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A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling
and molecular docking studies were carried out on the 64 indole derivatives and was
accomplished to profoundly understand the structure-activity correlation of indole-based
inhibitors of the HCV NS5B polymerase against HCV. Genetic function approximation (GFA)
of Material studio software version 8 was used to perform the QSAR study while Autodock
vina version 4.0 of Pyrx softwarewas used for molecular docking studies of the selected indole
derivatives. The optimum model builds exhibited statistically significant results: squared
correlation coefficient (R?) of 0.760, adjusted squared correlation coefficient (R? adj) value of
0.708, Leave one out (LOO) cross-validation coefficient value of 0.634 and the external
validation (R? pred) of 0.621. Molecular docking study of the indole derivative with 1G8Q as
the protein target revealed that the best binding affinity with the docking scores of -9.4
kcal/mol formed hydrophobic interaction and H-bonding with amino acid residues of HCV
NS5B polymerase. The QSAR model generated and molecular docking results proposed that
the model had a good level of stability, strength, and predictability at internal and external
validation, and the physicochemical parameters areto be analyzed when designing new indole
derivatives agent with better activity against the 1G8Q target site.
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1. INTRODUCTION 2. MATERIAL AND METHOD

Hepatitis C virus (HCV) was identified in 1989 by2.1 Datasets used
Michael Houghton and his colleagues(Choo et aB9)9HCV
is a member of Flaviviridae family and a positieise single-
stranded RNA virus with a single open frame of ~®6
nucleosides. The viral genome encodes a polyproteitaining
more than 3000 amino acids, and the polyproteitlassified
into two categories: (1) structural proteins thelaacapsid core
protein (C) and two glycoproteins E1 and E2; (2)+structural
proteins (NS) NS2, NS3, NS4A, NS4B, NS5A, and NS5
because of their primary role in the replicationHZ€V virus.
The HCV NS5B polymerase is an RNA dependent RNPable 1 Structures and activities of indole-basedhhibitors
polymerase that is necessary for the replicatimgl \RNA of of the HCV NS5B polymerase.

HCV (Sofia, Chang, Furman, Mosley, & Ross, 2013
(Moradpour, Penin, & Rice, 2007) and (Vrontaki, Kigiaki, Structure Pred. plGo
Mavromoustakos, & Afantitis, 2015). Hepatitis C ¥6r(HCV) (a= training set, b= test sey

a significant human pathogen of global public Heathportant b 0.47 0.894319
as one of the major pathogens that cause chromatikis,
cirrhosis and hepatocellular carcinoma (HCC) (Sh&dainelli,
& Alter, 2005) and (Alter, 2007). 2.8% of the wopdpulation
(about 180 million individuals according to the alzdse of
World Health Organization) has infected with HCVdag-4 2b
million new infections each year. (Mohd Hanafialro&ger,
Flaxman, & Wiersma, 2013) (Haudecoeur, Peuchmalumed
Belkacem, Pawlotsky, & Boumendijel, 2013) and (Lalan
2009).

Sixty-four (64) Molecules of indole derivatives \wer
&elected from the literature and used for the presteidy (Wei
et al., 2016). The activities of the indole molesuimeasured as
IC50 (nM) were expressed as the logarithmic scetbe. pIC50
(pIC50 =logl/1IC50) was used as dependent variahlss t
linearly linking the data with the independent wahie/

escriptors. Table 1 shows the observed structares the
iological activities of indole compounds

=

0.47 0.89955

3b
Slow progress and mild symptoms, these featureemi |

it a hidden epidemic and most infections progressranic state ol L\l
that lasts for decades (Shepard et al., 2005). Kd@vptoms _
include muscle aches, tenderness in the upper aborallow i 0

tinge to the skin and eyes, dark urine (jaundieg) light- 4p /QF 0.60 0.625196

0.47 0.689778

colored bowel movements. At present, the anti-H@¢cine is
unavailable (Fauvelle et al., 2013) and (Law, LarMagee,
Tyrrell, & Houghton, 2013) and the standard of cé8©C)
includes a combination of a protease inhibitor piggylated-
interferon (PEG-IFN&) and the oral nucleoside antiviral ager
ribavirin (RVB) (LU & XUE, 2011). Therefore, it ivery
important to produce new anti-HCV drugs with eneming
activity and less toxicity. The drug design haselydeen used
in the discovery and development of drugs duest@litw and
time-consuming advantages, cost reduction, higicieffcy in
silico screening and prediction of competitor drugith
improvements in computer technologies and simulati
programs (Mohammad & Zohreh, 2013). The quantiati 6a F 0.60 0.61163800
relationship between activity and activity QSARte simplest

terms is a way of constructing mathematical modsfiisg to & OH
establish a statistically the moral relationshipasen structure
and function using the chemical technique. The Q$#dthod
is capable of estimating the properties of new dbam
compounds without having to synthesize and testr{iB&
Morley, 2005). Molecular docking is one of the mestely

used techniques in structure-based drug design S@i20o its 7a HO_o 0.60  0.84144900
ability to predict with a substantial degree of wecy, the

0.60 0.623552

confirmation of small-molecule ligands within thppaopriate NS I

target binding site (Meng, Zhang, Mezei, & Cui, 2DIThe aim NH; 3 NH

of this research was to develop various QSAR modsisg FX_0

Genetic Function Algorithm (GFA) method for prediict the g5 F o %°A 0.69 0.62180500
activities of some selected indole derivatives ndredict the @\ NH

strength of interactions between indole derivati{iakibitors) F N /N

and NS5B polymerase protein (PDB code 1G8Q), ayreaz J NH

that is responsible for Hepatitis C.
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Continued Table 1 Continued Table 1
Structure Pred. plGo S/N Structure Pred. plGo

(a= training set, b= test set) (a= training set, b= test set)

9a F o %°A 0.69 0.61163800 20a 0.84 0.64399000
@L\ NH
O=N N/ \
(0] NH
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10a H 0.69 0.92878400
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@\ s/ N0
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Structure
(a= training set, b= test set)
29b Ho<°
O
N NI
Cl
30b cl
/A
H,N /I NH
N INN

31b

32b

33b

34a o S OH
o<
O

NHH
0
W/
N
7\
N\
35a ZNH
X 0
N F
7 1-F
HO . F
=
-
HN N
36a
o)
2
N OH
O=<)
N

1.07

1.14

1.17

1.20

1.23

1.23
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Pred. plGo
1.450111

1.033415

0.741121

1.037696

0.983785

1.13189800

1.01762500

1.30983600

Continued Table 1
Structure

37a

38b

39a

40a

42a

43a

44a

45a

46a

(a= training set, b= test set)

Pred. plGo
1.27 1.11075000

1.27  1.439499

1.31 1.22951600

1.41 1.19276700

1.41 1.09410700

1.44 0.87885000

1.49 1.26526300

1.51 1.15058900

151 1.11961100
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Continued Table 1 Continued Table 1
Structure Structure
(a= training set, b= test set) Pred. plGo (a= training set, b= test set) Pred. plGo
47a 1.53 1.63567600 5la H o 1.68 1.37459200
O O °
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48a 1.56 1.14033900 G
0
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instead of a single model. GFA algorithm, identifyi
genetically essential functions, developed bettedels than

Structure
Pred. plGo those made using stepwise regression methods.

(a= training set, b= test set)

61b F 0.77 1.300057 Thus, the models were estimated using the LOF, whic
was measured using a slight formula of the origkraédman
formula, so that the better score can be receiVad. revised
N formula of LOF (Khaled, 2011} as follows:
LOF = —3E _ (1)
62b cl 0.47  0.663852 (1-S22)
HN// “N NH SSE is the sum of squares of errors c is the number
Jo =N terms in the model, unlike the fixed term d is &redefined
5 smoothing parameter, p is the total number of detscs
F contained in all model terms (ignoring the constanin), and
63b S 0.47  0.604856 M is the number of samples in the training set.
HN// . N/<éLNH 2.4 Quality assurance of the model.
o =N The reliability and predictive power of advancedABRS
K models were evaluated by internal and externaldatitn
F parameters.
e 7\ "o F 0.95  0.669321 2.5 Internal and external validations.
N - The internal and external validation parametersewer
b N7 compared with the minimum recommended value for the
X e HN N evaluation of the quantitative QSAR model (Veeragamal.,
2011)as shown in Table 2. The? Bescribes the fraction of the
2.2Molecular modeling. total variation attributed to the model.
All structures were constructed using ChemDraw aJltr RZ=1— 2 (Yobs—Ypred)? @
12.0 software and save as cdx file format, thecttres were - 2 (Yobs—Y training)?

converted to 3D using Spartan 14.0 version 1.1fBwvace,

molecular mechanics force field (MM+) calculatioascarried where Yobs, Ypred, and Ytraining are the experiment
out to minimize the energy of the molecules praathe quantum property, the predicted property, and the mean raxeatal
chemical calculations. Density functional theoryhilB3LYP/6- property of the samples in the training set
311G*was employed for complete geometry optimaratf the respectively.(Veerasamy et al., 201Bdjusted R (R? adj)
drawn structures to obtain the lowest energy fdr té value varies directly with the increase in a numifeepressors
inhibitors. The sdf format of the optimized struetsithat were j.e descriptors; thus, 2Rcannot be a useful measure of the
from the Spartan’14 version 1.1.2 software packagelulfatai, goodness of model fitness. Thereforé iR adjusted for the

Uzairu, & Uba, 2017)was conveyed to PaDEL-Descriptohumber of explanatory variables in the modélagj is defined
version 2.18 toolkits (Yap, 201Where the calculation of 1D, as follows:

2D, and 3D descriptors took place. )
n-1 _ (n-1)R°—p

n-p-1 - n-p+1

Reaj=1-(1—-R?) ®)

2.3 Computational method.

For validated QSAR models, the descriptors (1D-3R)here n is the number of training compounds. p= lmemof
generated from the PaDEL version 2.18 toolkits (Ya@11) independent variables in the model.

was divided into training and test sets. The trajréet was used
to generate the model, while test set was usedefoernal The leave one out cross validation coefficient (@2)
verification of the advanced model. (Kennard & $oh969). given by the following:

The relationship between the activity values of thdole ) S(Yp-1)?

molecules against NS5B polymerase and calculatecrigéors Q°=1- T (Y—Ym)? (4)
was obtained through correlation analysis usingenaltstudio

software version 8. The Pearson’s correlation matas used where Yp and Y are the predicted and observed igctiv

as a qualitative model, in order to determine appate respectively of the training set and Ym is the maetivity value
descriptors for regression analysis. of the training set (Jalali-Heravi & Kyani, 2004).

The descriptors that were from PaDEL version 2.186 Applicability domain.
toolkits (Yap, 2011)ere analyzed for regression analysis with

experimentally determined activities as the dependariable Applicability Domain (AD) is the chemical descripto
and the selected descriptors as the independeiabies using SPace incorporated by a special training colleatibchemicals.

Genetic Function Algorithm (GFA) method in materiiidio | '€ @Pplicability domain of the developed models wssessed
software version 8. The models were registered chaze N order to specify the scope of their proposed ey
Friedman'’s Lack of Fit (LOF). In GFA algorithm, theividual defmmg the model limitations with respect to sﬁucturgl
or model is represented as a one-dimensional bite 1domain and response area. Leverage refers to theamd's

characteristic of GFA is that it can create a pafioh of models
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distance from the centroid of X. The leverage eftompound
in the defined original variable space is as foow

hy = X[ (X"X)71x! ®)
The warning leverage (h*) is defined as follows:
3(P+1

N is the number of training compounds, and p isnimeber of
predictor variables. Xi is the descriptor vectotlo# considered
compound and X is the descriptor matrix derivedrirthe

training set descriptor values. Fig. 3, shows tiai of the

training set and six of the test set fall inside ttomain of the
model (the warning leverage limit is 0.4), henceythare

accepted as Y influential.

Figure 3 - (A) Prepared Structure of (1G8Q) protein (B)
Prepared structure of ligand (indole derivatives).

Table 2 General minimum recommended value for the

evaluation of the quantitative QSAR model.
Name Symbols Value

R? Coefficient of determination >0.5
Confidence interval at 959

Plos) confidence level <0.05

Q? Cross-validation coefficient =0.5

R?- @? Difference between R2 and Q2 <0.3

Minimum number of external tes >5
set =
Coefficient of determination fo

>0.5
external test set

Next. Test set

Rzext

The closer the value of?Rs to 1.0,
regression equation explains the Y variable.

2.7 Molecular Docking studies.

Molecular docking is one of the most frequently dise

methods in drug design because of its ability tedjmt the
conformation of small-molecule ligands within thegpeopriate
target binding site. The molecular docking studieactive anti-
hepatitis C compounds were performed by AutoDoakavand
PyRx virtual screening software using the referenéethe

template substrate. Running on Eiéte i3, Microsoft operation

windows 10 professional version 2010 computer systeith
Intel ® Core™ i3 Dual CPU 5157U @2.50 GHz 2.50G812B
of RAM. The score function, dock function (S, Koabl)
developed by Autodock program was used for evainadf the
binding affinity of the indole derivatives (ligandsvith the
receptor (1G8Q).

2.8 Preparation of Ligands and Receptor for Docking

The preparation of ligands are as follows; (i) cansions
of 2D to 3D, (ii) correcting structures, (iii) vehtion and

optimizing the structures. All these tasks werdqgrened using
Spartan’l4 version 1.1.2. The crystal structure NB5B
polymerase (receptor) with the PDB code of (1G8Q@sw
download from Protein Databank website (PDB). The
preparation of the crystal structure of the recepims
performed using Autodock version 4.2 software (\dsamy et
al., 2011).

2.9 Docking using Autodock version 4.0 of Pyrx softare.

The molecular docking of ligands (indole derivasiye
with the receptor (NS5B polymerase) was performsihgl
Autodock version 4.0 of pyrx software (Trott & Osa2010).
Docking is a virtual screening of a database of poumds and
predicting the efficiently binding ligand(s) based different
scoring functions. The ligand library has been gateel by
collecting all the 64 indole derivatives in an Adbak version
4.0 (Autodock vina) folder of pyrx software (Trdkt Olson,
2010). The library setup helps to make a simple pamson
between ligands by performing simultaneous dockiofg
multiple ligands against the receptor. The netwdrdich
docking was also performed. The result of each edck
molecule shown in terms of the final minimum scébock
score interaction/ docking energy of receptor-lidjan

3. RESULT AND DISCUSSION

the better the

All the five developed QSAR models were identified
and the best model (model 1) was identified andnted due to
the statistical importance. Table 3 shows the naand
definitions of the descriptors used in the QSAR elodable 4
gives the result of the Genetic Function Algoritli@FA) of
model 1 produced from material studio. The minimum
recommended value for validation of the generatigeptable
QSAR modelwas consistent with the parameters of model 1.
Based on the generated statistics, Model 1 wagtseleand
reported as the best QSAR model.

plCso = 0.031920049 ASTm1 - 0.045332344 ASTm4 +
0.355723777 MLFER - 3.535873143 RotBFrac +
0.004913636 VABC + 1.070655

N = 64, Rext. = 0.621098, R=0.76039600, Rq;= 0.70806200, &, =
0.63417700, LOF = 0.26279000, Min expt. Error fonssignificant
LOF (95%) = 0.212326700.

Table 3 List of some physiochemical descriptors uddor the
best model.

S/IN  Symbols Name of descriptors Class

1 ASTml ATs autocorrelation 2D
descriptors weighted by sca
atomic mass.

2 ASTm4  ATs autocorrelation 2D
descriptors weighted by sca
atomic mass.

3 MLFER_A Overall or summation solut 2D
hydrogen bond acidity.

4 RotBFrac The fraction of rotatable bond: 2D
excluding terminal bond.

5 VABC Van der Waals volume 2D
calculated

The highly calculated ©QLOO value (0.760) for pIC50
indicates a good internal validation of the moddie external
sample validation for Ry (0.621) was also performed, and the
test set containing 25% of the data set was usedligate the
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¥

external form which is higher than the standardi®alf 0.5 for 0.47, 0.9, 1.14, and 0.77) were out of the appiitaldomain

the model.

From figure 1, the developed model is stable ard t

residuals on both sides of zero are randomly praigalgy

of the model. All of these compounds have theietage values
igher than the warning leverage value (h* = Gady their high
verage value is responsible for influencing tegfgrmance of
the model.

? Lod
15 ondl & & 3
: Q§ > T 2
2 05 o0 3 & °
T 0 iz " 3
B ® 0 N 4
S -0.5 @ 3
£ S o é
-1 c -1 e
2 890 ©
-1.5 3 od
wn -2
_2 o
0 0.5 1 1.5 2 -3
Experimental Activity 0 0.2 0.4 0.6 0.8
9 trng set Dtest set oTmg 'S-a’e ra}l%es? sot

Figure 1 - The plot of the Experimental and predicive
activity of both training and test set of the besmodel (1).

Figure 2 of Williams' plot shows the leveragesdach
compound in the dataset, which were drawn agamstandard
residual, resulting in the discovery of 8 influedgi Figure 2
also shows that two sets of training compounds (@te50 of
1.14 and 1.68) and six test set compounds (PICB068f, 0.47,

Table 4 Validation

Figure 2 - The plot of the standardized residualsersus the
leverage value of both the training set and test sef model
1(h*=0.4)

The correlation matrix was performed on the
descriptors of model 1 and found to be highly datesl which
means that the descriptors used to build the madelgood
Table 5.

parameter for the models using gnetic function approximation.

Validation parameters. Model (1)

Model (2) Model (3)

Model (4)

Model (5)

Friedman LOF 0.26279000 0.26732800 0.26825300 0.26855700 0.2691520

R-squared 0.76039600 0.75280300 0.75125700 0.75074900 0.7497530

Adjusted Rsquared 0.70806200 0.69956500 0.69783500 0.69726600 0.6961520

Crossvalidated Rsquared (&) 0.63417700 0.61480600 0.59284700 0.62490700 0.5970510

Significant Regression Yes Yes Yes Yes Yes

Significanceof-regression fvalue 10.70809800 10.38366800 10.31894100 10.29777200 10.2564170

Critical SOR Fvalue (95%) 2.46448800 2.46448800 2.46448800 2.46448800 2.4644880

Replicate points 1 1 1 1 1

Computed experimental error. 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Lack-of-fit point. 41 41 41 41 41

Min expt. Error for no-significant LOF (95%) 0.21326700 0.21510100 0.21547200 0.21559400 0.2158330
Table 5 Pearson’s correlation matrix for the sele@d

ATSm1 ATSm4 MLFER_A RotBFrac VABC

ATSm1 1

ATSm4 0.863254 1

MLFER_A -0.22554 -0.27328 1

RotBFrac 0.402991 0.244536 0.07342 1

VABC 0.617905 0.665186 0.268955 0.530202 1

3.1 Interpretation of descriptors in model 1.

ASTm1 and ASTm4 have defined as 2D correlate
descriptors ATs autocorrelation descriptor, weighby scale
atomic mass, MLFER_A is 2D MLFER Descriptors and is
defined as overall or summation solute hydrogerdbacidity.

anti-hepatitis C NS5B activity (pHg of these indole

derivatives.

ds.z Molecular docking studies.

Molecular docking studies between the target pmotei
(1G8Q) and the indole derivatives (ligands) wendgrened. All

RotBFrac is also 2D PaDEI rotatable bonds count Descriptate compounds were found to strongly inhibit by ptetely
and is defined as the fraction of rotatable boragluding occupying the active sites in the target proteiG&®). All

terminal bondsVABC is another 2D VABC Descriptors and isnhibitors showed low energy values (high dockiogrss) than
defined as van der Waals volume calculated. Fraamtbdel, the bond energies. For target protein, binding @nesmlues
we can conclude that the increasé&BTml, MLFER_A, and range from -6.3 to -9.4 kcal/mol. The number 58mgound
VABC and decrease iSTm4 andRotBFrac will increase the
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with the binding energies of -9.4 kcal/mol showé@ test and hydrophobic interactions; they also form hy@mdonds
binding energies than other interconnections otthigands. with GLN129 (2.23 A°’). Compound 38b made two hydnog
3.3 Binding mode of inhibitors bond interactions of GLN125 (2.317 A°) and GLN1223¢ A’)

' ) with four residues ALA130, VAL146, LYS216, and PHER

Table 6 and Bhowed least and the best docking scorgspmpound 46a also creates a hydrogen bond with L18$3.22
hydrogen bond length (in angstrom) and the reactsédues A°) and hydrophobic interactions with ALA230, ALA34
involved in the laying of docking inhibitors (ligds) at the VAL246, LYS116, LYS116, and PHE226.
active side of 1G8Q. Fig. 4 gives the best threalt®f docking
studies. The Ligand number 58a (a compound with bibst
binding score of -9.4 kcal/mol) shows that LYS2P&E213
VAL146, PHE126 residues target are involved in Etetatic

ASN
8215
PHE
B213
SN Lvs
B216

AN

SER
B299

GLN Q ASN
A133 Al142
an ER Wiz Mz L
A143
Interactions
[:] van der Waals I:I Pi-Pi Stacked
- Conventional Hydrogen Bond |:] Alkyl
|:] Pi-Cation D Pi-Alkyl
- Pi-Sigma
(B)
N /i A
P\ X
~ Al J
—\ :
\\
Y, af;fz
“eufG
#4125
VAL LYS
/ ALA A46 B:216
/ P A130
= 4132
Interactions
- Conventional Hydrogen Bond [:] Pi-Alkyl
©) f
o SN
/ G 5
/ \
\ »
= VAL
= - B246
¢ T
v Lys M2
s 8230 s
PHE
B226
Interactions
|:] Pi-Donor Hydrogen Bond :] Pi-Alkyl
[ s

Figure 4 - 3D and 2D structure of the docked - Ligads Complex. (A) Interactions between 1G8Q and Ligad 58a. (B)
Interactions between 1G8Q and Ligand 38b. (C) Inteactions between 1G8Q and Ligand 46a.
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Table 6 Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between ligandswith least
binding energy and the active site of the 1G8Q repéor.

Ligands Binding energy Residual interaction Hydrogen bond Hydrogen bond

distance.
24 -6.3 ASP228, ASP228, LYS221 3.33198
LYS221, LYS221
LYS224, LEU262

14 -6.4 ALA140 ALA143 2.58093

52 -6.4 LEU185, ILE181 ASN184, ASN184 2.55278, 3.35309
ILE181, LEU185

6 -6.6 GLN225, GLN232, ASP228, THR261, 2.06288, 2.99654
ASP228, GLN225, and LYS221 and GLN229 2.81134 and
LEU262 2.79842

Table 7 Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between ligandswith best
binding and the active site of the 1G8Q repéor.

Ligands Binding energy Residual interaction Hydrogen bond Hydrogen bond distance
(Kcal/mol)
17 -8.5 PHE126, PHE213 GLN129, ASP217 2.17364, 2.15338
VAL146, LYS216 LYS216, ASP217 2.53616, 2.75181
LYS216, LYS216 and PHE298 3.59918
LYS216
46 -8.8 ALA230,ALA243 LYS116 3.22038

VAL246, LYS116
LYS116, PHE226

38 -8.9 ALA130, VAL146 GLN125 2.31716
LYS216, PHE213 GLN132 2.32755
58 9.4 LYS216, LYS216 GLN129 2.23902

PHE213, PHE213
VAL146, PHE126
PHE213

Bello. Finally, we also want to acknowledge Usman
4. CONCLUSION Abdulfatah’s valuable comments and proposals.
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indole derivatives and have thé & 0.760 and ®of 0.634, the Quantitative structure-activity relationship and
validation parameters showed a good predictivetplf the molecular docking studies of a series of
model. The external predictive power 2(R 0.621) was quinazolinonyl analogues as inhibitors of gamma

satisfactory. Molecular docking analysis revealetlatt . . . .
Compound (58a) with the best binding affinity andcking amino butyric acid aminotransferasieurnal of
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docking analysis and the binding scores generatze vound BABU, N.; & SARAVANAN, N.. Molecular

to be better than the one reported by (Balavign8shjvasan, docking study on ns5b polymerase of hepatitis ¢

Ramesh Babu, & Saravanan, 2013). Thus, these §adin
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