 of 0.69, 0.47, 

0.47, 0.9, 1.14, and 0.77) were out of the applicability domain 
of the model. All of these compounds have their leverage values 
higher than the warning leverage value (h* = 0.4), and their high 
leverage value is responsible for influencing the performance of 
the model. 

 

 
Figure 2 - The plot of the standardized residuals versus the 
leverage value of both the training set and test set of model 
1 (h* = 0.4) 

The correlation matrix was performed on the 
descriptors of model 1 and found to be highly correlated which 
means that the descriptors used to build the model are good 
Table 5. 

Table 4 Validation parameter for the models using genetic function approximation. 
Validation parameters. Model (1) Model (2) Model (3) Model (4) Model (5) 
Friedman LOF 0.26279000 0.26732800 0.26825300 0.26855700 0.2691520 
R-squared 0.76039600 0.75280300 0.75125700 0.75074900 0.7497530 
Adjusted R-squared 0.70806200 0.69956500 0.69783500 0.69726600 0.6961520 
Cross-validated R-squared (Q2cv) 0.63417700 0.61480600 0.59284700 0.62490700 0.5970510 
Significant Regression Yes Yes Yes Yes Yes 
Significance-of-regression F-value 10.70809800 10.38366800 10.31894100 10.29777200 10.2564170 
Critical SOR F-value (95%) 2.46448800 2.46448800 2.46448800 2.46448800 2.4644880 
Replicate points 1 1 1 1 1 
Computed experimental error. 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 
Lack-of-fit point. 41 41 41 41 41 
Min expt. Error for non-significant LOF (95%) 0.21326700 0.21510100 0.21547200 0.21559400 0.2158330 

Table 5 Pearson’s correlation matrix for the selected 

  ATSm1 ATSm4 MLFER_A RotBFrac VABC 
ATSm1 1     
ATSm4 0.863254 1    
MLFER_A -0.22554 -0.27328 1   
RotBFrac 0.402991 0.244536 0.07342 1  
VABC 0.617905 0.665186 0.268955 0.530202 1 

 

3.1 Interpretation of descriptors in model 1. 

ASTm1 and ASTm4 have defined as 2D correlated 
descriptors ATs autocorrelation descriptor, weighted by scale 
atomic mass,  MLFER_A is 2D MLFER Descriptors and is 
defined as overall or summation solute hydrogen bond acidity. 
RotBFrac is also 2D PaDEl rotatable bonds count Descriptors 
and is defined as the fraction of rotatable bonds, excluding 
terminal bonds. VABC is another 2D VABC Descriptors and is 
defined as van der Waals volume calculated. From the model, 
we can conclude that the increase in ASTm1, MLFER_A, and 
VABC and decrease in ASTm4 and RotBFrac will increase the 

anti-hepatitis C NS5B activity (pIC50) of these indole 
derivatives. 

3.2 Molecular docking studies. 

Molecular docking studies between the target protein 
(1G8Q) and the indole derivatives (ligands) were performed. All 
the compounds were found to strongly inhibit by completely 
occupying the active sites in the target protein (1G8Q). All 
inhibitors showed low energy values (high docking scores) than 
the bond energies. For target protein, binding energy values 
range from -6.3 to -9.4 kcal/mol. The number 58a compound 
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with the binding energies of -9.4 kcal/mol showed the best 
binding energies than other interconnections of the co-ligands. 

3.3 Binding mode of inhibitors. 

Table 6 and 7 showed least and the best docking scores, 
hydrogen bond length (in angstrom) and the reactive residues 
involved in the laying of docking inhibitors (ligands) at the 
active side of 1G8Q. Fig. 4 gives the best three result of docking 
studies. The Ligand number 58a (a compound with the best 
binding score of -9.4 kcal/mol) shows that LYS216, PHE213 
VAL146, PHE126 residues target are involved in Electrostatic 

and hydrophobic interactions; they also form hydrogen bonds 
with GLN129 (2.23 A˚). Compound 38b made two hydrogen 
bond interactions of GLN125 (2.317 A˚) and GLN132 (2.32 A˚) 
with four residues ALA130, VAL146, LYS216, and PHE213. 
Compound 46a also creates a hydrogen bond with LYS116 (3.22 
A˚) and hydrophobic interactions with ALA230, ALA243, 
VAL246, LYS116, LYS116, and PHE226. 

 

 

 
Figure 4 - 3D and 2D structure of the docked - Ligands Complex. (A) Interactions between 1G8Q and Ligand 58a. (B) 

Interactions between 1G8Q and Ligand 38b. (C) Interactions between 1G8Q and Ligand 46a. 
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Table 6 Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between ligands with least 
binding energy and the active site of the 1G8Q receptor. 

Ligands Binding energy 
(Kcal/mol) 

Residual interaction Hydrogen bond Hydrogen bond 
distance. 

24 -6.3 ASP228, ASP228, 
LYS221, LYS221  
LYS224, LEU262 

LYS221 3.33198 

14 -6.4 ALA140 ALA143 2.58093 
52 -6.4 LEU185, ILE181 

ILE181, LEU185 
ASN184, ASN184 2.55278, 3.35309 

6 -6.6 GLN225, GLN232, 
ASP228, GLN225, and 
LEU262 

ASP228, THR261, 
LYS221 and GLN229 

2.06288, 2.99654 
2.81134 and 
2.79842 

Table 7 Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between ligands with best 
binding energy and the active site of the 1G8Q receptor. 

Ligands Binding energy 
(Kcal/mol) 

Residual interaction Hydrogen bond Hydrogen bond distance. 

17 -8.5 PHE126, PHE213 
VAL146, LYS216 
LYS216, LYS216 
LYS216 

GLN129, ASP217 
LYS216, ASP217  
and PHE298 

2.17364, 2.15338 
2.53616, 2.75181 
3.59918 

46 -8.8 ALA230,ALA243  
VAL246, LYS116 
LYS116, PHE226 

LYS116 3.22038 

38 -8.9 ALA130, VAL146 
LYS216, PHE213 

GLN125 
GLN132 

2.31716 
2.32755 

58 -9.4 LYS216, LYS216 
PHE213, PHE213 
VAL146, PHE126 
PHE213 
 

GLN129 2.23902 

 

4. CONCLUSION 

In this research QSAR model was generated with 
descriptors (ASTm1, RotBFrac, ASTm4 MLFER_A and 
VABC) which were correlated with biological activities of 
indole derivatives and have the R2 of 0.760 and Q2 of 0.634, the 
validation parameters showed a good predictive ability of the 
model. The external predictive power (R2 = 0.621) was 
satisfactory. Molecular docking analysis revealed that 
Compound (58a) with the best binding affinity and docking 
score of -9.4 kcal/mol against the protein (1G8Q) which have H-
bond formed at GLN129 (2.23 A˚) and hydrophobic/residual 
interaction of LYS216, LYS216, PHE213, PHE213, VAL146, 
PHE126 and PHE213 with the protein of the target. From the 
result obtain from this research work we found out that the 
docking analysis and the binding scores generated were found 
to be better than the one reported by (Balavignesh, Srinivasan, 
Ramesh Babu, & Saravanan, 2013). Thus, these findings 
provide useful guidance and support for the development of the 
indole-based inhibitors acting as potential inhibitors for hepatitis 
C virus NS5B polymerase. 
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